reinstated the q4_3 format, for backwards compatibility.

This commit is contained in:
Concedo 2023-04-29 11:42:04 +08:00
parent 0fc1772a8f
commit bb282a4ecf
12 changed files with 364 additions and 26 deletions

View file

@ -134,13 +134,7 @@ ifdef LLAMA_CUBLAS
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef LLAMA_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast -lOpenCL
OBJS += ggml-opencl.o
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@
endif
ifdef LLAMA_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
@ -227,6 +221,9 @@ ggml_noavx2.o: ggml.c ggml.h
ggml_openblas_noavx2.o: ggml.c ggml.h
$(CC) $(CFLAGS) $(OPENBLAS_FLAGS) -c $< -o $@
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@
ggml_clblast.o: ggml.c ggml.h
$(CC) $(CFLAGS) $(BONUSCFLAGS1) $(BONUSCFLAGS2) $(CLBLAST_FLAGS) -c $< -o $@
@ -272,7 +269,7 @@ koboldcpp_noavx2: ggml_noavx2.o ggml_rwkv.o ggml_v1_noavx2.o expose.o common.o g
koboldcpp_openblas_noavx2: ggml_openblas_noavx2.o ggml_rwkv.o ggml_v1_noavx2.o expose.o common.o gpttype_adapter.o
$(OPENBLAS_NOAVX2_BUILD)
koboldcpp_clblast: ggml_clblast.o ggml_rwkv.o ggml_v1.o expose.o common.o gpttype_adapter.o
koboldcpp_clblast: ggml_clblast.o ggml_rwkv.o ggml_v1.o expose.o common.o gpttype_adapter.o ggml-opencl.o
$(CLBLAST_BUILD)
quantize_llama: examples/quantize/quantize.cpp ggml.o llama.o

View file

@ -3,6 +3,7 @@
99aeb35f26b577fa2732716cca4d8b5ada39a78ea9b2dca2651fc632b5d101b6 models/7B/ggml-model-q4_0.bin
cc061458339a3eb8bcecbf0a825e9924fb7d1a8150f63cd5d091caa99215aafe models/7B/ggml-model-q4_1.bin
25b050337a87344da687a7f2adddc03bd99b7f6c140450e836649f3585fb6496 models/7B/ggml-model-q4_2.bin
3429bf198ec771886cf81a574df45245f3ebf04f0ce0956b73ef5d0ab01ff48b models/7B/ggml-model-q4_3.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
@ -10,6 +11,7 @@ d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/con
eecb575d325d935157761172e2bf05984dad216eb2b06777b73463cf9b818bab models/13B/ggml-model-q4_0.bin
d9581b5b88e5622532fe897c9f9b0e67a317d22dd27a6f90fa4ab8c6d23ccdbb models/13B/ggml-model-q4_1.bin
75a218a47df03f5f96354656329864613abcb67779412b9bc2282b28c1c3cbaa models/13B/ggml-model-q4_2.bin
4208cdec9788ffa48dc1a17af2c36a0299f5bf3eb0e2b87889dda7fad591fca3 models/13B/ggml-model-q4_3.bin
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
@ -19,6 +21,7 @@ e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/con
517b9e525742c42b5478a6280a4b41ec66f46298c57aba7f0453d491682fe42d models/30B/ggml-model-q4_0.bin
7b75ac615fa369ee593493a7e6ef87542bf0350255db928b22c5a24f6d598bcd models/30B/ggml-model-q4_1.bin
aadbc9cf806313a55be570f62884eed289d30c313fac3b7838717e01bd553204 models/30B/ggml-model-q4_2.bin
a6188660199dbcb8d5658abe7d89169869e50423494385830d9e6b330ea7fc33 models/30B/ggml-model-q4_3.bin
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
@ -32,5 +35,6 @@ d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/con
01672072136f8be6ca9d7cebe5f86ed316e8b85851b9fe3de951809233cea4f2 models/65B/ggml-model-q4_0.bin
4743a28aac3e5f32a6e838a815f51d3779de44fbbe251d745251e66c23c5950f models/65B/ggml-model-q4_1.bin
1b6f6588d0e2ecfe6c4d849088e48e5e3083466b962daa32e3261363e21fc5e9 models/65B/ggml-model-q4_2.bin
305e91a4608b4f627b9b8ad5b4af75187d2684254bfd76dcb9db571618ef293c models/65B/ggml-model-q4_3.bin
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

View file

@ -9,6 +9,7 @@ static const std::map<std::string, enum llama_ftype> LLAMA_FTYPE_MAP = {
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
{"q4_2", LLAMA_FTYPE_MOSTLY_Q4_2},
{"q4_3", LLAMA_FTYPE_MOSTLY_Q4_3},
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},

View file

@ -29,6 +29,14 @@ typedef struct {
} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
#define QK4_3 16
typedef struct {
__half d; // delta
__half m; // min
uint8_t qs[QK4_3 / 2]; // nibbles / quants
} block_q4_3;
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
#define QK5_0 32
typedef struct {
__half d; // delta
@ -123,6 +131,30 @@ static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
}
}
static __global__ void dequantize_block_q4_3(const void * vx, float * y) {
const block_q4_3 * x = (const block_q4_3 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
const float m = x[i].m;
const uint8_t * pp = x[i].qs;
for (int l = 0; l < QK4_3; l += 2) {
const uint8_t vi = pp[l/2];
const int8_t vi0 = vi & 0xf;
const int8_t vi1 = vi >> 4;
const float v0 = vi0*d + m;
const float v1 = vi1*d + m;
y[i*QK4_3 + l + 0] = v0;
y[i*QK4_3 + l + 1] = v1;
}
}
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
const block_q5_0 * x = (const block_q5_0 *) vx;
@ -212,6 +244,11 @@ void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t st
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_3;
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
}
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);

View file

@ -40,6 +40,7 @@ void ggml_cuda_pool_free(void * ptr, size_t size);
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);

View file

@ -60,4 +60,25 @@ __kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global f
result[index + 1] = ((vi >> 4) - 8)*d;
}
struct block_q4_3
{
ushort d;
ushort m;
uchar qs[8];
};
__kernel void dequantize_row_q4_3(__global struct block_q4_3* blocks, __global float* result) {
const uint i = get_global_id(0) / 16;
const uint l = get_local_id(0);
const float d = vload_half(0, (__global half*) &(blocks[i].d));
const float m = vload_half(0, (__global half*) &(blocks[i].m));
const uchar vi = blocks[i].qs[l];
const uint index = i*16 + l*2;
result[index + 0] = (vi & 0xf) * d + m;
result[index + 1] = (vi >> 4) * d + m;
}
);

View file

@ -24,7 +24,7 @@ static cl_device_id device;
static cl_context context;
static cl_command_queue queue;
static cl_program program;
static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2;
static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q4_3;
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
@ -57,6 +57,21 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co
return p;
}
static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
if (req_size <= *cur_size) {
return;
}
// Reallocate buffer with enough space
if (*cur_size > 0) {
clReleaseMemObject(*buf);
}
cl_int err;
*buf = clCreateBuffer(context, flags, req_size, NULL, &err);
*cur_size = req_size;
CL_CHECK(err, "clCreateBuffer");
}
void ggml_cl_init(void) {
cl_int err = 0;
char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM");
@ -97,21 +112,15 @@ void ggml_cl_init(void) {
CL_CHECK(err, "clCreateKernel");
kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err);
CL_CHECK(err, "clCreateKernel");
}
kernel_q4_3 = clCreateKernel(program, "dequantize_row_q4_3", &err);
CL_CHECK(err, "clCreateKernel");
static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
if (req_size <= *cur_size) {
return;
}
// Reallocate buffer with enough space
if (*cur_size > 0) {
clReleaseMemObject(*buf);
}
cl_int err;
*buf = clCreateBuffer(context, flags, req_size, NULL, &err);
*cur_size = req_size;
CL_CHECK(err, "clCreateBuffer");
//preallocate buffers
const size_t defaultBufSize = 16*1024*1024;
ggml_cl_malloc(defaultBufSize, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a);
ggml_cl_malloc(defaultBufSize, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb);
ggml_cl_malloc(defaultBufSize, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b);
ggml_cl_malloc(defaultBufSize, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c);
}
void ggml_cl_sgemm_wrapper(
@ -148,6 +157,12 @@ void ggml_cl_sgemm_wrapper(
local = 8;
size_qb = global * (sizeof(short) + local) / 16;
break;
case GGML_TYPE_Q4_3:
dequant = true;
kernel = kernel_q4_3;
local = 8;
size_qb = global * (sizeof(short) * 2 + local) / 16;
break;
default:
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
abort();

257
ggml.c
View file

@ -694,6 +694,14 @@ typedef struct {
} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
#define QK4_3 16
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_3 / 2]; // nibbles / quants
} block_q4_3;
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
@ -1283,6 +1291,49 @@ static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int
quantize_row_q4_2_reference(x, y, k);
}
static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
assert(k % QK4_3 == 0);
const int nb = k / QK4_3;
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int l = 0; l < QK4_3; l++) {
const float v = x[i*QK4_3 + l];
if (v < min) min = v;
if (v > max) max = v;
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
y[i].m = GGML_FP32_TO_FP16(min);
for (int l = 0; l < QK4_3; l += 2) {
const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
const uint8_t vi0 = (int) (v0 + 0.5f);
const uint8_t vi1 = (int) (v1 + 0.5f);
assert(vi0 < 16);
assert(vi1 < 16);
y[i].qs[l/2] = vi0 | (vi1 << 4);
}
}
}
static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
assert(k % QK4_3 == 0);
block_q4_3 * restrict y = vy;
quantize_row_q4_3_reference(x, y, k);
}
static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
@ -1866,6 +1917,36 @@ static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, in
}
}
static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
assert(k % QK4_3 == 0);
const int nb = k / QK4_3;
const block_q4_3 * restrict x = vx;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
const float m = GGML_FP16_TO_FP32(x[i].m);
const uint8_t * restrict pp = x[i].qs;
for (int l = 0; l < QK4_3; l += 2) {
const uint8_t vi = pp[l/2];
const int8_t vi0 = vi & 0x0F;
const int8_t vi1 = vi >> 4;
const float v0 = vi0*d + m;
const float v1 = vi1*d + m;
y[i*QK4_3 + l + 0] = v0;
y[i*QK4_3 + l + 1] = v1;
assert(!isnan(y[i*QK4_3 + l + 0]));
assert(!isnan(y[i*QK4_3 + l + 1]));
}
}
}
static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
@ -1959,6 +2040,7 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
@ -1988,6 +2070,14 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
.vec_dot_q = ggml_vec_dot_q4_2_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q4_3] = {
.dequantize_row_q = dequantize_row_q4_3,
.quantize_row_q = quantize_row_q4_3,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
.quantize_row_q_dot = quantize_row_q8_1,
.vec_dot_q = ggml_vec_dot_q4_3_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
},
[GGML_TYPE_Q5_0] = {
.dequantize_row_q = dequantize_row_q5_0,
.quantize_row_q = quantize_row_q5_0,
@ -3081,6 +3171,136 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void *
#endif
}
static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_1;
assert(n % QK8_1 == 0);
assert(nb % 2 == 0);
assert(QK8_1 == 2*QK4_3);
const block_q4_3 * restrict x = vx;
const block_q8_1 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
float summs0 = 0.0f;
float summs1 = 0.0f;
for (int i = 0; i < nb; ++i) {
const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
const block_q8_1 * restrict y0 = &y[i + 0];
summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
// interleave
const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
#endif
}
*s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
float summs = 0.0f;
// Main loop
for (int i = 0; i < nb; i++) {
const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
const __m256 dx = _mm256_set_m128(d1, d0);
summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
+ GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
const __m256i bx = _mm256_set_m128i(bx1, bx0);
const __m256 dy = _mm256_broadcast_ss(&y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
}
*s = hsum_float_8(acc) + summs;
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
const uint8_t * restrict x0 = x[2*i + 0].qs;
const uint8_t * restrict x1 = x[2*i + 1].qs;
const int8_t * restrict y0 = y[i].qs;
const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
int sxy_0 = 0;
int sxy_1 = 0;
for (int j = 0; j < QK8_1/4; j++) {
const uint8_t v0 = x0[j];
const uint8_t v1 = x1[j];
const int x0_0 = v0 & 0x0F;
const int x1_0 = v0 >> 4;
const int x0_1 = v1 & 0x0F;
const int x1_1 = v1 >> 4;
const int y0_0 = y0[2*j + 0];
const int y1_0 = y0[2*j + 1];
const int y0_1 = y0[2*(j + QK8_1/4) + 0];
const int y1_1 = y0[2*(j + QK8_1/4) + 1];
sxy_0 += x0_0*y0_0 + x1_0*y1_0;
sxy_1 += x0_1*y0_1 + x1_1*y1_1;
}
sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
}
*s = sumf;
#endif
}
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_0;
@ -3705,6 +3925,7 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = QK4_0,
[GGML_TYPE_Q4_1] = QK4_1,
[GGML_TYPE_Q4_2] = QK4_2,
[GGML_TYPE_Q4_3] = QK4_3,
[GGML_TYPE_Q5_0] = QK5_0,
[GGML_TYPE_Q5_1] = QK5_1,
[GGML_TYPE_Q8_0] = QK8_0,
@ -3721,6 +3942,7 @@ static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
[GGML_TYPE_Q4_2] = sizeof(block_q4_2),
[GGML_TYPE_Q4_3] = sizeof(block_q4_3),
[GGML_TYPE_Q5_0] = sizeof(block_q5_0),
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
@ -3738,6 +3960,7 @@ static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = "q4_0",
[GGML_TYPE_Q4_1] = "q4_1",
[GGML_TYPE_Q4_2] = "q4_2",
[GGML_TYPE_Q4_3] = "q4_3",
[GGML_TYPE_Q5_0] = "q5_0",
[GGML_TYPE_Q5_1] = "q5_1",
[GGML_TYPE_Q8_0] = "q8_0",
@ -3754,6 +3977,7 @@ static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = true,
[GGML_TYPE_Q4_1] = true,
[GGML_TYPE_Q4_2] = true,
[GGML_TYPE_Q4_3] = true,
[GGML_TYPE_Q5_0] = true,
[GGML_TYPE_Q5_1] = true,
[GGML_TYPE_Q8_0] = true,
@ -7006,6 +7230,7 @@ static void ggml_compute_forward_add(
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -8671,6 +8896,7 @@ static void ggml_compute_forward_mul_mat(
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -8902,6 +9128,7 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -9227,6 +9454,7 @@ static void ggml_compute_forward_alibi(
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -12847,6 +13075,29 @@ size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t *
return (n/QK4_2*sizeof(block_q4_2));
}
size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_3 == 0);
const int nb = k / QK4_3;
for (int j = 0; j < n; j += k) {
block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
quantize_row_q4_3_reference(src + j, y, k);
for (int i = 0; i < nb; i++) {
for (int l = 0; l < QK4_3; l += 2) {
const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
const uint8_t vi1 = y[i].qs[l/2] >> 4;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK4_3*sizeof(block_q4_3));
}
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
@ -12949,6 +13200,12 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
result = ggml_quantize_q4_2(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q4_3:
{
GGML_ASSERT(start % QK4_3 == 0);
block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
result = ggml_quantize_q4_3(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q5_0:
{
GGML_ASSERT(start % QK5_0 == 0);

3
ggml.h
View file

@ -221,7 +221,7 @@ extern "C" {
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
GGML_TYPE_Q4_2 = 4,
// GGML_TYPE_Q4_3 (5) support has been removed
GGML_TYPE_Q4_3 = 5,
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
@ -843,6 +843,7 @@ extern "C" {
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);

View file

@ -377,7 +377,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
}
params.n_batch = bbs; //received reports of 1024 and above crashing on some models
if(!ggml_cpu_has_cublas())
if(!ggml_cpu_has_gpublas())
{
params.n_threads = 1; //do not limit here anymore.
}

View file

@ -490,6 +490,7 @@ struct llama_file_loader {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -566,6 +567,7 @@ struct llama_file_saver {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -858,6 +860,7 @@ static const char *llama_ftype_name(enum llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
return "mostly Q4_1, some F16";
case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
@ -1597,6 +1600,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break;
case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;

View file

@ -73,7 +73,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
// LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors