train with two examples, creating new tensors each time..
This commit is contained in:
parent
5f23052eb2
commit
bc1c13bb66
1 changed files with 86 additions and 66 deletions
|
@ -539,7 +539,7 @@ void print_probs(struct ggml_tensor * probs) {
|
|||
for (int i=0; i<probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
|
||||
printf(" %.1f", p);
|
||||
printf(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
@ -559,6 +559,21 @@ void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
|
|||
}
|
||||
}
|
||||
|
||||
void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
|
||||
int n_tokens = tokens_input->ne[0];
|
||||
int n_vocab = targets->ne[0];
|
||||
ggml_set_zero(targets);
|
||||
for (int i=0; i<n_tokens; ++i) {
|
||||
float x = example_id + i * 3.14159f * 2.0f * 4.0f / n_tokens;
|
||||
float y = sinf(x);//*cosf(x*1.1f+1.0f);
|
||||
float z = (y+1.0f)*0.5f; // scale to [0..1]
|
||||
z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1]
|
||||
int token = (int)(z*(float)(n_vocab-1));
|
||||
ggml_set_f32_1d(targets, i*n_vocab + token, +1.0f);
|
||||
ggml_set_i32_1d(tokens_input, i, token);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct ggml_init_params lcparams;
|
||||
lcparams.mem_size = 1024*1024*1024;
|
||||
|
@ -566,19 +581,26 @@ int main(int argc, char ** argv) {
|
|||
lcparams.no_alloc = false;
|
||||
|
||||
struct llama_model model;
|
||||
model.hparams.n_vocab = 16;
|
||||
model.hparams.n_ctx = 64;
|
||||
model.hparams.n_embd = 64;
|
||||
model.hparams.n_vocab = 8;
|
||||
model.hparams.n_ctx = 32;
|
||||
model.hparams.n_embd = 32;
|
||||
model.hparams.n_mult = 2;
|
||||
model.hparams.n_head = 8;
|
||||
model.hparams.n_layer = 16;
|
||||
model.hparams.n_layer = 8;
|
||||
model.hparams.n_rot = 16;
|
||||
|
||||
// model.hparams.n_embd = 32;
|
||||
// model.hparams.n_mult = 2;
|
||||
// model.hparams.n_head = 4;
|
||||
// model.hparams.n_layer = 8;
|
||||
// model.hparams.n_rot = 8;
|
||||
|
||||
model.ctx = ggml_init(lcparams);
|
||||
printf("init model\n");
|
||||
init_model(&model);
|
||||
set_param_model(&model);
|
||||
|
||||
randomize_model(&model, 1337, 0.0f, 2.0f, -1.0f, +1.0f);
|
||||
randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
|
||||
|
||||
// key + value cache for the self attention
|
||||
struct llama_kv_cache kv_self;
|
||||
|
@ -593,68 +615,66 @@ int main(int argc, char ** argv) {
|
|||
|
||||
struct ggml_context * ctx0 = model.ctx; // ggml_init(c0params);
|
||||
|
||||
int n_tokens = 64;
|
||||
struct ggml_tensor * before_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * before_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * after_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * targets = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
for (int i=0; i<n_tokens; ++i) {
|
||||
float x = i * 3.14159f * 2.0f * 4.0f / n_tokens;
|
||||
float y = sinf(x);
|
||||
float z = (y+1.0f)*0.5f;
|
||||
int token = (int)(z*(float)(model.hparams.n_vocab-1));
|
||||
for (int k = 0; k < token; ++k) {
|
||||
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + k, 0.0f);
|
||||
}
|
||||
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + token, +1.0f);
|
||||
for (int k = token+1; k < model.hparams.n_vocab; ++k) {
|
||||
ggml_set_f32_1d(targets, i*model.hparams.n_vocab + k, 0.0f);
|
||||
}
|
||||
ggml_set_i32_1d(tokens_input, i, token);
|
||||
int n_examples = 2;
|
||||
int n_tokens = model.hparams.n_ctx;
|
||||
|
||||
for (int ex=0; ex<n_examples; ++ex) {
|
||||
|
||||
struct ggml_tensor * before_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * before_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * after_opt_probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
struct ggml_tensor * tokens_input = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
struct ggml_tensor * targets = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, model.hparams.n_vocab, n_tokens);
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
get_example_targets(ex, tokens_input, targets);
|
||||
printf("Example %d\n", (ex+1));
|
||||
print_probs(targets);
|
||||
print_tokens(tokens_input, model.hparams.n_vocab);
|
||||
|
||||
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past);
|
||||
struct ggml_tensor * e = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, targets, logits)));
|
||||
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
sample_softmax(logits, before_opt_probs, before_opt_best_samples);
|
||||
|
||||
printf("probabilities before optimization:\n");
|
||||
print_probs(before_opt_probs);
|
||||
printf("best samples before optimization:\n");
|
||||
print_tokens(before_opt_best_samples, model.hparams.n_vocab);
|
||||
|
||||
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
opt_params_adam.print_forward_graph = false;
|
||||
opt_params_adam.print_backward_graph = false;
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
// ggml_opt(ctx0, opt_params_adam, e);
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_after_opt = ggml_get_f32_1d(e, 0);
|
||||
sample_softmax(logits, after_opt_probs, after_opt_best_samples);
|
||||
|
||||
printf("error_before_opt: %.2f\n", error_before_opt);
|
||||
printf("error_after_opt: %.2f\n", error_after_opt);
|
||||
|
||||
printf("probabilities after optimization:\n");
|
||||
print_probs(after_opt_probs);
|
||||
printf("best samples after optimization:\n");
|
||||
print_tokens(after_opt_best_samples, model.hparams.n_vocab);
|
||||
}
|
||||
print_probs(targets);
|
||||
print_tokens(tokens_input, model.hparams.n_vocab);
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past);
|
||||
|
||||
struct ggml_tensor * e = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, targets, logits)));
|
||||
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
sample_softmax(logits, before_opt_probs, before_opt_best_samples);
|
||||
|
||||
printf("probabilities before optimization:\n");
|
||||
print_probs(before_opt_probs);
|
||||
printf("best samples before optimization:\n");
|
||||
print_tokens(before_opt_best_samples, model.hparams.n_vocab);
|
||||
|
||||
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
// ggml_opt(ctx0, opt_params_adam, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_after_opt = ggml_get_f32_1d(e, 0);
|
||||
sample_softmax(logits, after_opt_probs, after_opt_best_samples);
|
||||
|
||||
printf("error_before_opt: %.2f\n", error_before_opt);
|
||||
printf("error_after_opt: %.2f\n", error_after_opt);
|
||||
|
||||
printf("probabilities after optimization:\n");
|
||||
print_probs(after_opt_probs);
|
||||
printf("best samples after optimization:\n");
|
||||
print_tokens(after_opt_best_samples, model.hparams.n_vocab);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue