llama : add SEA-LION support (#6448)
* initial commit for sealion support * add sealion support * minor fix * q/k ln and pos_embd only if required * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * minor : clear whitespaces --------- Co-authored-by: bryan <bryansiow@aisingapore.org> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
9f62c0173d
commit
bb43cf7e9d
5 changed files with 65 additions and 4 deletions
48
llama.cpp
48
llama.cpp
|
@ -594,6 +594,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
|
||||
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -4867,6 +4870,7 @@ static bool llm_load_tensors(
|
|||
case LLM_ARCH_MPT:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
|
||||
|
||||
// output
|
||||
{
|
||||
|
@ -4905,6 +4909,12 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
|
||||
|
||||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
|
||||
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
|
||||
|
||||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
|
||||
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
|
||||
|
||||
// AWQ ScaleActivation layer
|
||||
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
|
||||
}
|
||||
|
@ -7721,6 +7731,7 @@ struct llm_build_context {
|
|||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * pos;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
@ -7731,6 +7742,16 @@ struct llm_build_context {
|
|||
// positions of the tokens in the KV cache
|
||||
struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
|
||||
|
||||
if (model.pos_embd) {
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
|
||||
cb(pos, "pos_embd", -1);
|
||||
|
||||
inpL = ggml_add(ctx0, inpL, pos);
|
||||
cb(inpL, "inpL", -1);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * attn_norm;
|
||||
|
||||
|
@ -7765,11 +7786,32 @@ struct llm_build_context {
|
|||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
// Q/K Layernorm
|
||||
if (model.layers[il].attn_q_norm) {
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||||
model.layers[il].attn_q_norm,
|
||||
model.layers[il].attn_q_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||||
model.layers[il].attn_k_norm,
|
||||
model.layers[il].attn_k_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
} else {
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue