server: add option to output probabilities for completion
This commit is contained in:
parent
049aa16b8c
commit
ba210e4bc7
2 changed files with 100 additions and 27 deletions
|
@ -31,6 +31,7 @@ struct gpt_params {
|
|||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance
|
||||
int32_t n_probs = 0; // if greater than 1, output the probabilities of top n_probs tokens. Max 5
|
||||
|
||||
// sampling parameters
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
|
|
@ -26,6 +26,28 @@ struct server_params {
|
|||
int32_t write_timeout = 600;
|
||||
};
|
||||
|
||||
// completion string output with probabilities
|
||||
struct completion_string_output {
|
||||
struct token_prob {
|
||||
std::string tok_str;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
std::string tok_str;
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output {
|
||||
struct token_prob {
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
llama_token tok;
|
||||
};
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
@ -107,6 +129,7 @@ struct llama_server_context {
|
|||
bool stream = false;
|
||||
bool has_next_token = false;
|
||||
std::string generated_text;
|
||||
std::vector<completion_string_output> generated_text_probs;
|
||||
|
||||
size_t num_tokens_predicted = 0;
|
||||
size_t n_past = 0;
|
||||
|
@ -137,6 +160,7 @@ struct llama_server_context {
|
|||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(params.n_ctx);
|
||||
generated_text_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
|
@ -216,8 +240,9 @@ struct llama_server_context {
|
|||
llama_set_rng_seed(ctx, params.seed);
|
||||
}
|
||||
|
||||
llama_token nextToken() {
|
||||
llama_token result = -1;
|
||||
completion_token_output nextToken() {
|
||||
completion_token_output result;
|
||||
result.tok = -1;
|
||||
|
||||
if (embd.size() >= (size_t)params.n_ctx) {
|
||||
// Reset context
|
||||
|
@ -256,7 +281,8 @@ struct llama_server_context {
|
|||
|
||||
if (params.n_predict == 0) {
|
||||
has_next_token = false;
|
||||
return llama_token_eos();
|
||||
result.tok = llama_token_eos();
|
||||
return result;
|
||||
}
|
||||
|
||||
// out of user input, sample next token
|
||||
|
@ -273,7 +299,7 @@ struct llama_server_context {
|
|||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
llama_token id = 0;
|
||||
const int32_t n_probs = params.n_probs;
|
||||
|
||||
{
|
||||
auto * logits = llama_get_logits(ctx);
|
||||
|
@ -307,17 +333,17 @@ struct llama_server_context {
|
|||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
|
@ -325,17 +351,19 @@ struct llama_server_context {
|
|||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
result.tok = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, std::min((size_t) n_probs, size_t(5))); ++i) {
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
last_n_tokens.push_back(result.tok);
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
result = id;
|
||||
embd.push_back(result.tok);
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
|
@ -377,12 +405,22 @@ struct llama_server_context {
|
|||
return stop_pos;
|
||||
}
|
||||
|
||||
std::string doCompletion() {
|
||||
const llama_token token = nextToken();
|
||||
completion_string_output doCompletion() {
|
||||
const completion_token_output token_with_probs = nextToken();
|
||||
completion_string_output result;
|
||||
|
||||
const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token);
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
|
||||
result.tok_str = token_text;
|
||||
generated_text += token_text;
|
||||
|
||||
// iterate through token_with_probs.probs, if tok is valid, convert it to string and add to result.prob
|
||||
for (const auto & prob : token_with_probs.probs) {
|
||||
const std::string prob_text = prob.tok == -1 ? "" : llama_token_to_str(ctx, prob.tok);
|
||||
result.probs.push_back({prob_text, prob.prob});
|
||||
}
|
||||
|
||||
generated_text_probs.push_back(result);
|
||||
|
||||
if (multibyte_pending > 0) {
|
||||
multibyte_pending -= token_text.size();
|
||||
} else if (token_text.size() == 1) {
|
||||
|
@ -411,8 +449,8 @@ struct llama_server_context {
|
|||
}
|
||||
|
||||
LOG_VERBOSE("next token", {
|
||||
{ "token", token },
|
||||
{ "token_text", llama_token_to_str(ctx, token) },
|
||||
{ "token", token_with_probs.tok },
|
||||
{ "token_text", llama_token_to_str(ctx, token_with_probs.tok) },
|
||||
{ "has_next_token", has_next_token },
|
||||
{ "n_remain", n_remain },
|
||||
{ "num_tokens_predicted", num_tokens_predicted },
|
||||
|
@ -422,7 +460,7 @@ struct llama_server_context {
|
|||
{ "stopping_word", stopping_word },
|
||||
});
|
||||
|
||||
return token_text;
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<float> getEmbedding() {
|
||||
|
@ -664,6 +702,7 @@ static json format_generation_settings(llama_server_context & llama) {
|
|||
{ "ignore_eos", ignore_eos },
|
||||
{ "stream", llama.stream },
|
||||
{ "logit_bias", llama.params.logit_bias },
|
||||
{ "n_probs", llama.params.n_probs },
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -673,9 +712,26 @@ static json format_embedding_response(llama_server_context & llama) {
|
|||
};
|
||||
}
|
||||
|
||||
static json format_final_response(llama_server_context & llama, const std::string & content) {
|
||||
static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector<completion_string_output> & probs) {
|
||||
|
||||
json completion_probabilities_json = json::array();
|
||||
for (const auto & prob : probs) {
|
||||
json probs_for_token = json::array();
|
||||
for (const auto & p : prob.probs) {
|
||||
probs_for_token.push_back(json {
|
||||
{ "tok_str", p.tok_str },
|
||||
{ "prob", p.prob },
|
||||
});
|
||||
}
|
||||
completion_probabilities_json.push_back(json {
|
||||
{"content", prob.tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
|
||||
return json {
|
||||
{ "content", content },
|
||||
{ "completion_probabilities", completion_probabilities_json},
|
||||
{ "stop", true },
|
||||
{ "model", llama.params.model_alias },
|
||||
{ "tokens_predicted", llama.num_tokens_predicted },
|
||||
|
@ -689,11 +745,25 @@ static json format_final_response(llama_server_context & llama, const std::strin
|
|||
};
|
||||
}
|
||||
|
||||
static json format_partial_response(const std::string & content) {
|
||||
return json {
|
||||
static json format_partial_response(const std::string & content, const completion_string_output & probs) {
|
||||
json res = json {
|
||||
{ "content", content },
|
||||
{ "stop", false },
|
||||
};
|
||||
|
||||
// iterate through probs.probs, and add to res
|
||||
json probs_json = json::array();
|
||||
for (const auto & prob : probs.probs) {
|
||||
probs_json.push_back(json {
|
||||
{ "tok_str", prob.tok_str },
|
||||
{ "prob", prob.prob },
|
||||
});
|
||||
}
|
||||
if (probs.probs.size() > 0) {
|
||||
res["probs"] = probs_json;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
||||
|
@ -723,6 +793,7 @@ static void parse_options_completion(const json & body, llama_server_context & l
|
|||
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
||||
llama.params.seed = body.value("seed", default_params.seed);
|
||||
llama.params.prompt = body.value("prompt", default_params.prompt);
|
||||
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
||||
|
||||
llama.params.logit_bias.clear();
|
||||
if (body.value("ignore_eos", false)) {
|
||||
|
@ -825,7 +896,8 @@ int main(int argc, char ** argv) {
|
|||
size_t stop_pos = std::string::npos;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const std::string token_text = llama.doCompletion();
|
||||
const completion_string_output token_text_with_probs = llama.doCompletion();
|
||||
const std::string token_text = token_text_with_probs.tok_str;
|
||||
|
||||
stop_pos = llama.findStoppingStrings(llama.generated_text,
|
||||
token_text.size(), STOP_FULL);
|
||||
|
@ -839,7 +911,7 @@ int main(int argc, char ** argv) {
|
|||
llama.generated_text.end());
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text);
|
||||
const json data = format_final_response(llama, llama.generated_text, llama.generated_text_probs);
|
||||
|
||||
llama_print_timings(llama.ctx);
|
||||
|
||||
|
@ -850,7 +922,7 @@ int main(int argc, char ** argv) {
|
|||
size_t sent_count = 0;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const std::string token_text = llama.doCompletion();
|
||||
const completion_string_output token_text_with_probs = llama.doCompletion();
|
||||
if (llama.multibyte_pending > 0) {
|
||||
continue;
|
||||
}
|
||||
|
@ -859,14 +931,14 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const std::string str_test = llama.generated_text.substr(pos);
|
||||
size_t stop_pos =
|
||||
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||
llama.findStoppingStrings(str_test, token_text_with_probs.tok_str.size(), STOP_FULL);
|
||||
if (stop_pos != std::string::npos) {
|
||||
llama.generated_text.erase(
|
||||
llama.generated_text.begin() + pos + stop_pos,
|
||||
llama.generated_text.end());
|
||||
pos = std::min(sent_count, llama.generated_text.size());
|
||||
} else {
|
||||
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||
stop_pos = llama.findStoppingStrings(str_test, token_text_with_probs.tok_str.size(),
|
||||
STOP_PARTIAL);
|
||||
}
|
||||
|
||||
|
@ -874,9 +946,9 @@ int main(int argc, char ** argv) {
|
|||
sent_count += to_send.size();
|
||||
|
||||
const json data = llama.has_next_token
|
||||
? format_partial_response(to_send)
|
||||
? format_partial_response(to_send, token_text_with_probs)
|
||||
// Generation is done, send extra information.
|
||||
: format_final_response(llama, to_send);
|
||||
: format_final_response(llama, to_send, {token_text_with_probs});
|
||||
|
||||
const std::string str =
|
||||
"data: " +
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue