wip minicpmv

This commit is contained in:
Xuan Son Nguyen 2025-01-22 22:26:38 +01:00
parent 9716c7bff7
commit ba489b4743

View file

@ -204,9 +204,10 @@ class Model:
f"Missing tensors: {missing}\n"
f"Extra tensors: {extra}")
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
if key not in gguf.MODEL_TENSORS[self.model_arch]:
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight", is_vision = False) -> str:
arch = self.vision_arch if is_vision and self.vision_arch is not None else self.model_arch
if key not in gguf.MODEL_TENSORS[arch]:
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {arch!r}")
name: str = gguf.TENSOR_NAMES[key]
if "{bid}" in name:
assert bid is not None
@ -2144,6 +2145,7 @@ class DbrxModel(Model):
class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM
proj_type: gguf.constants.CLIPProjectorType | None
resampler_n_embd = 0
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@ -2162,6 +2164,12 @@ class MiniCPMModel(Model):
self.proj_type = gguf.constants.CLIPProjectorType.MINICPMV_2_6
else:
raise ValueError(f"Unsupported MiniCPM-V version: {version}")
# TODO: how to do this without reading the whole safetensor file?
for tname, tensor in self.get_tensors():
if tname == "resampler.ln_post.bias":
self.resampler_n_embd = tensor.shape[0]
if self.resampler_n_embd < 2:
raise ValueError("Failed to detect resampler embedding size")
if self.vparams is not None and self.vision_arch is not None and self.preprocessor_config is not None:
self.preprocessor_config["image_mean"] = [0.5, 0.5, 0.5]
@ -2220,6 +2228,12 @@ class MiniCPMModel(Model):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
if self.vision_arch == gguf.MODEL_ARCH.VISION_MINICPMV:
yield (
self.format_tensor_name(gguf.MODEL_TENSOR.V_RESMPL_POS_EMBD_K, is_vision=True),
torch.from_numpy(self._get_2d_sincos_pos_embed(self.resampler_n_embd, (70, 70)))
)
def set_vocab(self):
if self.vision_arch == gguf.MODEL_ARCH.VISION_MINICPMV:
# undocumented anywhere, I only found this thanks to https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf
@ -2233,11 +2247,23 @@ class MiniCPMModel(Model):
# For vision model
if name.startswith("llm."):
name = name.replace("llm.", "")
# attention, someone mess up and use underscore instead of dot
if name.endswith("in_proj_weight"):
name = name.replace("_weight", ".weight")
if name.endswith("in_proj_bias"):
name = name.replace("_bias", ".bias")
# split the resampler.attn.in_proj_(weight|bias) tensors into q, k, v
if name.endswith("in_proj_weight") or name.endswith("in_proj_bias"):
assert data_torch.shape[0] == 3 * self.resampler_n_embd
split_tensor = data_torch.chunk(3, dim=0)
name_q = name.replace("in_proj_", "in_proj_q.") # in_proj_q.(weight|bias)
name_k = name.replace("in_proj_", "in_proj_k.") # in_proj_k.(weight|bias)
name_v = name.replace("in_proj_", "in_proj_v.") # in_proj_v.(weight|bias)
return [
(self.map_tensor_name(name_q), split_tensor[0]),
(self.map_tensor_name(name_k), split_tensor[1]),
(self.map_tensor_name(name_v), split_tensor[2]),
]
if name == "resampler.proj" or name == "resampler.query":
name += ".weight"
if "post_layernorm" in name:
return [] # skip post_layernorm
@ -2252,6 +2278,69 @@ class MiniCPMModel(Model):
return [(self.map_tensor_name(name), data_torch)]
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
del name, bid # unused
if "v.resmpl.query" in new_name or "v.resmpl.pos_embd_k" in new_name:
return gguf.GGMLQuantizationType.F32
if "v.resmpl." in new_name:
return gguf.GGMLQuantizationType.F32 if n_dims == 1 else gguf.GGMLQuantizationType.F16
return False
# utils to work with MiniCPM-V resampler
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def _get_2d_sincos_pos_embed(self, embed_dim: int, grid_size: tuple[int, int] | int, cls_token=False) -> np.ndarray:
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_h_size, grid_w_size = grid_size, grid_size
else:
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
pos_embed = self._get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def _get_2d_sincos_pos_embed_from_grid(self, embed_dim: int, grid: np.ndarray) -> np.ndarray:
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = self._get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = self._get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def _get_1d_sincos_pos_embed_from_grid(self, embed_dim: int, pos: np.ndarray) -> np.ndarray:
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
@Model.register("MiniCPM3ForCausalLM")
class MiniCPM3Model(Model):