Misc: Use argparse
This commit is contained in:
parent
c80e2a8f2a
commit
bb40590714
2 changed files with 34 additions and 36 deletions
|
@ -142,7 +142,7 @@ ls ./models
|
|||
python3 -m pip install torch numpy sentencepiece
|
||||
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert-pth-to-ggml.py models/7B/ 1
|
||||
python3 convert-pth-to-ggml.py --model models/7B/ --ftype 'f16' --output out/
|
||||
|
||||
# quantize the model to 4-bits
|
||||
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
|
||||
|
|
|
@ -22,20 +22,34 @@ import json
|
|||
import struct
|
||||
import numpy as np
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
sys.exit(1)
|
||||
ARG_PARSER = argparse.ArgumentParser()
|
||||
ARG_PARSER.add_argument("--model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Model to convert")
|
||||
ARG_PARSER.add_argument("--ftype",
|
||||
type=str,
|
||||
required=True,
|
||||
choices=["f16", "f32"],
|
||||
help="Either f16 or f32")
|
||||
ARG_PARSER.add_argument("--output",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Model to write")
|
||||
ARGS = ARG_PARSER.parse_args()
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
FTYPE_IDX = -1
|
||||
if ARGS.ftype == "f16":
|
||||
FTYPE_IDX = 1
|
||||
elif ARGS.ftype == "f32":
|
||||
FTYPE_IDX = 0
|
||||
|
||||
fname_hparams = sys.argv[1] + "/params.json"
|
||||
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
||||
fname_hparams = ARGS.model + "/params.json"
|
||||
fname_tokenizer = ARGS.model + "/../tokenizer.model"
|
||||
|
||||
def get_n_parts(dim):
|
||||
if dim == 4096:
|
||||
|
@ -50,20 +64,7 @@ def get_n_parts(dim):
|
|||
print("Invalid dim: " + str(dim))
|
||||
sys.exit(1)
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
sys.exit(1)
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin"
|
||||
|
||||
with open(fname_hparams, "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
@ -79,14 +80,14 @@ print('n_parts = ', n_parts)
|
|||
|
||||
for p in range(n_parts):
|
||||
print('Processing part ', p)
|
||||
fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin"
|
||||
|
||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
if (p > 0):
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
||||
fname_out = ARGS.output + "/ggml-model-" + ARGS.ftype + ".bin" + "." + str(p)
|
||||
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
model = torch.load(
|
||||
ARGS.model + "/consolidated.0" + str(p) + ".pth", map_location="cpu"
|
||||
)
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
|
@ -97,7 +98,7 @@ for p in range(n_parts):
|
|||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
||||
fout.write(struct.pack("i", ftype))
|
||||
fout.write(struct.pack("i", FTYPE_IDX))
|
||||
|
||||
# Is this correct??
|
||||
for i in range(32000):
|
||||
|
@ -118,7 +119,7 @@ for p in range(n_parts):
|
|||
|
||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
#data = tf.train.load_variable(ARGS.output, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape);
|
||||
|
||||
|
@ -136,16 +137,13 @@ for p in range(n_parts):
|
|||
|
||||
dshape = data.shape
|
||||
|
||||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
if ARGS.ftype == "f32" or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
# header
|
||||
sname = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), FTYPE_IDX))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(sname);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue