Merge branch 'master' into compilade/refactor-kv-cache

This commit is contained in:
Francis Couture-Harpin 2024-08-31 21:06:32 -04:00
commit bc320ef66d
395 changed files with 57725 additions and 169970 deletions

File diff suppressed because it is too large Load diff

View file

@ -33,6 +33,15 @@
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct llama_lora_adapter_info {
std::string path;
float scale;
};
struct llama_lora_adapter_container : llama_lora_adapter_info {
struct llama_lora_adapter * adapter;
};
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
@ -58,13 +67,18 @@ enum dimre_method {
DIMRE_METHOD_MEAN,
};
struct cpu_params {
int n_threads = -1;
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
bool mask_valid = false; // Default: any CPU
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
bool strict_cpu = false; // Use strict CPU placement
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
@ -91,6 +105,11 @@ struct gpt_params {
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct cpu_params draft_cpuparams;
struct cpu_params draft_cpuparams_batch;
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
@ -99,6 +118,7 @@ struct gpt_params {
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
@ -107,6 +127,7 @@ struct gpt_params {
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_token = ""; // HF token
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
@ -124,9 +145,8 @@ struct gpt_params {
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
@ -194,7 +214,7 @@ struct gpt_params {
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
std::string hostname = "127.0.0.1";
std::string public_path = "";
@ -253,8 +273,11 @@ struct gpt_params {
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
};
void gpt_params_parse_from_env(gpt_params & params);
void gpt_params_handle_model_default(gpt_params & params);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
@ -264,6 +287,11 @@ void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_params_get_system_info(const gpt_params & params);
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
bool set_process_priority(enum ggml_sched_priority prio);
//
// String utils
//
@ -273,6 +301,8 @@ std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
std::vector<T> values;
@ -304,14 +334,23 @@ std::string fs_get_cache_file(const std::string & filename);
// Model utils
//
// TODO: avoid tuplue, use struct
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_init_result {
struct llama_model * model = nullptr;
struct llama_context * context = nullptr;
std::vector<llama_lora_adapter_container> lora_adapters;
};
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
// clear LoRA adapters from context, then apply new list of adapters
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
// Batch utils
@ -349,25 +388,13 @@ std::string llama_token_to_piece(
llama_token token,
bool special = true);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
//
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
// removes the leading space from the first non-BOS token
std::string llama_detokenize_spm(
// optionally renders special/control tokens
std::string llama_detokenize(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
const std::vector<llama_token> & tokens,
bool special = true);
//
// Chat template utils

View file

@ -369,6 +369,9 @@ namespace grammar_parser {
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
if (rule.empty()) {
throw std::runtime_error("Undefined rule");
}
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists

View file

@ -630,7 +630,7 @@ inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
buf << "[ ";
bool first = true;
for (const auto &token : tokens)
for (const auto & token : tokens)
{
if (!first) {
buf << ", ";

View file

@ -37,11 +37,18 @@ struct llama_ngram {
}
};
struct llama_token_hash_function {
size_t operator()(const llama_token token) const {
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
return token * 11400714819323198485llu;
}
};
struct llama_ngram_hash_function {
size_t operator()(const llama_ngram & ngram) const {
size_t hash = 0;
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
size_t hash = llama_token_hash_function{}(ngram.tokens[0]);
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
hash ^= llama_token_hash_function{}(ngram.tokens[i]);
}
return hash;
}

View file

@ -282,8 +282,6 @@ static llama_token llama_sampling_sample_impl(
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (temp < 0.0) {
// greedy sampling, with probs
@ -324,12 +322,15 @@ static llama_token llama_sampling_sample_impl(
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
@ -377,7 +378,7 @@ static llama_token_data_array llama_sampling_prepare_impl(
if (ctx_sampling->grammar != NULL && !apply_grammar) {
GGML_ASSERT(original_logits != NULL);
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
*original_logits = {logits, logits + n_vocab};
}
// apply params.logit_bias map
@ -390,10 +391,10 @@ static llama_token_data_array llama_sampling_prepare_impl(
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
@ -420,7 +421,7 @@ static llama_token_data_array llama_sampling_prepare_impl(
// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
}
return cur_p;
@ -454,6 +455,6 @@ void llama_sampling_accept(
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
}
}

File diff suppressed because it is too large Load diff