examples : iOS example with swift ui (#4159)
* copy to llama.cpp as subdir * attempt enabling metal, fails * ggml metal compiles! * Update README.md * initial conversion to new format, utf8 errors? * bug fixes, but now has an invalid memory access :( * added O3, now has insufficient memory access * begin sync with master * update to match latest code, new errors * fixed it! * fix for loop conditionals, increase result size * fix current workflow errors * attempt a llama.swiftui workflow * Update .github/workflows/build.yml Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
f3b269813f
commit
bb03290c17
16 changed files with 829 additions and 0 deletions
176
examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
Normal file
176
examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
Normal file
|
@ -0,0 +1,176 @@
|
|||
import Foundation
|
||||
|
||||
// import llama
|
||||
|
||||
enum LlamaError: Error {
|
||||
case couldNotInitializeContext
|
||||
}
|
||||
|
||||
actor LlamaContext {
|
||||
private var model: OpaquePointer
|
||||
private var context: OpaquePointer
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
|
||||
var n_len: Int32 = 512
|
||||
var n_cur: Int32 = 0
|
||||
var n_decode: Int32 = 0
|
||||
|
||||
init(model: OpaquePointer, context: OpaquePointer) {
|
||||
self.model = model
|
||||
self.context = context
|
||||
self.tokens_list = []
|
||||
self.batch = llama_batch_init(512, 0, 1)
|
||||
}
|
||||
|
||||
deinit {
|
||||
llama_free(context)
|
||||
llama_free_model(model)
|
||||
llama_backend_free()
|
||||
}
|
||||
|
||||
static func createContext(path: String) throws -> LlamaContext {
|
||||
llama_backend_init(false)
|
||||
let model_params = llama_model_default_params()
|
||||
|
||||
let model = llama_load_model_from_file(path, model_params)
|
||||
guard let model else {
|
||||
print("Could not load model at \(path)")
|
||||
throw LlamaError.couldNotInitializeContext
|
||||
}
|
||||
var ctx_params = llama_context_default_params()
|
||||
ctx_params.seed = 1234
|
||||
ctx_params.n_ctx = 2048
|
||||
ctx_params.n_threads = 8
|
||||
ctx_params.n_threads_batch = 8
|
||||
|
||||
let context = llama_new_context_with_model(model, ctx_params)
|
||||
guard let context else {
|
||||
print("Could not load context!")
|
||||
throw LlamaError.couldNotInitializeContext
|
||||
}
|
||||
|
||||
return LlamaContext(model: model, context: context)
|
||||
}
|
||||
|
||||
func get_n_tokens() -> Int32 {
|
||||
return batch.n_tokens;
|
||||
}
|
||||
|
||||
func completion_init(text: String) {
|
||||
print("attempting to complete \"\(text)\"")
|
||||
|
||||
tokens_list = tokenize(text: text, add_bos: true)
|
||||
|
||||
let n_ctx = llama_n_ctx(context)
|
||||
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
|
||||
|
||||
print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
|
||||
|
||||
if n_kv_req > n_ctx {
|
||||
print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
|
||||
}
|
||||
|
||||
for id in tokens_list {
|
||||
print(token_to_piece(token: id))
|
||||
}
|
||||
|
||||
// batch = llama_batch_init(512, 0) // done in init()
|
||||
batch.n_tokens = Int32(tokens_list.count)
|
||||
|
||||
for i1 in 0..<batch.n_tokens {
|
||||
let i = Int(i1)
|
||||
batch.token[i] = tokens_list[i]
|
||||
batch.pos[i] = i1
|
||||
batch.n_seq_id[Int(i)] = 1
|
||||
batch.seq_id[Int(i)]![0] = 0
|
||||
batch.logits[i] = 0
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("llama_decode() failed")
|
||||
}
|
||||
|
||||
n_cur = batch.n_tokens
|
||||
}
|
||||
|
||||
func completion_loop() -> String {
|
||||
var new_token_id: llama_token = 0
|
||||
|
||||
let n_vocab = llama_n_vocab(model)
|
||||
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
|
||||
|
||||
var candidates = Array<llama_token_data>()
|
||||
candidates.reserveCapacity(Int(n_vocab))
|
||||
|
||||
for token_id in 0..<n_vocab {
|
||||
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
|
||||
}
|
||||
candidates.withUnsafeMutableBufferPointer() { buffer in
|
||||
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
|
||||
|
||||
new_token_id = llama_sample_token_greedy(context, &candidates_p)
|
||||
}
|
||||
|
||||
if new_token_id == llama_token_eos(context) || n_cur == n_len {
|
||||
print("\n")
|
||||
return ""
|
||||
}
|
||||
|
||||
let new_token_str = token_to_piece(token: new_token_id)
|
||||
print(new_token_str)
|
||||
// tokens_list.append(new_token_id)
|
||||
|
||||
batch.n_tokens = 0
|
||||
|
||||
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||
batch.n_seq_id[Int(batch.n_tokens)] = 1
|
||||
batch.seq_id[Int(batch.n_tokens)]![0] = 0
|
||||
batch.logits[Int(batch.n_tokens)] = 1 // true
|
||||
batch.n_tokens += 1
|
||||
|
||||
n_decode += 1
|
||||
|
||||
n_cur += 1
|
||||
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("failed to evaluate llama!")
|
||||
}
|
||||
|
||||
return new_token_str
|
||||
}
|
||||
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, false)
|
||||
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0..<tokenCount {
|
||||
swiftTokens.append(tokens[Int(i)])
|
||||
}
|
||||
|
||||
tokens.deallocate()
|
||||
|
||||
return swiftTokens
|
||||
}
|
||||
|
||||
private func token_to_piece(token: llama_token) -> String {
|
||||
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
|
||||
result.initialize(repeating: Int8(0), count: 8)
|
||||
|
||||
let _ = llama_token_to_piece(model, token, result, 8)
|
||||
|
||||
let resultStr = String(cString: result)
|
||||
|
||||
result.deallocate()
|
||||
|
||||
return resultStr
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue