Merge branch 'master' into compilade/refactor-kv-cache

This commit is contained in:
Francis Couture-Harpin 2024-08-31 21:06:32 -04:00
commit bc320ef66d
395 changed files with 57725 additions and 169970 deletions

2
ggml/.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
src/ggml-vulkan-shaders.hpp
src/ggml-vulkan-shaders.cpp

View file

@ -50,9 +50,15 @@ else()
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
endif()
# general
option(GGML_STATIC "ggml: static link libraries" OFF)
option(GGML_NATIVE "ggml: enable -march=native flag" ON)
option(GGML_NATIVE "ggml: enable -march=native flag" ${GGML_NATIVE_DEFAULT})
option(GGML_LTO "ggml: enable link time optimization" OFF)
option(GGML_CCACHE "ggml: use ccache if available" ON)
@ -70,7 +76,7 @@ option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
# instruction set specific
if (GGML_NATIVE)
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
@ -104,9 +110,10 @@ option(GGML_ACCELERATE "ggml: enable Accelerate framework"
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
"ggml: BLAS library vendor")
option(GGML_LLAMAFILE "ggml: use ggml SGEMM" OFF)
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" OFF)
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_MUSA "ggml: use MUSA" OFF)
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
@ -122,13 +129,13 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_USE_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" OFF)
option(GGML_CURL "ggml: use libcurl to download model from an URL" OFF)
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
@ -194,13 +201,20 @@ endif ()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-alloc.h
include/ggml-backend.h
"${GGML_HEADERS_CUDA}"
"${GGML_HEADERS_METAL}"
"${GGML_HEADERS_EXTRA}")
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cuda.h
include/ggml.h
include/ggml-kompute.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)

View file

@ -1,220 +0,0 @@
#!/usr/bin/env python
import logging
import argparse
import asyncio
import os
from tempfile import gettempdir
logger = logging.getLogger("ggml-vk-generate-shaders")
GLSLC = "glslc"
type_names = [
"f32",
"f16",
"q4_0",
"q4_1",
"q5_0",
"q5_1",
"q8_0",
"q2_k",
"q3_k",
"q4_k",
"q5_k",
"q6_k",
]
ASYNCIO_CONCURRENCY = 64
input_dir = "vulkan-shaders"
output_dir = gettempdir()
lock = asyncio.Lock()
shader_fnames = []
async def string_to_spv(name, in_fname, defines, fp16=True):
name = f"{name}{'_fp32' if not fp16 else ''}"
out_fname = os.path.join(output_dir, f"{name}.spv")
in_path = os.path.join(input_dir, in_fname)
cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname]
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
stdout, stderr = await proc.communicate()
stdout = stdout.decode()
error = stderr.decode()
if proc.returncode:
cmd = " ".join(cmd)
logger.error(f"cannot compile {name}\n\n{cmd}\n\n{error}")
return
async with lock:
shader_fnames.append((name, out_fname))
def matmul_shaders(tasks, fp16, matmul_id):
if fp16:
load_vec = "8"
aligned_b_type_f32 = "mat2x4"
aligned_b_type_f16 = "f16mat2x4"
else:
load_vec = "4"
aligned_b_type_f32 = "vec4"
aligned_b_type_f16 = "f16vec4"
base_dict = {"FLOAT_TYPE": "float" if not fp16 else "float16_t"}
shader_name = "matmul"
if matmul_id:
base_dict["MUL_MAT_ID"] = "1"
shader_name = "matmul_id"
if fp16:
base_dict["FLOAT16"] = "1"
# Shaders with f16 B_TYPE
tasks.append(string_to_spv(f"{shader_name}_f32_f16", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f32_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f16", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
for tname in type_names:
data_a_key = f"DATA_A_{tname.upper()}"
load_vec_a = load_vec if tname in ("f32", "f16") else "2"
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32", "mul_mm.comp", base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32_aligned", "mul_mm.comp", base_dict | {data_a_key: "2", "LOAD_VEC_A": load_vec_a, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f32, "D_TYPE": "float"}, fp16))
async def main():
logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
tasks = []
for fp16 in (False, True):
# MUL_MAT
matmul_shaders(tasks, fp16, False)
# MUL_MAT_ID
matmul_shaders(tasks, fp16, True)
for tname in type_names:
base_dict = {"FLOAT_TYPE": "float"}
# mul mat vec
data_a_key = f"DATA_A_{tname.upper()}"
shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp"
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f32_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f16_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float16_t", "D_TYPE": "float"}))
tasks.append(string_to_spv(f"mul_mat_vec_id_{tname}_f32", shader, base_dict | {"MUL_MAT_ID": "1", data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
# Dequant shaders
if tname != "f16":
tasks.append(string_to_spv(f"dequant_{tname}", f"dequant_{tname}.comp", base_dict | {data_a_key: "1", "D_TYPE": "float16_t"}))
# get_rows
if not tname.endswith("_k"):
shader = "get_rows.comp" if tname in ("f32", "f16") else "get_rows_quant.comp"
if tname == "f16":
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
else:
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv(f"get_rows_{tname}_f32", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
# Norms
tasks.append(string_to_spv("norm_f32", "norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rms_norm_f32", "rms_norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f32", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f16", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("cpy_f16_f16", "copy.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
tasks.append(string_to_spv("add_f32", "add.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}))
tasks.append(string_to_spv("mul_f32", "mul.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("div_f32", "div.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("scale_f32", "scale.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("sqr_f32", "square.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("clamp_f32", "clamp.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("gelu_f32", "gelu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("silu_f32", "silu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("relu_f32", "relu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32_f16", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float16_t", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_norm_f32", "rope_norm.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_norm_f16", "rope_norm.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("rope_neox_f32", "rope_neox.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_neox_f16", "rope_neox.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("argsort_f32", "argsort.comp", {"A_TYPE": "float"}))
tasks.append(string_to_spv("sum_rows_f32", "sum_rows.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
# Helper to decorate tasks with semaphore acquisition.
async def withSemaphore(sem, task):
async with sem:
return await task
# Run tasks concurrently guarded by a concurrency limit.
sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
with open("ggml-vulkan-shaders.hpp", "w") as f:
f.write("#include <cstdint>\n\n")
for name, path in sorted(shader_fnames):
with open(path, "rb") as spv:
counter = 0
newline_counter = 0
f.write(f"unsigned char {name}_data[] = {{\n")
for val in spv.read():
f.write(f"0x{val:02x},")
newline_counter += 1
counter += 1
if newline_counter >= 12:
newline_counter = 0
f.write("\n")
f.write("\n};\n")
f.write(f"const uint64_t {name}_len = {counter};\n\n")
os.remove(path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
parser.add_argument("--glslc", help="Path to glslc")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if args.glslc:
GLSLC = args.glslc
asyncio.run(main())

View file

@ -7,8 +7,8 @@ extern "C" {
#endif
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
// Tensor allocator
struct ggml_tallocr {

View file

@ -29,21 +29,23 @@ extern "C" {
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
//
// Backend
@ -61,6 +63,7 @@ extern "C" {
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// "offset" refers to the offset of the tensor data for setting/getting data
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
@ -100,6 +103,7 @@ extern "C" {
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer

125
ggml/include/ggml-cann.h Normal file
View file

@ -0,0 +1,125 @@
/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include "ggml-backend.h"
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Maximum number of CANN devices supported.
*/
#define GGML_CANN_MAX_DEVICES 16
/**
* @brief Initializes the CANN backend for a specified device.
*
* This function initializes the CANN backend for the given device.
* It verifies the device index, allocates a context, and creates a backend
* instance.
*
* @param device The index of the device to initialize.
* @return A pointer to the initialized backend instance, or nullptr on failure.
*/
GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
/**
* @brief Checks if a given backend is a CANN backend.
*
* This function verifies if the provided backend is a CANN backend by comparing
* its GUID with the CANN backend's GUID.
*
* @param backend The backend instance to check.
* @return True if the backend is a CANN backend, false otherwise.
*/
GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
/**
* @brief Retrieves the CANN buffer type for a specified device.
*
* This function initializes and returns the buffer type interface associated
* with the given device. It ensures thread-safe access using a mutex.
*
* @param device The device index for which to retrieve the buffer type.
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
GGML_API GGML_CALL ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device);
/**
* @brief Retrieves the number of CANN devices available.
*
* This function returns the number of CANN devices available based on
* information obtained from `ggml_cann_info()`.
*
* @return The number of CANN devices available.
*/
GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
/**
* @brief Retrieves the description of a specific CANN device.
*
* This function sets the specified device, retrieves the SoC name,
* and writes it into the provided description buffer.
*
* @param device The device index to retrieve the description for.
* @param description Pointer to a buffer where the description will be written.
* @param description_size Size of the description buffer.
*/
GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size);
/**
* @brief Retrieves the memory information of a specific CANN device.
*
* This function sets the specified device, retrieves the free and total
* memory information of the specified type (ACL_HBM_MEM), and stores them
* in the provided pointers.
*
* @param device The device index to retrieve memory information for.
* @param free Pointer to a variable where the free memory size will be stored.
* @param total Pointer to a variable where the total memory size will be
* stored.
*/
GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device,
size_t* free,
size_t* total);
/**
* @brief Set the logging callback for GGML.
*
* This function sets the logging callback and user data for logging.
*
* @param log_callback The logging callback to set.
* @param user_data User data to pass to the logging callback.
*/
GGML_API void ggml_backend_cann_log_set_callback(ggml_log_callback log_callback,
void* user_data);
#ifdef __cplusplus
}
#endif

View file

@ -6,6 +6,9 @@
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#elif defined(GGML_USE_MUSA)
#define GGML_CUDA_NAME "MUSA"
#define GGML_CUBLAS_NAME "muBLAS"
#else
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"

View file

@ -50,6 +50,8 @@ GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family

View file

@ -220,7 +220,7 @@
#include <stdio.h>
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_FILE_VERSION 1
#define GGML_FILE_VERSION 2
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
@ -231,6 +231,8 @@
#define GGML_MAX_SRC 10
#ifndef GGML_MAX_NAME
#define GGML_MAX_NAME 64
#define GGML_MAX_N_THREADS 512
#endif
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
@ -244,6 +246,8 @@
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
#define GGML_ROPE_TYPE_NEOX 2
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
@ -254,18 +258,8 @@
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fflush(stdout); \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_print_backtrace(); \
abort(); \
} \
} while (0)
#ifndef NDEBUG
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
#define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
#elif defined(__GNUC__)
#define GGML_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
@ -274,6 +268,17 @@
#define GGML_UNREACHABLE() ((void) 0)
#endif
#ifdef __cplusplus
#define GGML_NORETURN [[noreturn]]
#elif defined(_MSC_VER)
#define GGML_NORETURN __declspec(noreturn)
#else
#define GGML_NORETURN _Noreturn
#endif
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
@ -322,6 +327,9 @@
extern "C" {
#endif
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
enum ggml_status {
GGML_STATUS_ALLOC_FAILED = -2,
GGML_STATUS_FAILED = -1,
@ -345,6 +353,7 @@ extern "C" {
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
struct ggml_object;
@ -383,6 +392,9 @@ extern "C" {
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
GGML_TYPE_BF16 = 30,
GGML_TYPE_Q4_0_4_4 = 31,
GGML_TYPE_Q4_0_4_8 = 32,
GGML_TYPE_Q4_0_8_8 = 33,
GGML_TYPE_COUNT,
};
@ -424,6 +436,9 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
};
// available tensor operations:
@ -440,6 +455,8 @@ extern "C" {
GGML_OP_SQR,
GGML_OP_SQRT,
GGML_OP_LOG,
GGML_OP_SIN,
GGML_OP_COS,
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
@ -477,9 +494,11 @@ extern "C" {
GGML_OP_CLAMP,
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_IM2COL_BACK,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_POOL_2D_BACK,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARANGE,
@ -611,6 +630,29 @@ extern "C" {
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
@ -618,6 +660,7 @@ extern "C" {
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
@ -630,8 +673,11 @@ extern "C" {
GGML_CGRAPH_EVAL_ORDER_COUNT
};
typedef uint32_t ggml_bitset_t;
struct ggml_hash_set {
size_t size;
ggml_bitset_t * used;
struct ggml_tensor ** keys;
};
@ -645,7 +691,7 @@ extern "C" {
struct ggml_tensor ** grads;
struct ggml_tensor ** leafs;
struct ggml_hash_set visited_hash_table;
struct ggml_hash_set visited_hash_set;
enum ggml_cgraph_eval_order order;
};
@ -692,8 +738,6 @@ extern "C" {
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_print_backtrace(void);
// accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
@ -708,9 +752,9 @@ extern "C" {
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
@ -747,6 +791,8 @@ extern "C" {
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
@ -953,6 +999,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return scalar
GGML_API struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
@ -1126,16 +1188,17 @@ extern "C" {
// group normalize along ne0*ne1*n_groups
// used in stable-diffusion
// TODO: eps is hardcoded to 1e-6 for now
GGML_API struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
int n_groups,
float eps);
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
int n_groups,
float eps);
// a - x
// b - dy
@ -1438,11 +1501,10 @@ extern "C" {
struct ggml_tensor * b);
// rotary position embedding
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
// if mode & 2 == 1, GPT-NeoX style
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
//
// b is an int32 vector with size a->ne[2], it contains the positions
// c is freq factors (e.g. phi3-128k), (optional)
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1459,6 +1521,7 @@ extern "C" {
int mode);
// custom RoPE
// c is freq factors (e.g. phi3-128k), (optional)
GGML_API struct ggml_tensor * ggml_rope_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1549,34 +1612,49 @@ extern "C" {
float min,
float max);
// im2col
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D,
enum ggml_type dst_type);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D,
enum ggml_type dst_type);
GGML_API struct ggml_tensor * ggml_im2col_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // gradient of im2col output
int64_t * ne, // shape of im2col input
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1, // dilation dimension 1
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
@ -1585,29 +1663,29 @@ extern "C" {
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s, // stride
int d); // dilation
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride
int p0, // padding
int d0); // dilation
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
struct ggml_tensor * a, // convolution kernel
struct ggml_tensor * b, // data
int s0, // stride dimension 0
int s1, // stride dimension 1
int p0, // padding dimension 0
int p1, // padding dimension 1
int d0, // dilation dimension 0
int d1); // dilation dimension 1
// kernel size is a->ne[0] x a->ne[1]
@ -1669,6 +1747,18 @@ extern "C" {
float p0,
float p1);
GGML_API struct ggml_tensor * ggml_pool_2d_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * af, // "a"/input used in forward pass
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
// nearest interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
@ -1743,7 +1833,8 @@ extern "C" {
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias);
float max_bias,
float logit_softcap);
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
@ -1992,10 +2083,23 @@ extern "C" {
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1);
GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
@ -2388,6 +2492,8 @@ extern "C" {
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
GGML_API int ggml_cpu_has_cann (void);
GGML_API int ggml_cpu_has_llamafile (void);
//
// Internal types and functions exposed for tests and benchmarks
@ -2401,20 +2507,31 @@ extern "C" {
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef struct {
const char * type_name;
int blck_size;
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_reference;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously;
const char * type_name;
int64_t blck_size;
int64_t blck_size_interleave; // interleave elements in blocks
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_ref;
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
} ggml_type_traits_t;
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);

View file

@ -139,6 +139,17 @@ if (GGML_METAL)
)
endif()
if (GGML_MUSA)
set(CMAKE_C_COMPILER clang)
set(CMAKE_C_EXTENSIONS OFF)
set(CMAKE_CXX_COMPILER clang++)
set(CMAKE_CXX_EXTENSIONS OFF)
set(GGML_CUDA ON)
list(APPEND GGML_CDEF_PUBLIC GGML_USE_MUSA)
endif()
if (GGML_OPENMP)
find_package(OpenMP)
if (OpenMP_FOUND)
@ -147,6 +158,11 @@ if (GGML_OPENMP)
add_compile_definitions(GGML_USE_OPENMP)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
if (GGML_MUSA)
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} "/usr/lib/llvm-10/include/openmp")
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} "/usr/lib/llvm-10/lib/libomp.so")
endif()
else()
message(WARNING "OpenMP not found")
endif()
@ -238,18 +254,24 @@ if (GGML_BLAS)
endif()
if (GGML_LLAMAFILE)
message(STATUS "Using ggml SGEMM")
message(STATUS "Using llamafile")
add_compile_definitions(GGML_USE_LLAMAFILE)
set(GGML_HEADERS_LLAMAFILE sgemm.h)
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
set(GGML_HEADERS_LLAMAFILE llamafile/sgemm.h)
set(GGML_SOURCES_LLAMAFILE llamafile/sgemm.cpp)
endif()
if (GGML_CUDA)
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
find_package(CUDAToolkit)
if (GGML_MUSA)
list(APPEND CMAKE_MODULE_PATH "/usr/local/musa/cmake/")
find_package(MUSAToolkit)
set(CUDAToolkit_FOUND ${MUSAToolkit_FOUND})
else()
find_package(CUDAToolkit)
endif()
if (CUDAToolkit_FOUND)
message(STATUS "CUDA found")
@ -268,7 +290,11 @@ if (GGML_CUDA)
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
enable_language(CUDA)
if (GGML_MUSA)
set(CMAKE_CUDA_COMPILER ${MUSAToolkit_MCC_EXECUTABLE})
else()
enable_language(CUDA)
endif()
file(GLOB GGML_HEADERS_CUDA "ggml-cuda/*.cuh")
list(APPEND GGML_HEADERS_CUDA "../include/ggml-cuda.h")
@ -332,21 +358,40 @@ if (GGML_CUDA)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
if (GGML_MUSA)
set_source_files_properties(${GGML_SOURCES_CUDA} PROPERTIES LANGUAGE CXX)
foreach(SOURCE ${GGML_SOURCES_CUDA})
set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_22")
endforeach()
endif()
if (GGML_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
if (GGML_MUSA)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart_static MUSA::mublas_static)
else()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
endif()
else()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
if (GGML_MUSA)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart MUSA::mublas)
else()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
endif()
if (GGML_CUDA_NO_VMM)
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
else()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
if (GGML_MUSA)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musa_driver) # required by muDeviceGetAttribute(), muMemGetAllocationGranularity(...), ...
else()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
endif()
endif()
else()
message(WARNING "CUDA not found")
@ -440,6 +485,10 @@ if (GGML_HIPBLAS)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()
if (GGML_CUDA_FORCE_CUBLAS)
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
endif()
if (GGML_CUDA_NO_PEER_COPY)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
@ -463,15 +512,18 @@ if (GGML_SYCL)
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL or NVIDIA")
endif()
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
if ( DEFINED ENV{ONEAPI_ROOT})
message(STATUS "Using oneAPI Release SYCL compiler (icpx).")
elseif(SUPPORTS_SYCL)
message(WARNING "Using open-source SYCL compiler (clang++). Didn't detect ENV {ONEAPI_ROOT}.
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
source /opt/intel/oneapi/setvars.sh")
else()
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
endif()
#todo: AOT
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
message(STATUS "SYCL found")
#todo: AOT
list(APPEND GGML_CDEF_PUBLIC GGML_USE_SYCL)
@ -483,14 +535,12 @@ if (GGML_SYCL)
add_compile_definitions(GGML_SYCL_FORCE_MMQ)
endif()
add_compile_options(-I./) #include DPCT
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
else()
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
endif()
file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp")
@ -499,18 +549,28 @@ if (GGML_SYCL)
file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp")
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
find_package(DNNL)
message("-- DNNL found:" ${DNNL_FOUND})
if (GGML_SYCL_TARGET STREQUAL "INTEL")
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
else()
add_compile_definitions(GGML_SYCL_DNNL=0)
endif()
if (WIN32)
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
else()
add_compile_options(-I/${SYCL_INCLUDE_DIR})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
if (GGML_SYCL_TARGET STREQUAL "INTEL")
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
endif()
endif()
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
list(APPEND GGML_EXTRA_LIBS DNNL::dnnl)
endif()
endif()
if (GGML_RPC)
@ -527,14 +587,11 @@ if (GGML_RPC)
endif()
if (GGML_VULKAN)
find_package(Vulkan)
find_package(Vulkan COMPONENTS glslc REQUIRED)
if (Vulkan_FOUND)
message(STATUS "Vulkan found")
set(GGML_HEADERS_VULKAN ../include/ggml-vulkan.h)
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
list(APPEND GGML_CDEF_PUBLIC GGML_USE_VULKAN)
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
@ -555,6 +612,10 @@ if (GGML_VULKAN)
add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG)
endif()
if (GGML_VULKAN_PERF)
add_compile_definitions(GGML_VULKAN_PERF)
endif()
if (GGML_VULKAN_VALIDATE)
add_compile_definitions(GGML_VULKAN_VALIDATE)
endif()
@ -563,7 +624,37 @@ if (GGML_VULKAN)
add_compile_definitions(GGML_VULKAN_RUN_TESTS)
endif()
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} Vulkan::Vulkan)
add_subdirectory(vulkan-shaders)
set (_ggml_vk_genshaders_cmd vulkan-shaders-gen)
set (_ggml_vk_header ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp)
set (_ggml_vk_source ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp)
set (_ggml_vk_input_dir ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders)
set (_ggml_vk_output_dir ${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv)
file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp")
add_custom_command(
OUTPUT ${_ggml_vk_header}
${_ggml_vk_source}
COMMAND ${_ggml_vk_genshaders_cmd}
--glslc ${Vulkan_GLSLC_EXECUTABLE}
--input-dir ${_ggml_vk_input_dir}
--output-dir ${_ggml_vk_output_dir}
--target-hpp ${_ggml_vk_header}
--target-cpp ${_ggml_vk_source}
--no-clean
DEPENDS ${_ggml_vk_shader_deps}
COMMENT "Generate vulkan shaders"
)
set(GGML_HEADERS_VULKAN ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml-vulkan.h ${_ggml_vk_header})
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp ${_ggml_vk_source})
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} Vulkan::Vulkan)
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CMAKE_CURRENT_BINARY_DIR})
else()
message(WARNING "Vulkan not found")
endif()
@ -739,6 +830,70 @@ if (GGML_CPU_HBM)
target_link_libraries(ggml PUBLIC memkind)
endif()
if (GGML_CANN)
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
endif()
if (CANN_INSTALL_DIR)
# Only Support Linux.
if (GGML_CANN)
if (NOT UNIX)
set(GGML_CANN OFF)
message(WARNING "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}. Turning off GGML_CANN")
endif()
endif()
# Supported platforms: x86-64, arm64
if (GGML_CANN)
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
else()
set(GGML_CANN OFF)
message(WARNING "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}. Turning off GGML_CANN")
endif()
endif()
# Set header and libs
if(GGML_CANN)
set(CANN_INCLUDE_DIRS
${CANN_INSTALL_DIR}/include
${CANN_INSTALL_DIR}/include/aclnn
${CANN_INSTALL_DIR}/acllib/include
)
add_subdirectory(ggml-cann/kernels)
list(APPEND CANN_LIBRARIES
ascendcl
nnopbase
opapi
acl_op_compiler
ascendc_kernels
)
set(GGML_HEADERS_CANN "../include/ggml-cann.h")
file(GLOB GGML_SOURCES_CANN "ggml-cann/*.cpp")
list(APPEND GGML_SOURCES_CANN "ggml-cann.cpp")
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${CANN_LIBRARIES} )
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CANN_INCLUDE_DIRS})
set(GGML_EXTRA_LIBDIRS ${GGML_EXTRA_LIBDIRS} ${CANN_INSTALL_DIR}/lib64)
list(APPEND GGML_CDEF_PUBLIC GGML_USE_CANN)
endif()
else()
set(GGML_CANN OFF)
message(WARNING "CANN: Can't find CANN_INSTALL_DIR, do you forget to source set_var.sh. Turning off GGML_CANN")
endif()
if(NOT GGML_CANN)
message(WARNING "CANN: GGML_CANN is turned OFF, see above for details.")
endif()
endif()
function(get_flags CCID CCVER)
set(C_FLAGS "")
set(CXX_FLAGS "")
@ -757,8 +912,10 @@ function(get_flags CCID CCVER)
set(C_FLAGS -Wdouble-promotion)
set(CXX_FLAGS -Wno-array-bounds)
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
list(APPEND CXX_FLAGS -Wno-format-truncation)
if (NOT GGML_MUSA)
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
list(APPEND CXX_FLAGS -Wno-format-truncation)
endif()
endif()
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
list(APPEND CXX_FLAGS -Wextra-semi)
@ -1090,7 +1247,7 @@ endif()
# Data types, macros and functions related to controlling CPU affinity and
# some memory allocation are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
if (CMAKE_SYSTEM_NAME MATCHES "Linux" OR CMAKE_SYSTEM_NAME MATCHES "Android")
add_compile_definitions(_GNU_SOURCE)
endif()
@ -1153,6 +1310,8 @@ add_library(ggml
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS}
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
${GGML_SOURCES_CANN} ${GGML_HEADERS_CANN}
ggml-aarch64.c ggml-aarch64.h
)
if (EMSCRIPTEN)
@ -1162,6 +1321,7 @@ endif()
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
target_include_directories(ggml PUBLIC ../include)
target_include_directories(ggml PRIVATE . ${GGML_EXTRA_INCLUDES})
target_link_directories(ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
target_compile_features (ggml PRIVATE c_std_11) # don't bump
target_link_libraries(ggml PRIVATE Threads::Threads ${GGML_EXTRA_LIBS})
@ -1175,4 +1335,5 @@ endif()
if (BUILD_SHARED_LIBS)
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(ggml PRIVATE GGML_SHARED GGML_BUILD)
endif()

2180
ggml/src/ggml-aarch64.c Normal file

File diff suppressed because it is too large Load diff

39
ggml/src/ggml-aarch64.h Normal file
View file

@ -0,0 +1,39 @@
// SPDX-FileCopyrightText: Copyright 2024 Arm Ltd.
#pragma once
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
// GGML internal header
#ifdef __cplusplus
extern "C" {
#endif
// Quantization
void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
// GEMV
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// GEMM
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
#ifdef __cplusplus
}
#endif

View file

@ -91,8 +91,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
GGML_ASSERT(!"not enough space in the buffer");
return;
GGML_ABORT("not enough space in the buffer");
}
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
@ -133,7 +132,7 @@ static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset,
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
GGML_ABORT("out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
@ -142,8 +141,7 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
return;
}
}
fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
}
#endif
@ -176,8 +174,7 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
// this should never happen
fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
GGML_UNREACHABLE();
GGML_ABORT("not enough space in the buffer");
}
}
@ -443,7 +440,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
}
}
free(galloc->hash_set.keys);
ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values);
free(galloc->bufts);
free(galloc->buffers);
@ -456,7 +453,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
typedef struct ggml_gallocr * ggml_gallocr_t;
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
size_t i = ggml_hash_find_or_insert(&galloc->hash_set, t);
return &galloc->hash_values[i];
}
@ -565,8 +562,8 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
// clear hash tables
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
ggml_hash_set_reset(&galloc->hash_set);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
// allocate leafs
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
@ -671,21 +668,19 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
}
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
size_t hash_size = graph->visited_hash_table.size;
size_t min_hash_size = graph->n_nodes + graph->n_leafs;
// add 25% margin to avoid hash collisions
min_hash_size += min_hash_size / 4;
// initialize hash table
if (galloc->hash_set.size < hash_size) {
free(galloc->hash_set.keys);
free(galloc->hash_values);
galloc->hash_set.size = hash_size;
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
if (galloc->hash_set.size < min_hash_size) {
ggml_hash_set_free(&galloc->hash_set);
galloc->hash_set = ggml_hash_set_new(min_hash_size);
GGML_ASSERT(galloc->hash_set.keys != NULL);
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
GGML_ASSERT(galloc->hash_values != NULL);
} else {
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
}
// reset allocators
@ -776,6 +771,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
}
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
}
}
@ -816,8 +812,7 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
}
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
return talloc->size_max >= node_size;
}

View file

@ -134,6 +134,10 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
}
}
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
return buffer->usage;
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
return buffer->buft;
}
@ -347,15 +351,10 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
}
// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
// to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
ggml_backend_synchronize(backend_src);
ggml_backend_synchronize(backend_dst);
ggml_backend_tensor_copy(src, dst);
}
// events
@ -394,7 +393,7 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event)
// backend registry
#define GGML_REG_MAX_BACKENDS 16
#define GGML_REG_MAX_BACKENDS 64
struct ggml_backend_reg {
char name[128];
@ -445,6 +444,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
ggml_backend_kompute_reg_devices();
#endif
#ifdef GGML_USE_CANN
extern GGML_CALL int ggml_backend_cann_reg_devices(void);
ggml_backend_cann_reg_devices();
#endif
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
@ -718,9 +722,11 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
#endif
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
size_t work_size;
int n_threads;
ggml_threadpool_t threadpool;
void * work_data;
size_t work_size;
ggml_abort_callback abort_callback;
void * abort_callback_data;
@ -755,7 +761,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) {
@ -792,7 +798,7 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_ctx->work_size < cplan.work_size) {
free(cpu_ctx->work_data);
@ -869,6 +875,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
}
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->threadpool = NULL;
ctx->work_data = NULL;
ctx->work_size = 0;
ctx->abort_callback = NULL;
@ -899,6 +906,18 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
ctx->n_threads = n_threads;
}
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
if (ctx->threadpool && ctx->threadpool != threadpool) {
// already had a different threadpool, pause/suspend it before switching
ggml_threadpool_pause(ctx->threadpool);
}
ctx->threadpool = threadpool;
}
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
@ -1014,10 +1033,6 @@ static bool ggml_is_view_op(enum ggml_op op) {
#define GGML_SCHED_MAX_BACKENDS 16
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 2048
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif
@ -1046,11 +1061,10 @@ struct ggml_backend_sched {
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set;
// hash values
int * tensor_backend_id;
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
// hash map of the nodes in the graph
struct ggml_hash_set hash_set;
int * hv_tensor_backend_ids; // [hash_set.size]
struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size]
@ -1059,7 +1073,7 @@ struct ggml_backend_sched {
int * prev_leaf_backend_ids; // [graph_size]
// copy of the graph with modified inputs
struct ggml_cgraph * graph;
struct ggml_cgraph graph;
// graph splits
struct ggml_backend_sched_split * splits;
@ -1078,19 +1092,16 @@ struct ggml_backend_sched {
ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data;
bool debug;
char * context_buffer;
size_t context_buffer_size;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
bool debug;
};
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
@ -1125,7 +1136,8 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, co
}
#if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define GGML_SCHED_MAX_SPLITS_DEBUG 4096
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
@ -1160,7 +1172,6 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
return cur_backend_id;
}
// assign nodes that use weights to the backend of the weights
// operations with weights are preferably run on the same backend as the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
@ -1266,7 +1277,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->is_reset = false;
struct ggml_init_params params = {
/* .mem_size = */ sizeof(sched->context_buffer),
/* .mem_size = */ sched->context_buffer_size,
/* .mem_buffer = */ sched->context_buffer,
/* .no_alloc = */ true
};
@ -1275,39 +1286,43 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->ctx = ggml_init(params);
if (sched->ctx == NULL) {
fprintf(stderr, "%s: failed to initialize context\n", __func__);
GGML_ASSERT(false);
GGML_ABORT("%s: failed to initialize context\n", __func__);
}
// pass 1: assign backends to ops with pre-allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
int * leaf_backend_id = &tensor_backend_id(leaf);
if (*leaf_backend_id != -1) {
// do not overwrite user assignments
continue;
// do not overwrite user assignments
if (*leaf_backend_id == -1) {
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
}
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
// do not overwrite user assignments
continue;
}
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
// src
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
// do not overwrite user assignments
if (*node_backend_id == -1) {
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
#if 0
// src
if (node->op == GGML_OP_NONE) {
continue;
}
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
}
}
#endif
}
}
@ -1479,12 +1494,13 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
// pass 4: split graph, find tensors that need to be copied
// pass 5: split graph, find tensors that need to be copied
{
int i_split = 0;
struct ggml_backend_sched_split * split = &sched->splits[0];
// find the backend of the first split, skipping view ops
for (int i = 0; i < graph->n_nodes; i++) {
int i = 0;
for (; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (!ggml_is_view_op(node->op)) {
split->backend_id = tensor_backend_id(node);
@ -1493,9 +1509,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
split->i_start = 0;
split->n_inputs = 0;
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
int cur_backend_id = split->backend_id;
for (int i = 0; i < graph->n_nodes; i++) {
for (; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
@ -1504,7 +1519,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
const int node_backend_id = tensor_backend_id(node);
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
assert(node_backend_id != -1); // all nodes should be assigned by now
// check if we should start a new split based on the sources of the current node
bool need_new_split = false;
@ -1518,7 +1533,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// by starting a new split, the memory of the previously offloaded weights can be reused
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = tensor_backend_id(src);
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
if (src_backend_id != cur_backend_id) {
need_new_split = true;
break;
}
@ -1527,9 +1542,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// FIXME: count the number of inputs instead of only checking when full
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
const size_t id = hash_id(src);
int src_backend_id = sched->tensor_backend_id[id];
int src_backend_id = sched->hv_tensor_backend_ids[id];
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
need_new_split = true;
break;
@ -1546,7 +1561,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
GGML_ASSERT(sched->splits != NULL);
}
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
split = &sched->splits[i_split];
split->backend_id = node_backend_id;
split->i_start = i;
@ -1561,12 +1575,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
continue;
}
const int src_backend_id = tensor_backend_id(src);
size_t src_id = hash_id(src);
const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy;
@ -1580,7 +1594,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
@ -1589,11 +1603,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
if (src_backend_id != cur_backend_id && !supported) {
if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
// create a copy of the input in the split's backend
const size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
@ -1602,14 +1614,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_inputs = split->n_inputs++;
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
split->inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
}
}
}
@ -1621,7 +1633,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_backend_sched_print_assignments(sched, graph);
}
// swap node_backend_ids and leaf_backend_ids and prevs
// swap node_backend_ids and leaf _backend_ids with prevs
{
int * tmp = sched->node_backend_ids;
sched->node_backend_ids = sched->prev_node_backend_ids;
@ -1632,9 +1644,19 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp;
}
// create copies of the graph for each split
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
GGML_ASSERT(sched->graph.nodes != NULL);
GGML_ASSERT(sched->graph.leafs != NULL);
}
sched->graph.n_nodes = 0;
sched->graph.n_leafs = 0;
struct ggml_cgraph * graph_copy = &sched->graph;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
@ -1645,12 +1667,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_tensor * input = split->inputs[j];
const size_t input_id = hash_id(input);
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
// add a dependency to the input copy so that it is allocated at the start of the split
@ -1672,7 +1694,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
size_t id = hash_id(input);
int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
@ -1685,7 +1707,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
@ -1699,13 +1721,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
sched->graph = graph_copy;
}
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
bool backend_ids_changed = false;
for (int i = 0; i < sched->graph->n_nodes; i++) {
for (int i = 0; i < sched->graph.n_nodes; i++) {
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
backend_ids_changed = true;
@ -1713,7 +1733,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
}
if (!backend_ids_changed) {
for (int i = 0; i < sched->graph->n_leafs; i++) {
for (int i = 0; i < sched->graph.n_leafs; i++) {
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
backend_ids_changed = true;
@ -1723,14 +1743,14 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
}
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
return false;
}
@ -1751,7 +1771,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
@ -1768,7 +1788,17 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
ggml_backend_synchronize(input_backend);
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy(input, input_cpy);
}
}
}
@ -1837,21 +1867,24 @@ ggml_backend_sched_t ggml_backend_sched_new(
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size);
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
// FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
sched->hash_set = ggml_hash_set_new(graph_size);
sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
sched->context_buffer = malloc(sched->context_buffer_size);
const int initial_splits_capacity = 16;
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
@ -1886,37 +1919,37 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
ggml_hash_set_free(&sched->hash_set);
free(sched->splits);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
free(sched->hv_tensor_backend_ids);
free(sched->hv_tensor_copies);
free(sched->node_backend_ids);
free(sched->leaf_backend_ids);
free(sched->prev_node_backend_ids);
free(sched->prev_leaf_backend_ids);
free(sched->context_buffer);
free(sched->graph.nodes);
free(sched->graph.leafs);
free(sched);
}
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
// reset state for the next run
if (!sched->is_reset) {
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
ggml_hash_set_reset(&sched->hash_set);
memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
sched->is_reset = true;
}
sched->is_alloc = false;
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
ggml_backend_sched_split_graph(sched, measure_graph);
// TODO: extract this to a separate function
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false;
}
@ -1927,10 +1960,11 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
@ -2000,6 +2034,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
SET_CAUSE(node, "usr");
sched->is_reset = false;
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
@ -2042,9 +2077,9 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
GGML_ASSERT(src != NULL);
GGML_ASSERT(src->data && "graph must be allocated");
size_t id = ggml_hash_insert(hash_set, src);
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
return node_copies[ggml_hash_find(hash_set, src)];
size_t id = ggml_hash_insert(&hash_set, src);
if (id == GGML_HASHSET_ALREADY_EXISTS) {
return node_copies[ggml_hash_find(&hash_set, src)];
}
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
@ -2069,7 +2104,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
return dst;
}
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
size_t id = ggml_hash_find(hash_set, src);
if (node_init[id]) {
return;
@ -2096,10 +2131,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
}
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
struct ggml_hash_set hash_set = {
/* .size = */ graph->visited_hash_table.size,
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
};
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
@ -2114,7 +2146,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
fprintf(stderr, "failed to allocate context for graph copy\n");
free(hash_set.keys);
ggml_hash_set_free(&hash_set);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
@ -2137,7 +2169,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
if (buffer == NULL) {
fprintf(stderr, "failed to allocate buffer for graph copy\n");
free(hash_set.keys);
ggml_hash_set_free(&hash_set);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
@ -2155,19 +2187,19 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
// copy data and init views
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
graph_copy_init_tensor(hash_set, node_copies, node_init, node);
graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
}
// build graph copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
graph_copy->nodes[i] = node_copy;
}
graph_copy->n_nodes = graph->n_nodes;
free(hash_set.keys);
ggml_hash_set_free(&hash_set);
free(node_copies);
free(node_init);

View file

@ -8,11 +8,12 @@
# include <Accelerate/Accelerate.h>
#elif defined(GGML_BLAS_USE_MKL)
# include <mkl.h>
#elif defined(GGML_BLAS_USE_BLIS)
# include <blis.h>
#elif defined(GGML_BLAS_USE_NVPL)
# include <nvpl_blas.h>
#else
# include <cblas.h>
# ifdef BLIS_ENABLE_CBLAS
# include <blis.h>
# endif
#endif
struct ggml_backend_blas_context {
@ -140,10 +141,14 @@ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct gg
openblas_set_num_threads(ctx->n_threads);
#endif
#if defined(BLIS_ENABLE_CBLAS)
#if defined(GGML_BLAS_USE_BLIS)
bli_thread_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_NVPL)
nvpl_blas_set_num_threads(ctx->n_threads);
#endif
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
@ -270,8 +275,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
break;
default:
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
GGML_ASSERT(false);
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
}
}

2020
ggml/src/ggml-cann.cpp Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,168 @@
---
Language: Cpp
# BasedOnStyle: Google
AccessModifierOffset: -1
AlignAfterOpenBracket: Align
AlignConsecutiveMacros: false
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlines: Left
AlignOperands: true
AlignTrailingComments: true
AllowAllArgumentsOnNextLine: true
AllowAllConstructorInitializersOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortLambdasOnASingleLine: All
AllowShortIfStatementsOnASingleLine: WithoutElse
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: Yes
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Attach
BreakBeforeInheritanceComma: false
BreakInheritanceList: BeforeColon
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DeriveLineEnding: true
DerivePointerAlignment: true
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<ext/.*\.h>'
Priority: 2
SortPriority: 0
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentCaseLabels: true
IndentGotoLabels: true
IndentPPDirectives: None
IndentWidth: 4
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Never
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Left
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
BasedOnStyle: google
- Language: TextProto
Delimiters:
- pb
- PB
- proto
- PROTO
EnclosingFunctions:
- EqualsProto
- EquivToProto
- PARSE_PARTIAL_TEXT_PROTO
- PARSE_TEST_PROTO
- PARSE_TEXT_PROTO
- ParseTextOrDie
- ParseTextProtoOrDie
CanonicalDelimiter: ''
BasedOnStyle: google
ReflowComments: true
SortIncludes: true
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: Auto
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TabWidth: 8
UseCRLF: false
UseTab: Never
...

2579
ggml/src/ggml-cann/Doxyfile Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,175 @@
/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "acl_tensor.h"
#include <algorithm>
#include <cstring>
aclDataType ggml_cann_type_mapping(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return ACL_FLOAT;
case GGML_TYPE_F16:
return ACL_FLOAT16;
case GGML_TYPE_I8:
return ACL_INT8;
case GGML_TYPE_I16:
return ACL_INT16;
case GGML_TYPE_I32:
return ACL_INT32;
case GGML_TYPE_Q4_0:
return ACL_INT4;
case GGML_TYPE_Q8_0:
return ACL_INT8;
default:
return ACL_DT_UNDEFINED;
}
return ACL_DT_UNDEFINED;
}
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
size_t* nb, int64_t dims, aclFormat format,
size_t offset) {
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
// added.
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
int64_t acl_storage_len = 0;
if (ne == nullptr) {
acl_storage_len = ggml_nbytes(tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
acl_ne[i] = tensor->ne[i];
// The step size of acl is in elements.
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
}
} else {
// With bcast
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
acl_ne[i] = ne[i];
acl_stride[i] = nb[i] / ggml_element_size(tensor);
}
}
// Reverse ne and stride.
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims);
aclTensor* acl_tensor = aclCreateTensor(
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
tensor->data);
return acl_tensor;
}
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
return true;
}
}
return false;
}
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
const ggml_tensor* src1,
int64_t* bcast_src0_ne,
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
size_t* bcast_src1_nb) {
GGML_ASSERT(ggml_can_repeat(src1, src0));
int bcast_dim_cnt = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = src0->ne[i] / src1->ne[i];
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
bcast_dim_cnt++;
if (nr != 1) {
// Need to add an extra dim.
bcast_src0_ne[bcast_dim_cnt] = nr;
bcast_src1_ne[bcast_dim_cnt] = 1;
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
bcast_src0_ne[bcast_dim_cnt - 1];
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
bcast_src1_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}
return bcast_dim_cnt;
}
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
// input and dst shoule in same shape, except first two dims.
GGML_ASSERT(input_ne[2] == dst_ne[2]);
GGML_ASSERT(input_ne[3] == dst_ne[3]);
int bcast_dim_cnt = 0;
// For mul_mat, a dimension needs to be added before the dimension that
// weight needs to be expanded to satisfy the bcast rule of matrix
// multiplication.
for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = input_ne[i] / weight_ne[i];
// Do not use bcast in the first two dimensions because we only support
// the bcast batch dimension. Just copy them.
if (i < 2 || nr == 1) {
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_dim_cnt++;
} else {
// Need to add an extra dim.
bcast_input_ne[bcast_dim_cnt] = nr;
bcast_dst_ne[bcast_dim_cnt] = nr;
bcast_weight_ne[bcast_dim_cnt] = 1;
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dim_cnt++;
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
bcast_input_ne[bcast_dim_cnt - 1];
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
bcast_dst_ne[bcast_dim_cnt - 1];
bcast_weight_nb[bcast_dim_cnt] =
bcast_weight_nb[bcast_dim_cnt - 1] *
bcast_weight_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}
return bcast_dim_cnt;
}

View file

@ -0,0 +1,258 @@
/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef CANN_ACL_TENSOR_H
#define CANN_ACL_TENSOR_H
#include <algorithm>
#include <cstring>
#include <aclnn/aclnn_base.h>
#include "common.h"
/**
* @brief Maps a ggml_type to its corresponding aclDataType.
*
* @details This function takes a ggml_type as input and returns the corresponding
* aclDataType. It supports mapping for various ggml_types. If the input type
* does not match any of the predefined ggml_types, the function returns
* ACL_DT_UNDEFINED.
*
* @param type The ggml_type to be mapped.
* @return The corresponding aclDataType. If the input type is not recognized,
* ACL_DT_UNDEFINED is returned.
*/
aclDataType ggml_cann_type_mapping(ggml_type type);
/**
* @brief Creates an ACL tensor from a ggml_tensor with optional shape.
*
* @details This function creates an ACL tensor based on the properties of the
* provided ggml_tensor. It supports customer shape by adjusting dimensions
* and strides accordingly. If customer shape is applied, additional
* dimensions and strides are calculated based on the provided parameters.
*
* @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
* @param ne Pointer to an array containing dimensions. Defaults to nullptr
* if no customer shape is applied.
* @param nb Pointer to an array containing strides. Defaults to nullptr
* if no customer shape is applied.
* @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
* shape is applied.
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
size_t* nb = nullptr, int64_t dims = 0,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
/**
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
* should be size_t or float.
*
* @details This function creates an ACL tensor using the provided data pointer,
* data type, dimensions, strides, format, offset, and additional parameters.
* It calculates necessary dimensions and strides based on the provided ne and nb
* arrays, adjusting them for the ACL tensor creation. The ACL storage length
* is also calculated based on the provided dimensions and strides.
*
* @param data_ptr Pointer to the data buffer for the ACL tensor.
* @param dtype ACL data type of the tensor.
* @param type_size Size of each element in the tensor data buffer.
* @param ne Pointer to an array containing tensor dimensions.
* @param nb Pointer to an array containing tensor strides.
* @param dims Number of dimensions of the tensor.
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
template<typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
TYPE type_size, int64_t* ne, TYPE* nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2];
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
for (int i = 0; i < dims; i++) {
tmp_stride[i] = nb[i] / type_size;
}
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
int64_t acl_storage_len = 0;
for (int i = 0; i < dims; i++) {
acl_storage_len += (ne[i] - 1) * nb[i];
}
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);
return acl_tensor;
}
/**
* @brief Checks if tensors require broadcasting based on their shapes.
*
* @details This function determines if two ggml_tensors need to be broadcasted for
* element-wise operations. Broadcasting is necessary if the shapes of the
* tensors are not identical and no dimension in either tensor equals 1.
*
* @param t0 Pointer to the first ggml_tensor.
* @param t1 Pointer to the second ggml_tensor.
* @return True if broadcasting is needed, False otherwise.
*
* @remarks This function iterates over the dimensions of t0 and t1. It checks if each
* dimension in t1 differs from t0's corresponding dimension and is not equal
* to 1. If such a dimension is found, broadcasting is required to align t1
* with t0 for element-wise operations.
*/
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
/**
* @brief Computes broadcast shapes and strides for two ggml_tensors.
*
* @details This function calculates the broadcast shapes and strides for two ggml_tensors,
* following the broadcasting rules similar to numpy. It adjusts dimensions and
* strides to ensure compatibility for element-wise operations where one tensor
* can be broadcasted to match the shape of another tensor.
*
* @param src0 Pointer to the first ggml_tensor.
* @param src1 Pointer to the second ggml_tensor.
* @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
* @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
* @param bcast_nb_src0 Output array to store broadcasted strides for src0.
* @param bcast_nb_src1 Output array to store broadcasted strides for src1.
* @return Number of dimensions in the broadcasted shape.
*
* @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
* to match src0.
*
* @remarks This function iterates over the dimensions of src0 and src1, calculating the
* necessary broadcast dimensions and strides. If a dimension requires broadcasting
* (i.e., its size in src1 is smaller than in src0), an additional dimension is
* added with size calculated to match src0's dimension. This adjustment ensures
* that src1 can be element-wise broadcasted to src0's shape.
*
* How it works:
*
* if dim0 has padding.
* a -> (2, 2) padding = 2
* a: [[1, 2, *, *]
* [2, 3, *, *]]
* nb = (8, 4, 2)
*
* if a should bcast with b -> (2, 4)
* b' -> (2, 2, 2)
* b : [[1, 2, 3, 4, *, *]
* [5, 6, 7, 8, *, *]]
* nb = (12, 6, 1)
*
* after bcast:
* a' -> (2, 1, 2)
* a': [[[1, 2], *, *]
* [[2, 3], *, *]]
* nb = (8, 4, 2, 1)
*
* b' : [[[1, 2], [3, 4], *, *]
* [[5, 6], [7, 8], *, *]]
* nb = (12, 6, 2, 1)
* \endcode
*
* dim1 in a inserted dim, should add nb for dim1,
* and all other nb moves to next in order.
*/
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
// Bcast macro to avoid duplicate code.
#define BCAST_SHAPE(src0, src1) \
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
bcast_##src1##_nb);
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
/**
* @brief Calculates broadcast shapes for matrix multiplication.
*
* @details This function computes the broadcast shapes required for matrix multiplication
* based on the input, weight, and destination tensor shapes. It ensures that the
* dimensions of weight tensors are expanded appropriately to satisfy matrix
* multiplication broadcast rules.
*
* @param input_ne Array containing the dimensions of the input tensor.
* @param weight_ne Array containing the dimensions of the weight tensor.
* @param dst_ne Array containing the dimensions of the destination tensor.
* @param input_nb Array containing the strides of the input tensor.
* @param weight_nb Array containing the strides of the weight tensor.
* @param dst_nb Array containing the strides of the destination tensor.
* @param bcast_input_ne Output array for broadcasted input tensor dimensions.
* @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
* @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
* @param bcast_input_nb Output array for broadcasted input tensor strides.
* @param bcast_weight_nb Output array for broadcasted weight tensor strides.
* @param bcast_dst_nb Output array for broadcasted destination tensor strides.
* @return The number of dimensions in the broadcasted tensors.
*
* @remarks This function iterates over the tensor dimensions and calculates the broadcast
* shapes needed for matrix multiplication. It ensures that dimensions where
* weight tensor requires expansion are appropriately handled to conform with
* broadcasting rules.
* @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
* before cast dim.
* @sa ggml_cann_get_bcast_shape
*/
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
// Bcast macro to avoid duplicate code.
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
#define BCAST_MUL_MAT_PARAM(tensor) \
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
#endif // CANN_ACL_TENSOR_H

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,592 @@
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS
/**
* @file acl_tensor
* @brief This file contains related functions of ggml_tensor and acl_tensor.
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
* functions.
* @author hipudding <huafengchun@gmail.com>
* @author wangshuai09 <391746016@qq.com>
* @date July 15, 2024
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <aclnnop/aclnn_add.h>
#include <aclnnop/aclnn_arange.h>
#include <aclnnop/aclnn_argsort.h>
#include <aclnnop/aclnn_cat.h>
#include <aclnnop/aclnn_clamp.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_gelu.h>
#include <aclnnop/aclnn_hardsigmoid.h>
#include <aclnnop/aclnn_hardswish.h>
#include <aclnnop/aclnn_leaky_relu.h>
#include <aclnnop/aclnn_mul.h>
#include <aclnnop/aclnn_relu.h>
#include <aclnnop/aclnn_silu.h>
#include <aclnnop/aclnn_tanh.h>
#include "acl_tensor.h"
#include "common.h"
/**
* @brief Repeats a ggml tensor along each dimension to match the dimensions
* of another tensor.
*
* @details This function repeats the elements of a source ggml tensor along
* each dimension to create a destination tensor with the specified
* dimensions. The operation is performed using the ACL backend and
* executed asynchronously on the device.
*
* @param ctx The CANN context used for operations.
* @param dst The ggml tensor representing the destination, which op is
* GGML_OP_REPEAT and specifies the desired dimensions.
*/
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Adds two ggml tensors using the CANN backend.
*
* @details This function performs an element-wise addition of two tensors. In
* case the tensors do not have the same shape, one or both tensors
* will be broadcasted to match the shape of the other before the
* addition is performed.The formula for the operation is given by:
* \f[
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
* \f]
*
* @param ctx The CANN context used for operations.
* @param dst The ggml tensor representing the destination, result of the
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
*/
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
* backend.
*
* @details This function computes the Leaky ReLU activation for each element of
* the input tensor. The Leaky ReLU function allows a small gradient
* when the unit is not active (i.e., when the input is negative). The
* Leaky ReLU function is defined as:
* \f[
* \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0,
* src)
* \f]
* `negativeSlope` is in dst->params.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result of the Leaky ReLU
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
*/
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Concatenates multiple tensors along a specified dimension using the
* CANN backend.
*
* @param ctx The CANN context used for operations.
* @param tensorList A pointer to the list of tensors to be concatenated.
* @param dst The destination tensor where the result of the
* concatenation is stored. dst->op is `GGML_OP_CONCAT`.
* @param concat_dim The dimension along which the tensors are concatenated.
*
* @attention tensorList length should be 2 and the dimension using for concat
* default to 1.
*/
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Generates a sequence of evenly spaced values within a specified
* interval for a ggml tensor using the CANN backend.
*
* @details This function creates a sequence of numbers over a specified i
* nterval, starting from `start`, ending before `stop`, and
* incrementing by `step`. The sequence is stored in the destination
* tensor `dst`.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the generated sequence will be stored.
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
* `GGML_OP_ARANGE`.
*/
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the square of the elements of a ggml tensor using the CANN
* backend.
* @details The function sets the second source tensor of the destination
* tensor `dst` to be equal to the first source tensor. This is
* effectively squaring the elements since the multiplication becomes
* `element * element`.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the squared values will be stored
* which dst->op is `GGML_OP_SQR`.
*/
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies a clamp operation to the elements of a ggml tensor using the
* CANN backend.
*
* @details This function clamps the elements of the input tensor `src` to a
* specified range defined by `min` and `max` values. The result is
* stored in the destination tensor `dst`. The operation is defined as:
* \f[
* y = \max(\min(x, max\_value), min\_value)
* \f]
* where `x` is an element of the input tensor, and `y` is the
* corresponding element in the output tensor.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the clamped values will be stored.
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
*/
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Scales the elements of a ggml tensor by a constant factor using the
* CANN backend.
*
* @details This function multiplies each element of the input tensor `src` by
* a scaling factor `scale`, storing the result in the destination
* tensor `dst`. The operation is defined as:
* \f[
* dst = src \times scale
* \f]
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the scaled values will be stored.
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
*/
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Sorts the elements of a ggml tensor and returns the indices that
* would sort the tensor using the CANN backend.
*
* @details This function performs an argsort operation on the input tensor
* `src`. It sorts the elements of `src` in either ascending or
* descending order, depending on the `GGML_SORT_ORDER_DESC`,
* and returns the indices that would sort the original tensor.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the sorted indices will be stored.
* dst->op is `GGML_OP_ARGSORT`.
*/
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
* backend.
*
* @details This function applies the Layer Normalization operation on the
* input tensor `src` and stores the result in the destination tensor
* `dst`. Layer Normalization normalizes the features at each sample in
* a mini-batch independently. It is commonly used in neural networks
* to normalize the activations of a layer by adjusting and scaling
* the outputs.
* The operation is defined as:
* \f[
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
* \f]
* `Var` defaults dst->ne[0]. `eps` is in dst->params.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the normalized values will be stored.
* @attention `Var` defaults to dst->ne[0].
*/
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the Group Normalization for a ggml tensor using the CANN
* backend.
*
* @brief This function applies the Group Normalization operation on the input
* tensor `src` and stores the result in the destination tensor `dst`.
* Group Normalization divides the channels into groups and normalizes
* the features within each group across spatial locations.
* It is commonly used in convolutional neural networks to improve
* training stability and performance.
* The operation is defined as:
* \f[
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
* \f]
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the normalized values will be stored.
* `n_groups` is in dst->params, which split C channel to `n_groups`.
* dst->op is `GGML_OP_GROUP_NORM`.
*
* @attention eps defaults to 1e-6f.
*/
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the accumulation of tensors using the CANN backend.
*
* @details This function performs an accumulation operation on two tensors.
* Depending on the `inplace` flag, it either updates the destination
* tensor `dst` in place by adding `alpha * src1` to it, or it creates
* a new tensor as the result of `src0 + alpha * src1` and stores it in
* `dst`.
* The operation is defined as:
* \f[
* dst = src0 + alpha \times src1
* \f]
* if `inplace` is `true`, `src0` is equal to 'dst'.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the accumulated values will be stored.
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
*/
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the sum of elements along the last dimension of a ggml tensor
* using the CANN backend.
*
* @details This function performs a reduction sum operation along the last
* dimension of the input tensor `src`. The result of the sum is stored
* in the destination tensor `dst`.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the reduced values will be stored
* dst->op is `GGML_OP_SUM_ROWS`.
*
* @attention `reduce_dims` defaults to 3, which means the last dimension.
*/
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
* the CANN backend.
*
* @details This function performs upsampling of the input tensor `src` using
* nearest neighbor interpolation. The upsampling is applied to the
* height and width dimensions (last two dimensions) of the tensor. The
* result is stored in the destination tensor `dst`, which must have
* the appropriate dimensions for the upsampled output.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the upsampled values will be stored.
* dst->op is `GGML_OP_UPSCALE`.
*/
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst);
/**
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
* using the CANN backend.
*
* @details This function pads the input tensor `src` so that it matches the
* dimensions of the destination tensor `dst`. The amount of padding
* is calculated based on the difference in sizes between `src` and
* `dst` along each dimension. The padded tensor is stored in `dst`.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor, which specifies the target dimensions for
* padding. dst->op is `GGML_OP_PAD`.
*/
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
* backend.
*
* @details This function dispatches the execution of a 2D pooling operation on
* the input tensor `dst`. The type of pooling (average or max) is
* determined by the `op` parameter, which is read from the operation
* parameters of `dst`. The function supports average pooling
* (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an
* invalid operation is encountered, the function asserts a failure.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor on which the pooling operation is to be
* performed. dst->op is `GGML_OP_POOL_2D`.
*/
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Duplicates a ggml tensor using the CANN backend.
*
* @details This function duplicates the contents of the source tensor `src` to
* the destination tensor `dst`. The function supports various tensor
* types and configurations, including handling of extra data, type
* conversions, and special cases for contiguous and non-contiguous
* tensors.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the duplicated data will be stored.
* dst->op is `GGML_OP_DUP`
*
* @attention Only support Fp16/FP32. Not support when src and dst have
* different shape and dst is no-contiguous.
* @note: This func need to simplify.
*/
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
* using the CANN backend.
*
* @details This function applies RMS normalization to the input tensor `src`
* and stores the result in the destination tensor `dst`. RMS
* normalization involves computing the root mean square of the input
* tensor along a specified dimension and then dividing each element of
* the tensor by this value, adjusted by a small epsilon value to
* prevent division by zero.
* The operation is defined as:
* \f[
* \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i,
* \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s}
* \f]
* `eps` is in dst->op_params.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the normalized values will be stored.
* dst->op is `GGML_OP_RMS_NORM`.
*/
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies a diagonal mask to the tensor with a specified value.
*
* @details This function creates a mask tensor filled with ones, then applies
* an upper triangular and lower triangular operation to it based on
* the number of past elements specified. Afterward, it adds the masked
* tensor to the destination tensor in-place.
*
* @param ctx The backend CANN context used for operations.
* @param dst The destination tensor where the result will be stored. dst->op is
* `GGML_OP_DIAG_MASK`
* @param value The value to use for masking.
*/
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
/**
* @brief Performs an image-to-column transformation on the input tensor.
*
* @details This function takes an input tensor and applies an image-to-column
* operation, converting spatial dimensions into column-like
* structures suitable for convolutional operations. It supports both
* half-precision (F16) and single-precision (F32) floating-point data
* types.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor that stores the result of the operation.
* dst->op is `GGML_OP_IM2COL`.
*/
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes time step embeddings using sine and cosine functions.
*
* @details This function calculates time step embeddings by applying sine and
* cosine transformations to a given input tensor, which is typically
* used in temporal models like diffusion models or transformers to
* encode time information effectively.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the result of the embedding operation
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
*/
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
// @see ggml_cann_dup.
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the softmax activation with optional masking.
*
* @details This function computes the softmax activation over the input tensor,
* optionally applying a mask and scaling factor. It supports both FP16
* and FP32 data types and can handle masking by broadcasting the mask
* across rows if necessary.
* The function performs the following steps:
* 1. Multiplies the input tensor by a scale factor.
* 2. Optionally casts the mask tensor to FP32 if it is in FP16 format.
* 3. Broadcasts the mask tensor if its dimensions do not match the
* input tensor's dimensions.
* 4. Adds the mask to the scaled input tensor.
* 5. Applies the softmax activation function along the specified
* dimension.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the result will be stored. dst->op is
* `GGML_OP_SOFTMAX`.
*/
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Extracts specific rows from a tensor based on indices.
*
* @details This function retrieves rows from a source tensor src0 according to
* the indices provided in another tensor src1 and stores the result in
* a destination tensor (\p dst). It supports different data types
* including F32, F16, Q4_0, and Q8_0.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
* dst->op is `GGML_OP_GET_ROWS`.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Executes matrix multiplication for the given tensor.
*
* @details This function performs matrix multiplication on the source tensors
* associated with the destination tensor. It supports matrix
* multiplication F32, F16, and Q8_0.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor for storing the result of the matrix
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
*/
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
*
* @details This function implements the RoPE mechanism, which is a method to
* encode positional information into sequence data, particularly
* useful in transformer models. It supports both F32 and F16 data
* types.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the RoPE-transformed data will be
* stored. dst->op is `GGML_OP_ROPE`.
*
* @note The function currently does not support cases where the n_dims is less
* than the input tensor's first dimension.
* @note The function currently does not support cases where the freq_factors is
* not NULL.
* @note The function currently does not support cases where the ext_factor is
* not equal 0.
* @note The function currently does not support cases where the freq_scale is
* not equal 1.
*/
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
aclTensor*, uint64_t*, aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
BCAST_SHAPE(src0, src1)
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
} else {
acl_src0 = ggml_cann_create_tensor(src0);
acl_src1 = ggml_cann_create_tensor(src1);
acl_dst = ggml_cann_create_tensor(dst);
}
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
&executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
// Activation functions template.
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
const aclrtStream)>
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
// Activation functions template for const aclTensors.
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
uint64_t*, aclOpExecutor**),
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
const aclrtStream)>
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(src->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}
aclrtStream main_stream = ctx.stream();
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
#endif // CANN_ACLNN_OPS

282
ggml/src/ggml-cann/common.h Normal file
View file

@ -0,0 +1,282 @@
/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef CANN_COMMON_H
#define CANN_COMMON_H
#include <acl/acl.h>
#include <cstdio>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "../include/ggml-cann.h"
#include "../include/ggml.h"
#define MATRIX_ROW_PADDING 512
#define GGML_CANN_MAX_STREAMS 8
/**
* @brief Handles CANN-related errors by printing an error message and
* terminating the program.
* @param stmt The statement that caused the error.
* @param func The function in which the error occurred.
* @param file The file in which the error occurred.
* @param line The line number at which the error occurred.
* @param msg The error message.
*/
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
const char* file, int line, const char* msg);
/**
* @brief Checks the result of a CANN function call and invokes the error
* handler if the call fails.
* @param stmt The CANN function call to check.
* @param success The success code that indicates the call was successful.
* @param error_fn The function to call to retrieve the error message.
*/
#define ACL_CHECK_GEN(stmt, success, error_fn) \
do { \
int err_code = (stmt); \
if (err_code != (success)) { \
ggml_cann_error(#stmt, __func__, __FILE__, __LINE__, error_fn()); \
} \
} while (0);
#define ACL_CHECK(stmt) ACL_CHECK_GEN(stmt, 0, aclGetRecentErrMsg)
/**
* @brief Contains information about CANN devices.
*/
struct ggml_cann_device_info {
/**
* @brief Number of CANN devices available.
*/
int32_t device_count;
/**
* @brief Information about a single CANN device.
*/
struct cann_device_info {
int cc; /**< Compute capability. */
size_t smpb; /**< Maximum shared memory per block. */
bool vmm; /**< Virtual memory support. */
size_t vmm_granularity; /**< Granularity of virtual memory. */
size_t total_vram; /**< Total video RAM available on the device. */
};
cann_device_info devices[GGML_CANN_MAX_DEVICES] =
{}; /**< Array of CANN device information. */
};
const ggml_cann_device_info& ggml_cann_info();
void ggml_cann_set_device(int32_t device);
int32_t ggml_cann_get_device();
/**
* @brief Abstract base class for memory pools used by CANN.
*/
struct ggml_cann_pool {
/**
* @brief Virtual destructor for the memory pool.
*/
virtual ~ggml_cann_pool() = default;
/**
* @brief Allocates memory from the pool.
*
* @param size The size of the memory block to allocate.
* @param actual_size Pointer to a variable where the actual allocated size
* will be stored.
* @return Pointer to the allocated memory block.
*/
virtual void* alloc(size_t size, size_t* actual_size) = 0;
/**
* @brief Frees a previously allocated memory block.
*
* @param ptr Pointer to the memory block to free.
* @param size Size of the memory block to free.
* @note Note that all CANN opertors are running async. Make sure memory is
* still avaiable before this operator finished.
*/
virtual void free(void* ptr, size_t size) = 0;
};
/**
* @brief RAII wrapper for managing memory allocations from a CANN memory pool.
*/
struct ggml_cann_pool_alloc {
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */
void* ptr = nullptr; /**< Pointer to the allocated memory block. */
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
/**
* @brief Default constructor.
*/
ggml_cann_pool_alloc() = default;
/**
* @brief Constructor that initializes the memory pool.
* @param pool Reference to the memory pool.
*/
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {}
/**
* @brief Constructor that initializes the memory pool and allocates memory.
* @param pool Reference to the memory pool.
* @param size Size of the memory block to allocate.
*/
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) {
alloc(size);
}
/**
* @brief Destructor that frees the allocated memory block.
*/
~ggml_cann_pool_alloc() {
if (ptr != nullptr) {
pool->free(ptr, actual_size);
}
}
/**
* @brief Allocates memory from the pool.
* @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block.
*/
void* alloc(size_t size) {
GGML_ASSERT(pool != nullptr);
GGML_ASSERT(ptr == nullptr);
ptr = pool->alloc(size, &this->actual_size);
return ptr;
}
/**
* @brief Allocates memory from a specific memory pool.
* @param pool Reference to the memory pool.
* @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block.
*/
void* alloc(ggml_cann_pool& pool, size_t size) {
this->pool = &pool;
return alloc(size);
}
/**
* @brief Gets the pointer to the allocated memory block.
* @return Pointer to the allocated memory block.
*/
void* get() { return ptr; }
// Deleted copy constructor
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete;
// Deleted move constructor
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete;
// Deleted copy assignment operator
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete;
// Deleted move assignment operator
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
};
/**
* @brief Context for managing CANN backend operations.
*/
struct ggml_backend_cann_context {
int32_t device; /**< Device ID. */
std::string name; /**< Name of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {
{nullptr}}; /**< Array of streams for the device. */
/**
* @brief Constructor for initializing the context with a given device.
* @param device Device ID.
*/
explicit ggml_backend_cann_context(int device)
: device(device), name("CANN" + std::to_string(device)) {}
/**
* @brief Destructor for cleaning up resources.
*/
~ggml_backend_cann_context() {
if (copy_event != nullptr) {
ACL_CHECK(aclrtDestroyEvent(copy_event));
}
for (int i = 0; i < GGML_CANN_MAX_STREAMS; ++i) {
if (streams[i] != nullptr) {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
}
/**
* @brief Get or create a stream for a given index.
* @param stream Index of the stream.
* @return The stream corresponding to the given index.
*/
aclrtStream stream(int stream) {
if (streams[stream] == nullptr) {
ggml_cann_set_device(device);
ACL_CHECK(aclrtCreateStream(&streams[stream]));
}
return streams[stream];
}
/**
* @brief Get or create the default stream (index 0).
* @return The default stream.
*/
aclrtStream stream() { return stream(0); }
// TODO: each stream should have a memory pool.
std::unique_ptr<ggml_cann_pool>
mem_pool; /**< Memory pool for the device. */
/**
* @brief Create a new memory pool for a given device.
* @param device Device ID.
* @return A unique pointer to the new memory pool.
*/
static std::unique_ptr<ggml_cann_pool> new_pool_for_device(int device);
/**
* @brief Get or create the memory pool for the context.
* @return Reference to the memory pool.
*/
ggml_cann_pool& pool() {
if (mem_pool == nullptr) {
mem_pool = new_pool_for_device(device);
}
return *mem_pool;
}
};
#endif // CANN_COMMON_H

View file

@ -0,0 +1,33 @@
if (NOT SOC_TYPE)
set (SOC_TYPE "Ascend910B3")
endif()
file(GLOB SRC_FILES
get_row_f32.cpp
get_row_f16.cpp
get_row_q4_0.cpp
get_row_q8_0.cpp
quantize_f32_q8_0.cpp
quantize_f16_q8_0.cpp
quantize_float_to_q4_0.cpp
dup.cpp
)
string(TOLOWER ${SOC_TYPE} SOC_VERSION)
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
else()
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
endif()
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
ascendc_library(ascendc_kernels STATIC
${SRC_FILES}
)
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)

View file

@ -0,0 +1,19 @@
#ifndef ASCENDC_KERNELS_H
#define ASCENDC_KERNELS_H
#include "aclrtlaunch_ascendc_get_row_f32.h"
#include "aclrtlaunch_ascendc_get_row_f16.h"
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
#endif // ASCENDC_KERNELS_H

View file

@ -0,0 +1,223 @@
#include "kernel_operator.h"
#include <cmath>
using namespace AscendC;
#define BUFFER_NUM 2
template <typename SRC_T, typename DST_T>
class DupByRows {
public:
__aicore__ inline DupByRows() {}
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
size_t *input_nb_ub) {
/* Dup by rows when src is contigous on first dimension and dst is
contiguous, each kernel process one row.
*/
// Input has four dims.
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
// param
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
num_elem = input_ne_ub[0];
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
/ (input_ne_ub[1]);
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
- idx_ne2 * input_ne_ub[1];
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
+ input_nb_ub[1] * idx_ne1;
// dst is contiguous
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
src_stride));
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
dst_stride));
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
32 - 1) / 32 * 32);
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
32 - 1) / 32 * 32);
}
__aicore__ inline void copy_in() {
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = num_elem * sizeof(SRC_T);
DataCopyPadExtParams<SRC_T> padParams;
DataCopyPad(src_local, src_gm, dataCopyParams, padParams);
src_queue.EnQue(src_local);
}
__aicore__ inline void copy_out() {
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
DataCopyPad(dst_gm, dst_local, dataCopyParams);
dst_queue.FreeTensor(dst_local);
}
__aicore__ inline void dup() {
// main process, copy one row data from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
/ BLOCK_NUM * BLOCK_NUM);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
__aicore__ inline void dup_with_cast() {
// main process, copy one row data from src to dst.
// cast dtype from src to dst.
copy_in();
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
dst_queue.EnQue<DST_T>(dst_local);
src_queue.FreeTensor(src_local);
copy_out();
}
private:
TPipe pipe;
GlobalTensor<SRC_T> src_gm;
GlobalTensor<DST_T> dst_gm;
int64_t num_rows;
int64_t num_elem;
int64_t idx_ne3;
int64_t idx_ne2;
int64_t idx_ne1;
int64_t src_stride;
int64_t dst_stride;
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, float_t> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
GM_ADDR src_gm,
GM_ADDR dst_gm,
GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm,
GM_ADDR output_ne_gm,
GM_ADDR output_nb_gm) {
// copy params from gm to ub.
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, float_t> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}

View file

@ -0,0 +1,186 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F16 {
public:
__aicore__ inline GET_ROW_F16() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
// TODO, use template for F16/f32
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ half *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
& ~31);
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
& ~31);
local_buffer_elems = input_local_buffer_size / sizeof(half);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(input_local, input_gm[offset], len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(half);
DataCopyPadExtParams<half> padParams;
DataCopyPad(input_local[len], input_gm[offset + len],
dataCopyParams, padParams);
}
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(output_gm[offset], output_local, len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<half> input_local = input_queue.DeQue<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
Cast(output_local, input_local, RoundMode::CAST_NONE,
local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<half> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F16 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,180 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
class GET_ROW_F32 {
public:
__aicore__ inline GET_ROW_F32() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *indices_ne_ub, size_t *indices_nb_ub,
int64_t *output_ne_ub, size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ float *)input);
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
local_buffer_elems = local_buffer_size / sizeof(float);
// TODO, consider long row that can't put in UB.
// All data should asign to 32. It's ok because all data is align to 32.
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
}
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(input_local, input_gm[offset], len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPadExtParams<float> padParams;
DataCopyPad(input_local[len], input_gm[offset + len],
dataCopyParams, padParams);
}
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
size_t tail = len % 32;
len = len & ~31;
DataCopy(output_gm[offset], output_local, len);
if(tail != 0) {
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = tail * sizeof(float);
DataCopyPad(output_gm[offset + len], output_local[len],
dataCopyParams);
}
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_row(int64_t idx) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3];
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3];
copy_in(input_offset, input_ne[0]);
LocalTensor<float> input_local = input_queue.DeQue<float>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
DataCopy(output_local, input_local, local_buffer_elems);
output_queue.EnQue(output_local);
copy_out(output_offset, input_ne[0]);
input_queue.FreeTensor(input_local);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
calculate_row(i);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
size_t local_buffer_elems;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<float> input_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_F32 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,193 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
#define QK4_0 32
class GET_ROW_Q4_0 {
public:
__aicore__ inline GET_ROW_Q4_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK4_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK4_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] / 2;
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
DataCopy(input_local, input_gm[offset], QK4_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK4_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK4_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK4_0;
copy_in(input_offset);
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK4_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int4b_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q4_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,191 @@
#include "kernel_operator.h"
// optimize me. Use template to avoid copy code.
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class GET_ROW_Q8_0 {
public:
__aicore__ inline GET_ROW_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
int64_t *input_ne_ub, int64_t *indices_ne_ub,
size_t *indices_nb_ub, int64_t *output_ne_ub,
size_t *output_nb_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
indices_ne[i] = indices_ne_ub[i];
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
scale_ne[i] = input_ne_ub[i];
output_ne[i] = output_ne_ub[i];
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
}
// one scale for a group.
scale_ne[0] /= QK8_0;
input_stride[0] = 1;
scale_stride[0] = 1;
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
group_size_in_row = input_ne[0] / QK8_0;
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
input_ne[3] * sizeof(int8_t);
// Indices has two dims. n_elements = all rows should get.
// dr, all rows should this thread get.
uint64_t n_elements =
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
dr = n_elements / op_block_num;
uint64_t tails = n_elements % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
output_gm.SetGlobalBuffer((__gm__ float *)output);
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<float> output_local = output_queue.DeQue<float>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
const int64_t indices_ne1_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
indices_ne[0];
const int64_t indices_ne0_idx =
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
indices_ne1_idx * indices_ne[0]);
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
indices_ne1_idx * indices_stride[1] +
indices_ne2_idx * indices_stride[2];
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
const int64_t input_offset = selected_row_idx * input_stride[1] +
indices_ne1_idx * input_stride[2] +
indices_ne2_idx * input_stride[3] +
group * QK8_0;
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
indices_ne1_idx * scale_stride[2] +
indices_ne2_idx * scale_stride[3] + group;
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
indices_ne1_idx * output_stride[2] +
indices_ne2_idx * output_stride[3] +
group * QK8_0;
copy_in(input_offset);
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
// TODO: cast more data to speed up.
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
// Only mul need compile by group.
half scale = scale_gm.GetValue(scale_offset);
Muls(output_local, output_local, (float)scale, QK8_0);
input_queue.FreeTensor(input_local);
cast_queue.FreeTensor(cast_local);
output_queue.EnQue(output_local);
copy_out(output_offset);
}
__aicore__ inline void calculate() {
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
calculate_group(i, j);
}
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t scale_ne[4];
size_t scale_stride[4];
int64_t indices_ne[4];
size_t indices_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t ir;
int64_t dr;
int64_t group_size_in_row;
TPipe pipe;
GlobalTensor<int8_t> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int32_t> indices_gm;
GlobalTensor<float> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
int64_t input_ne_ub[4];
int64_t indices_ne_ub[4];
size_t indices_nb_ub[4];
int64_t output_ne_ub[4];
size_t output_nb_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
GET_ROW_Q8_0 op;
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
indices_nb_ub, output_ne_ub, output_nb_ub);
op.calculate();
}

View file

@ -0,0 +1,208 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class QUANTIZE_F16_Q8_0 {
public:
__aicore__ inline QUANTIZE_F16_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / QK8_0;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t);
input_gm.SetGlobalBuffer((__gm__ half *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(work_queue, 1, 32);
pipe.InitBuffer(max_queue, 1, 32);
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
pipe.InitBuffer(scale_queue, 1, 32);
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + QK8_0 * group;
const int64_t output_offset = i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] + QK8_0 * group;
copy_in(input_offset);
LocalTensor<half> input_local = input_queue.DeQue<half>();
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
Abs(abs_local, cast_local, QK8_0);
ReduceMax(max_local, abs_local, work_local, QK8_0);
pipe_barrier(PIPE_ALL);
float d = max_local.GetValue(0);
d = d / ((1 << 7) - 1);
if (d != 0) {
Muls(cast_local, cast_local, 1.0f / d, QK8_0);
}
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
abs_queue.FreeTensor(abs_local);
max_queue.FreeTensor(max_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
if (scale_local_offset == 16) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
pipe_barrier(PIPE_ALL);
scale_global_offset += 16;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<half> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, 1> work_queue;
TQue<QuePosition::VECOUT, 1> max_queue;
TQue<QuePosition::VECIN, 1> abs_queue;
TQue<QuePosition::VECOUT, 1> scale_queue;
TQue<QuePosition::VECOUT, 1> cast_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_F16_Q8_0 op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}

View file

@ -0,0 +1,206 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define QK8_0 32
class QUANTIZE_F32_Q8_0 {
public:
__aicore__ inline QUANTIZE_F32_Q8_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / QK8_0;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t);
input_gm.SetGlobalBuffer((__gm__ float *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
ir * group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
pipe.InitBuffer(work_queue, 1, 32);
pipe.InitBuffer(max_queue, 1, 32);
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
pipe.InitBuffer(scale_queue, 1, 32);
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
DataCopy(input_local, input_gm[offset], QK8_0);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
DataCopy(output_gm[offset], output_local, QK8_0);
output_queue.FreeTensor(output_local);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + QK8_0 * group;
const int64_t output_offset = i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] + QK8_0 * group;
copy_in(input_offset);
LocalTensor<float> input_local = input_queue.DeQue<float>();
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
Abs(abs_local, input_local, QK8_0);
ReduceMax(max_local, abs_local, work_local, QK8_0);
pipe_barrier(PIPE_ALL);
float d = max_local.GetValue(0);
d = d / ((1 << 7) - 1);
if (d != 0) {
Muls(input_local, input_local, 1.0f / d, QK8_0);
}
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
abs_queue.FreeTensor(abs_local);
max_queue.FreeTensor(max_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
if (scale_local_offset == 16) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
pipe_barrier(PIPE_ALL);
scale_global_offset += 16;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<float> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, 1> work_queue;
TQue<QuePosition::VECOUT, 1> max_queue;
TQue<QuePosition::VECIN, 1> abs_queue;
TQue<QuePosition::VECIN, 1> cast_queue;
TQue<QuePosition::VECOUT, 1> scale_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_F32_Q8_0 op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}

View file

@ -0,0 +1,278 @@
#include "kernel_operator.h"
using namespace AscendC;
#define BUFFER_NUM 2
#define Group_Size 32
template <typename SRC_T>
class QUANTIZE_FLOAT_TO_Q4_0 {
public:
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
int64_t *input_ne_ub, size_t *input_nb_ub,
int64_t *output_ne_ub) {
// TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
// permute=[0,0,0,0]):
// [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
int64_t op_block_num = GetBlockNum();
int64_t op_block_idx = GetBlockIdx();
// input stride of data elements
for (int i = 0; i < 4; i++) {
input_ne[i] = input_ne_ub[i];
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
output_ne[i] = output_ne_ub[i];
}
// output stride of data elements
output_stride[0] = 1;
for (int i = 1; i < 4; i++) {
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
}
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
scale_ne = input_ne;
scale_stride[0] = 1;
scale_stride[1] = input_ne[0] / Group_Size;
for (int i = 2; i < 4; i++) {
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
}
// split input tensor by rows.
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
dr = nr / op_block_num;
uint64_t tails = nr % op_block_num;
if (op_block_idx < tails) {
dr += 1;
ir = dr * op_block_idx;
} else {
ir = dr * op_block_idx + tails;
}
group_size_in_row = scale_stride[1];
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
output_ne[3] * sizeof(uint8_t) / 2;
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
group_size_in_row *
sizeof(half)));
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
pipe.InitBuffer(output_queue, BUFFER_NUM,
Group_Size * sizeof(int8_t) / 2);
pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
}
__aicore__ inline void copy_in(uint32_t offset) {
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
DataCopy(input_local, input_gm[offset], Group_Size);
input_queue.EnQue(input_local);
}
__aicore__ inline void copy_out(uint32_t offset) {
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
// and using DataCopyPad to avoid 32 bits align.
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
LocalTensor<int8_t> output_int8_local =
output_local.ReinterpretCast<int8_t>();
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
output_queue.FreeTensor(output_local);
}
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
LocalTensor<float> input_local) {
DataCopy(cast_local, input_local, Group_Size);
}
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
LocalTensor<half> input_local) {
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
}
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
const int64_t i1 =
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
const int64_t input_offset = i1 * input_stride[1] +
i2 * input_stride[2] +
i3 * input_stride[3] + Group_Size * group;
// output_offset is stride for output_gm which datatype is int8_t and
// divided by 2 is needed for int4b_t.
const int64_t output_offset = (i1 * output_stride[1] +
i2 * output_stride[2] +
i3 * output_stride[3] +
Group_Size * group) / 2;
copy_in(input_offset);
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
input_to_cast(cast_local, input_local);
ReduceMax(max_local, cast_local, work_local, Group_Size);
ReduceMin(min_local, cast_local, work_local, Group_Size);
const float max_value = max_local.GetValue(0);
const float min_value = min_local.GetValue(0);
float d = max_value;
if (min_value < 0 && (-1 * min_value) > max_value) {
d = min_value;
}
d = d / (-8);
if (d != 0) {
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
}
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
float scalar = 8.5f;
Adds(cast_local, cast_local, scalar, Group_Size);
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
scalar = 15.0f;
Mins(cast_local, cast_local, scalar, Group_Size);
scalar = -8.0f;
Adds(cast_local, cast_local, scalar, Group_Size);
// float->half->int4b
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
output_queue.EnQue(output_local);
copy_out(output_offset);
input_queue.FreeTensor(input_local);
work_queue.FreeTensor(work_local);
max_queue.FreeTensor(max_local);
min_queue.FreeTensor(min_local);
int8_queue.FreeTensor(int8_local);
half_queue.FreeTensor(half_local);
cast_queue.FreeTensor(cast_local);
return (half)d;
}
__aicore__ inline void calculate() {
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
uint32_t scale_local_offset = 0;
uint32_t scale_global_offset = 0;
for (int64_t i = ir; i < ir + dr; i++) {
for (int64_t j = 0; j < group_size_in_row; j++) {
half scale = calculate_group(i, j);
scale_local.SetValue(scale_local_offset++, scale);
// Copy Group_Size/2 length data each time.
if (scale_local_offset == Group_Size / 2) {
scale_local_offset = 0;
// TODO: OPTIMIZE ME
pipe_barrier(PIPE_ALL);
DataCopy(scale_gm[scale_global_offset], scale_local,
Group_Size / 2);
pipe_barrier(PIPE_ALL);
scale_global_offset += Group_Size / 2;
}
}
}
if (scale_local_offset != 0) {
pipe_barrier(PIPE_ALL);
DataCopyExtParams dataCopyParams;
dataCopyParams.blockCount = 1;
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
DataCopyPad(scale_gm[scale_global_offset], scale_local,
dataCopyParams);
pipe_barrier(PIPE_ALL);
}
scale_queue.FreeTensor(scale_local);
}
private:
int64_t input_ne[4];
size_t input_stride[4];
int64_t *scale_ne;
size_t scale_stride[4];
int64_t output_ne[4];
size_t output_stride[4];
int64_t group_size_in_row;
int64_t ir;
int64_t dr;
TPipe pipe;
GlobalTensor<SRC_T> input_gm;
GlobalTensor<half> scale_gm;
GlobalTensor<int8_t> output_gm;
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
};
template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
auto gm_ptr = (__gm__ uint8_t *)gm;
auto ub_ptr = (uint8_t *)(ub);
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
*ub_ptr = *gm_ptr;
}
}
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_FLOAT_TO_Q4_0<half> op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
int64_t input_ne_ub[4];
size_t input_nb_ub[4];
int64_t output_ne_ub[4];
copy_to_ub(input_ne_gm, input_ne_ub, 32);
copy_to_ub(input_nb_gm, input_nb_ub, 32);
copy_to_ub(output_ne_gm, output_ne_ub, 32);
QUANTIZE_FLOAT_TO_Q4_0<float> op;
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
op.calculate();
}

View file

@ -19,7 +19,11 @@ typedef half2 ggml_half2;
#define GGML_COMMON_DECL
#elif defined(GGML_COMMON_DECL_CUDA)
#if defined(GGML_COMMON_DECL_MUSA)
#include <musa_fp16.h>
#else
#include <cuda_fp16.h>
#endif
#include <cstdint>
typedef half ggml_half;
@ -199,6 +203,30 @@ typedef struct {
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding");
typedef struct {
ggml_half d[4]; // deltas for 4 q4_0 blocks
uint8_t qs[QK4_0 * 2]; // nibbles / quants for 4 q4_0 blocks
} block_q4_0x4;
static_assert(sizeof(block_q4_0x4) == 4 * sizeof(ggml_half) + QK4_0 * 2, "wrong q4_0x4 block size/padding");
typedef struct {
ggml_half d[8]; // deltas for 8 q4_0 blocks
uint8_t qs[QK4_0 * 4]; // nibbles / quants for 8 q4_0 blocks
} block_q4_0x8;
static_assert(sizeof(block_q4_0x8) == 8 * sizeof(ggml_half) + QK4_0 * 4, "wrong q4_0x8 block size/padding");
typedef struct {
ggml_half d[4]; // deltas for 4 q8_0 blocks
int8_t qs[QK8_0 * 4]; // quants for 4 q8_0 blocks
} block_q8_0x4;
static_assert(sizeof(block_q8_0x4) == 4 * sizeof(ggml_half) + QK8_0 * 4, "wrong q8_0x4 block size/padding");
typedef struct {
ggml_half d[8]; // deltas for 8 q8_0 blocks
int8_t qs[QK8_0 * 8]; // quants for 8 q8_0 blocks
} block_q8_0x8;
static_assert(sizeof(block_q8_0x8) == 8 * sizeof(ggml_half) + QK8_0 * 8, "wrong q8_0x8 block size/padding");
//
// Super-block quantization structures
//
@ -391,7 +419,7 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_
#define GGML_TABLE_END() };
#define GGML_COMMON_IMPL
#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP)
#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) || defined(GGML_COMMON_IMPL_MUSA)
#include <cstdint>
#define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = {

View file

@ -9,8 +9,10 @@
#include "ggml-cuda/binbcast.cuh"
#include "ggml-cuda/clamp.cuh"
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
@ -97,7 +99,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_CUDA_LOG_ERROR(" %s\n", stmt);
// abort with GGML_ASSERT to get a stack trace
GGML_ASSERT(!"CUDA error");
GGML_ABORT("CUDA error");
}
// this is faster on Windows
@ -129,7 +131,22 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
}
return res;
#else
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
cudaError_t err;
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
{
err = cudaMallocManaged(ptr, size);
}
else
{
err = cudaMalloc(ptr, size);
}
return err;
#else
return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
#endif
}
@ -166,7 +183,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
@ -178,7 +195,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_USE_HIPBLAS)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
info.devices[id].vmm = !!device_vmm;
cudaDeviceProp prop;
@ -314,7 +331,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
};
// pool with virtual memory
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
@ -408,14 +425,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
}
};
#endif // !defined(GGML_USE_HIPBLAS)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM) && !defined(GGML_USE_MUSA)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
@ -463,12 +480,12 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
return;
}
if (ggml_is_quantized(tensor->type)) {
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
// initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size && tensor->view_src == nullptr) {
if (padded_size > original_size) {
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
}
@ -1340,7 +1357,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {
#if !defined(GGML_USE_HIPBLAS)
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
cudaMemcpy3DPeerParms p = {};
p.dstDevice = dstDevice;
@ -1354,7 +1371,7 @@ static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
GGML_UNUSED(dstDevice);
GGML_UNUSED(srcDevice);
return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
#endif // !defined(GGML_USE_HIPBLAS)
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
}
static void ggml_cuda_op_mul_mat(
@ -1484,6 +1501,13 @@ static void ggml_cuda_op_mul_mat(
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
}
// If src0 is on a temporary compute buffers (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
const int64_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const int64_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream));
}
if (src1_on_device && src1_is_contiguous) {
dev[id].src1_ddf = (float *) src1->data;
} else {
@ -1588,7 +1612,7 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
if (quantize_src1 && !src1_is_contiguous) {
@ -1820,6 +1844,9 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
}
#else
#ifdef GGML_USE_MUSA
GGML_ASSERT(false);
#else // !GGML_USE_MUSA
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
@ -1862,6 +1889,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
#endif // GGML_USE_MUSA
#endif
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
@ -1873,9 +1901,9 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
&& src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
@ -2154,6 +2182,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ADD:
ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_SUB:
ggml_cuda_op_sub(ctx, dst);
break;
case GGML_OP_ACC:
ggml_cuda_op_acc(ctx, dst);
break;
@ -2240,6 +2271,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SQRT:
ggml_cuda_op_sqrt(ctx, dst);
break;
case GGML_OP_SIN:
ggml_cuda_op_sin(ctx, dst);
break;
case GGML_OP_COS:
ggml_cuda_op_cos(ctx, dst);
break;
case GGML_OP_CLAMP:
ggml_cuda_op_clamp(ctx, dst);
break;
@ -2261,6 +2298,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cuda_op_conv_transpose_1d(ctx,dst);
break;
case GGML_OP_POOL_2D:
ggml_cuda_op_pool2d(ctx, dst);
break;
@ -2273,6 +2313,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
default:
return false;
}
@ -2328,33 +2371,35 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
}
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
if (!ggml_backend_buffer_is_cuda(src->buffer)) {
if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
return false;
}
if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
return false;
}
// device -> device
// device -> device copy
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: backend and buffer devices do not match\n", __func__);
#endif
return false;
}
if (backend_src != backend_dst) {
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
// copy on src stream
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
} else {
#ifdef GGML_CUDA_NO_PEER_COPY
return false;
@ -2363,7 +2408,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
#endif
}
// record event on src stream
// record event on src stream after the copy
if (!cuda_ctx_src->copy_event) {
ggml_cuda_set_device(cuda_ctx_src->device);
CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
@ -2375,7 +2420,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
} else {
// src and dst are on the same backend
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
}
return true;
}
@ -2578,6 +2623,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
}
}
@ -2712,11 +2758,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_MUL_MAT_ID:
{
struct ggml_tensor * a = op->src[0];
if (op->op == GGML_OP_MUL_MAT) {
struct ggml_tensor * b = op->src[1];
if (a->ne[3] != b->ne[3]) {
return false;
}
struct ggml_tensor * b = op->src[1];
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
return false;
}
if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
return false;
}
switch (a->type) {
case GGML_TYPE_F32:
@ -2804,6 +2851,15 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1]->type;
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
return false;
} break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
@ -2811,12 +2867,15 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
@ -2838,7 +2897,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
return true;
case GGML_OP_FLASH_ATTN_EXT:
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
return (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) || op->src[0]->ne[0] == 128;
#else
if (op->src[0]->ne[0] == 128) {
return true;
@ -2848,6 +2907,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
}
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
case GGML_OP_CROSS_ENTROPY_LOSS:
return true;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;
@ -2924,7 +2985,7 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -3006,7 +3067,7 @@ GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size
return false;
}
#if CUDART_VERSION >= 11100
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
if (err != cudaSuccess) {
// clear the error

View file

@ -81,7 +81,7 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
} else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}

View file

@ -9,6 +9,10 @@ static __device__ __forceinline__ float op_add(const float a, const float b) {
return a + b;
}
static __device__ __forceinline__ float op_sub(const float a, const float b) {
return a - b;
}
static __device__ __forceinline__ float op_mul(const float a, const float b) {
return a * b;
}
@ -259,7 +263,7 @@ static void ggml_cuda_op_bin_bcast(
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -271,6 +275,10 @@ void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_sub>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
}

View file

@ -2,5 +2,6 @@
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -12,6 +12,10 @@
#else
#define GGML_COMMON_DECL_CUDA
#define GGML_COMMON_IMPL_CUDA
#if defined(GGML_USE_MUSA)
#define GGML_COMMON_DECL_MUSA
#define GGML_COMMON_IMPL_MUSA
#endif
#endif
#include "ggml-common.h"
@ -23,111 +27,11 @@
#include <vector>
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEventSynchronize hipEventSynchronize
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaHostRegister hipHostRegister
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync
#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define __trap abort
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#include "vendors/hip.h"
#elif defined(GGML_USE_MUSA)
#include "vendors/musa.h"
#else
#include <cuda_runtime.h>
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define cublasComputeType_t cudaDataType_t
#endif // CUDART_VERSION < 11020
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIPBLAS)
#define STRINGIZE_IMPL(...) #__VA_ARGS__
@ -168,7 +72,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
#if CUDART_VERSION >= 12000
#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
static const char * cublas_get_error_str(const cublasStatus_t err) {
return cublasGetStatusString(err);
}
@ -200,7 +104,7 @@ static const char * cu_get_error_str(CUresult err) {
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif
#if CUDART_VERSION >= 11100
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
#else
#define GGML_CUDA_ASSUME(x)
@ -212,93 +116,7 @@ typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif //GGML_CUDA_F16
#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
#define RDNA2
#endif
#if defined(__gfx1010__) || defined(__gfx1012__)
#define RDNA1
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
#if __has_builtin(__builtin_elementwise_sub_sat)
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
return reinterpret_cast<const int &>(c);
#else
int8x4_t c;
int16_t tmp;
#pragma unroll
for (int i = 0; i < 4; i++) {
tmp = va[i] - vb[i];
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
c[i] = tmp;
}
return reinterpret_cast<int &>(c);
#endif // __has_builtin(__builtin_elementwise_sub_sat)
}
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
return __vsubss4(a, b);
}
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
}
return c;
}
static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
}
return c;
}
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
// __shfl_xor() for half2 was added in ROCm 5.6
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
typedef union half2_b32 {
half2 val;
int b32;
} half2_b32_t;
half2_b32_t tmp;
tmp.val = var;
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
return tmp.val;
}
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
#endif // defined(GGML_USE_HIPBLAS)
#endif // GGML_CUDA_F16
#if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#define FP16_AVAILABLE
@ -348,7 +166,7 @@ static __device__ void no_device_code(
#ifdef __CUDA_ARCH__
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
#else
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__
static __device__ __forceinline__ float warp_reduce_sum(float x) {
@ -455,11 +273,11 @@ static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
return mask_low | mask_high;
}
#endif // CUDART_VERSION < 12000
#endif // CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);

View file

@ -0,0 +1,87 @@
#include "conv-transpose-1d.cuh"
static __global__ void conv_transpose_1d_kernel(
const int s0, const int p0, const int d0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
const float * src0, const float * src1, float * dst) {
int global_index = threadIdx.x + blockIdx.x * blockDim.x;
if (global_index >= output_size) {
return;
}
int out_index = global_index / dst_ne0;
float accumulator = 0;
for (int c = 0; c < src0_ne2; c++) {
int idx = global_index % dst_ne0;
int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0);
int input_offset = src1_ne0 * c;
for (int i = 0; i < src1_ne0; i++) {
if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) {
continue;
}
int weight_idx = idx - i*s0;
float kernel_weight = src0[kernel_offset + weight_idx];
float input_value = src1[input_offset+i];
accumulator += kernel_weight * input_value;
}
}
dst[global_index] = accumulator;
}
static void conv_transpose_1d_f32_f32_cuda(
const int s0, const int p0, const int d0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3,
const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3,
const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3,
const float * src0, const float * src1, float * dst,
cudaStream_t stream) {
const int num_blocks = (output_size + CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE;
conv_transpose_1d_kernel<<<num_blocks,CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE, 0, stream>>>(
s0,p0,d0,output_size,
src0_ne0, src0_ne1, src0_ne2, src0_ne3,
src1_ne0, src1_ne1, src1_ne2, src1_ne3,
dst_ne0, dst_ne1, dst_ne2, dst_ne3,
src0,src1, dst);
}
void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
const ggml_tensor * src1 = dst->src[1];
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const int32_t * opts = (const int32_t *)dst->op_params;
const int s0 = opts[0];
const int p0 = 0;//opts[3];
const int d0 = 1;//opts[4];
const int64_t kernel_size = ggml_nelements(src0);
const int64_t input_size = ggml_nelements(src1);
const int64_t output_size = ggml_nelements(dst);
conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
src0_d, src1_d, dst_d, stream);
}

View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE 256
void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -451,7 +451,7 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -484,6 +484,6 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}

View file

@ -0,0 +1,106 @@
#include "common.cuh"
#include "cross-entropy-loss.cuh"
#include "sumrows.cuh"
#include <cmath>
#include <cstdint>
static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) {
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE;
const int ne_tmp = WARP_SIZE*nclasses;
extern __shared__ float tmp_all[];
float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp;
float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp;
// Each warp first loads ne_tmp logits/labels into shared memory:
for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) {
const int ig = i0*nclasses + i; // ig == i global
tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f;
tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f;
}
// Each thread in the warp then calculates the cross entropy loss for a single row.
// TODO: pad in order to avoid shared memory bank conflicts.
// Find maximum for softmax:
float max = -INFINITY;
for (int i = 0; i < nclasses; ++i) {
max = fmaxf(max, tmp_logits[lane_id*nclasses + i]);
}
// Calculate log(softmax(logits)) which is just logits - max:
float sum = 0.0f;
for (int i = 0; i < nclasses; ++i) {
float val = tmp_logits[lane_id*nclasses + i] - max;
sum += expf(val);
tmp_logits[lane_id*nclasses + i] = val;
}
sum = logf(sum);
// log(exp(logits - max) / sum) = (logits - max) - log(sum)
float loss = 0.0f;
for (int i = 0; i < nclasses; ++i) {
loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i];
}
loss = -warp_reduce_sum(loss) / (float)k;
__syncthreads();
if (lane_id == 0) {
tmp_all[warp_id] = loss;
}
__syncthreads();
if (warp_id != 0) {
return;
}
loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f;
loss = warp_reduce_sum(loss);
if (lane_id != 0) {
return;
}
dst[blockIdx.x] = loss;
}
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float);
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
// Combine results from individual blocks:
sum_rows_f32_cuda(dst_tmp.ptr, dst_d, blocks_num.x, 1, stream);
}

View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE 256
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -500,7 +500,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
@ -510,7 +510,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y,
}
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@ -519,7 +519,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y,
}
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@ -528,7 +528,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y,
}
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@ -537,7 +537,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y,
}
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@ -588,7 +588,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
@ -662,7 +662,7 @@ void ggml_cuda_op_dequantize_mul_mat_vec(
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
@ -672,3 +672,12 @@ void ggml_cuda_op_dequantize_mul_mat_vec(
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type) {
return src0_type == GGML_TYPE_Q4_0 || src0_type == GGML_TYPE_Q4_1 ||
src0_type == GGML_TYPE_Q5_0 || src0_type == GGML_TYPE_Q5_1 ||
src0_type == GGML_TYPE_Q8_0 || src0_type == GGML_TYPE_Q2_K ||
src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q4_K ||
src0_type == GGML_TYPE_Q5_K || src0_type == GGML_TYPE_Q6_K ||
src0_type == GGML_TYPE_F16;
}

View file

@ -16,3 +16,5 @@ void ggml_cuda_op_dequantize_mul_mat_vec(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type);

View file

@ -22,6 +22,7 @@ typedef void (* fattn_kernel_t)(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -68,7 +69,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const int iqs4 = k_KQ % QI4_0;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -108,7 +109,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const int iqs4 = k_KQ % QI4_1;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@ -153,8 +154,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
@ -200,8 +201,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
@ -249,7 +250,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
const int ib = k_KQ / QI8_0;
const int iqs = k_KQ % QI8_0;
const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
const int v = get_int_b2(K_q8_0[ib].qs, iqs);
T Q_d;
if (std::is_same<T, half>::value) {
@ -408,7 +409,7 @@ static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__
const T d = x[ib].d;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_from_uint8(x[ib].qh, 0);
const int qh0 = get_int_b2(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh) - 16;
@ -433,7 +434,7 @@ static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__
const half2 dm = x[ib].dm;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
const int qh0 = get_int_b4(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh);
@ -564,7 +565,7 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
fprintf(stderr, "By default only f16 KV cache is supported.\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
GGML_ASSERT(false);
GGML_ABORT("fatal error");
} else if (D == 128) {
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
fprintf(stderr, "Supported combinations:\n");
@ -572,11 +573,11 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
GGML_ASSERT(false);
GGML_ABORT("fatal error");
} else {
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
fprintf(stderr, "Only f16 is supported.\n");
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -657,11 +658,17 @@ void launch_fattn(
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale = 1.0f;
float max_bias = 0.0f;
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
@ -675,7 +682,7 @@ void launch_fattn(
V_data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,

View file

@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -44,6 +45,12 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@ -154,7 +161,13 @@ static __global__ void flash_attn_tile_ext_f16(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
half sum;
if (use_logit_softcap) {
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum = logit_softcap * tanhf(tmp.x + tmp.y);
} else {
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
@ -270,24 +283,24 @@ static __global__ void flash_attn_tile_ext_f16(
#endif // FP16_AVAILABLE
}
template <int cols_per_block, int parallel_blocks>
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
@ -296,24 +309,45 @@ void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_ten
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
}

View file

@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f32(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -43,6 +44,12 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne1,
const int ne2,
const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@ -151,6 +158,10 @@ static __global__ void flash_attn_tile_ext_f32(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
@ -267,46 +278,68 @@ static __global__ void flash_attn_tile_ext_f32(
}
}
template <int cols_per_block, int parallel_blocks>
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
}

View file

@ -1,7 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -41,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
@ -190,6 +197,11 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) {
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
if (ncols == 1) {
@ -286,10 +298,10 @@ static __global__ void flash_attn_vec_ext_f16(
#endif // FP16_AVAILABLE
}
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@ -297,48 +309,81 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * KQV = dst;
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \

View file

@ -1,7 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f32(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -40,6 +41,12 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne1,
const int ne2,
const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
@ -180,6 +187,11 @@ static __global__ void flash_attn_vec_ext_f32(
for (int j = 0; j < ncols; ++j) {
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
@ -267,10 +279,10 @@ static __global__ void flash_attn_vec_ext_f32(
}
}
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@ -278,44 +290,78 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \

View file

@ -6,7 +6,7 @@
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -22,6 +22,7 @@ static __global__ void flash_attn_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@ -46,6 +47,12 @@ static __global__ void flash_attn_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_MMA_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
@ -85,6 +92,8 @@ static __global__ void flash_attn_ext_f16(
const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef);
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
frag_b Q_b[D/16][ncols/frag_n];
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
@ -194,6 +203,10 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
if (use_logit_softcap) {
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
}
}
float KQ_max_new = KQ_max_f[j0/nwarps];
@ -237,6 +250,15 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
if (use_logit_softcap) {
// There is no dedicated tangens hyperbolicus function for half2.
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
}
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
@ -427,7 +449,8 @@ static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
template <int D, int cols_per_block, typename KQ_acc_t>
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
constexpr int nwarps = 4;
@ -435,20 +458,50 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (4*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 4;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return;
}
if (2*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 2;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return;
}
constexpr int parallel_blocks = 1;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
}

View file

@ -13,7 +13,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
@ -38,7 +38,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
} else {
@ -63,7 +63,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
// break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
}
@ -86,7 +86,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
return;
@ -114,7 +114,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
return;
@ -141,7 +141,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
}
@ -301,7 +301,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) {

View file

@ -171,8 +171,7 @@ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
break;
default:
// TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false);
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
break;
}
}

View file

@ -70,6 +70,10 @@ struct mma_int_A_I16K8 {
}
#endif // defined(INT8_MMA_AVAILABLE)
}
__device__ __forceinline__ void load_low(const int * __restrict__ xs0, const int & stride) {
((mma_int_A_I16K4 *) x)[0].load(xs0, stride);
}
};
struct mma_int_B_J8K4 {

View file

@ -59,8 +59,32 @@ void ggml_cuda_op_mul_mat_q(
case GGML_TYPE_Q6_K:
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_q_case<GGML_TYPE_IQ2_XXS>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_q_case<GGML_TYPE_IQ2_XS>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_q_case<GGML_TYPE_IQ2_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_q_case<GGML_TYPE_IQ3_XXS>(ctx, args, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_q_case<GGML_TYPE_IQ3_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
@ -87,6 +111,14 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
mmq_supported = true;
break;
default:

File diff suppressed because it is too large Load diff

View file

@ -162,7 +162,7 @@ static void mul_mat_vec_q_cuda(
rows_per_cuda_block = 2;
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
}
@ -196,7 +196,7 @@ static void mul_mat_vec_q_cuda(
mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
}
@ -413,7 +413,7 @@ void ggml_cuda_op_mul_mat_vec_q(
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}

View file

@ -142,8 +142,7 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
}
}
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
static const float eps = 1e-6f;
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
if (group_size < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
@ -196,8 +195,12 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream);
}
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View file

@ -37,47 +37,92 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
reinterpret_cast<half&>(y[ib].ds.y) = sum;
}
template <bool need_sum>
template <mmq_q8_1_ds_layout ds_layout>
static __global__ void quantize_mmq_q8_1(
const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) {
const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
const int64_t ix0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
if (ix0 >= kx0_padded) {
return;
}
const float4 * x4 = (const float4 *) x;
const int64_t ix1 = kx1*blockIdx.z + blockIdx.y;
block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
const int64_t ib0 = blockIdx.z*(gridDim.y*gridDim.x*blockDim.x/(4*QK8_1)); // first block of channel
const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel
const int64_t iqs = ix0 % (4*QK8_1); // quant index in block
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel
const int64_t iqs = ix0 % (4*QK8_1); // quant index in block
const float xi = ix0 < kx0 ? x[ix1*kx0 + ix0] : 0.0f;
float amax = fabsf(xi);
// Load 4 floats per thread and calculate max. abs. value between them:
const float4 xi = ix0 < kx0 ? x4[(ix1*kx0 + ix0)/4] : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
float amax = fabsf(xi.x);
amax = fmaxf(amax, fabsf(xi.y));
amax = fmaxf(amax, fabsf(xi.z));
amax = fmaxf(amax, fabsf(xi.w));
amax = warp_reduce_max(amax);
float sum;
if (need_sum) {
sum = warp_reduce_sum(xi);
// Exchange max. abs. value between vals_per_scale/4 threads.
#pragma unroll
for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) {
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE));
}
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
float sum;
if (ds_layout != MMQ_Q8_1_DS_LAYOUT_D4) {
sum = xi.x + xi.y + xi.z + xi.w;
y[ib].qs[iqs] = q;
// Exchange calculate sum across vals_per_sum/4 threads.
#pragma unroll
for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) {
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE);
}
}
const float d_inv = 127.0f / amax;
char4 q;
q.x = roundf(xi.x*d_inv);
q.y = roundf(xi.y*d_inv);
q.z = roundf(xi.z*d_inv);
q.w = roundf(xi.w*d_inv);
// Write back 4 int8 values as a single 32 bit value for better memroy bandwidth:
char4 * yqs4 = (char4 *) y[ib].qs;
yqs4[iqs/4] = q;
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6) {
if (iqs % 16 != 0 || iqs >= 96) {
return;
}
y[ib].d2s6[2 + iqs/16] = sum;
if (iqs % 64 != 0) {
return;
}
const float d = 1.0f / d_inv;
y[ib].d2s6[iqs/64] = d;
if (iqs % QK8_1 != 0) {
return;
}
if (need_sum) {
y[ib].ds[iqs/QK8_1] = make_half2(d, sum);
if (iqs % 32 != 0) {
return;
}
const float d = 1.0f / d_inv;
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_DS4) {
y[ib].ds4[iqs/32] = make_half2(d, sum);
} else {
((float *) y[ib].ds)[iqs/QK8_1] = d;
y[ib].d4[iqs/32] = d;
}
}
@ -101,12 +146,24 @@ void quantize_mmq_q8_1_cuda(
GGML_ASSERT(kx0_padded % (4*QK8_1) == 0);
const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const int64_t block_num_x = (kx0_padded + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
const dim3 num_blocks(block_num_x, kx1, channels);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
if (mmq_need_sum(type_x)) {
quantize_mmq_q8_1<true><<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
} else {
quantize_mmq_q8_1<false><<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1);
switch (mmq_get_q8_1_ds_layout(type_x)) {
case MMQ_Q8_1_DS_LAYOUT_D4:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D4>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
break;
case MMQ_Q8_1_DS_LAYOUT_DS4:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_DS4>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
break;
case MMQ_Q8_1_DS_LAYOUT_D2S6:
quantize_mmq_q8_1<MMQ_Q8_1_DS_LAYOUT_D2S6>
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
break;
default:
GGML_ABORT("fatal error");
break;
}
}

View file

@ -5,7 +5,11 @@
#include <cstdint>
#define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_QUANTIZE_BLOCK_SIZE_MMQ 128
static_assert(MATRIX_ROW_PADDING % CUDA_QUANTIZE_BLOCK_SIZE == 0, "Risk of out-of-bounds access.");
static_assert(MATRIX_ROW_PADDING % (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ) == 0, "Risk of out-of-bounds access.");
typedef void (*quantize_cuda_t)(
const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, const int64_t kx0_padded,

View file

@ -226,7 +226,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const bool is_neox = mode & 2;
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const int32_t * pos = (const int32_t *) src1_d;
@ -251,7 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
attn_factor, corr_dims, freq_factors, stream
);
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
} else {
if (src0->type == GGML_TYPE_F32) {
@ -265,7 +265,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
attn_factor, corr_dims, freq_factors, stream
);
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
}

View file

@ -16,7 +16,7 @@ static __global__ void k_sum_rows_f32(const float * x, float * dst, const int nc
}
}
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
@ -32,7 +32,6 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);

View file

@ -1,3 +1,5 @@
#include "common.cuh"
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream);
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -22,7 +22,9 @@ SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}
TYPES_MMQ = [
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
"GGML_TYPE_Q2_K", "GGML_TYPE_Q3_K", "GGML_TYPE_Q4_K", "GGML_TYPE_Q5_K", "GGML_TYPE_Q6_K"
"GGML_TYPE_Q2_K", "GGML_TYPE_Q3_K", "GGML_TYPE_Q4_K", "GGML_TYPE_Q5_K", "GGML_TYPE_Q6_K",
"GGML_TYPE_IQ2_XXS", "GGML_TYPE_IQ2_XS", "GGML_TYPE_IQ2_S", "GGML_TYPE_IQ3_XXS", "GGML_TYPE_IQ3_S",
"GGML_TYPE_IQ1_S", "GGML_TYPE_IQ4_NL", "GGML_TYPE_IQ4_XS"
]
SOURCE_MMQ = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ1_S);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ2_S);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ2_XS);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ3_S);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ4_NL);

View file

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_IQ4_XS);

View file

@ -101,6 +101,24 @@ static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
dst[i] = sqrtf(x[i]);
}
static __global__ void sin_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = sinf(x[i]);
}
static __global__ void cos_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = cosf(x[i]);
}
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@ -156,6 +174,16 @@ static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void sin_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE;
sin_f32<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void cos_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
cos_f32<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
@ -312,3 +340,31 @@ void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sin_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
cos_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

View file

@ -9,6 +9,8 @@
#define CUDA_HARDSWISH_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_SQRT_BLOCK_SIZE 256
#define CUDA_SIN_BLOCK_SIZE 256
#define CUDA_COS_BLOCK_SIZE 256
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
@ -31,3 +33,7 @@ void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -1,36 +1,8 @@
#include "common.cuh"
#include <cstdint>
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0;
x32 |= x16[0] << 0;
x32 |= x16[1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0;
x32 |= x16[0] << 0;
x32 |= x16[1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
const uint16_t * x16 = (const uint16_t *) x;
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
int x32 = x16[2*i32 + 0] << 0;
x32 |= x16[2*i32 + 1] << 16;
@ -216,8 +188,29 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_imp
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_impl(
const int * v, const int * u, const float * d8_0, const float & d8_1) {
float sumf = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < vdr; i0 += QI8_0/2) {
int sumi = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_0/2; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
sumf += d8_0[i0/(QI8_0/2)]*sumi;
}
return d8_1*sumf;
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 2
#define VDR_Q2_K_Q8_1_MMQ 4
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
@ -247,32 +240,56 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
return dm2f.x*sumf_d - dm2f.y*sumf_m;
}
// contiguous u/y values
// contiguous v/x + u/y values
template <int ns8>
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8) {
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
float sumf = 0.0f;
float sumf_d8 = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
const float2 dm2f = __half22float2(dm2[i0/(QI8_1/2)]);
int sumi_d = 0;
int sumi_m = 0;
for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) {
const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]);
int sumi_d0 = 0;
const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]);
int sumi_d1 = 0;
const int vi0 = v[i0/(QI8_1/2)];
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
const int vi = (vi0 >> (2*(i % (QI8_1/2)))) & 0x03030303;
sumi_d = ggml_cuda_dp4a(vi, u[i], sumi_d); // SIMD dot product
sumi_m = ggml_cuda_dp4a(0x01010101, u[i], sumi_m);
sumi_d0 = ggml_cuda_dp4a(v[i], u[i], sumi_d0);
}
sumf_d8 += dm2f0.x * sumi_d0;
sumf_d += dm2f.x * sumi_d;
sumf_m += dm2f.y * sumi_m;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_d1 = ggml_cuda_dp4a(v[i], u[i], sumi_d1);
}
sumf_d8 += dm2f1.x * sumi_d1;
if (i0/QI8_1 < ns8) {
const float2 s8f = __half22float2(s8[i0/QI8_1]);
sumf -= dm2f0.y*s8f.x;
sumf -= dm2f1.y*s8f.y;
} else {
int sumi_m0 = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_m0 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m0);
}
sumf_d8 -= dm2f0.y * sumi_m0;
int sumi_m1 = 0;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_m1 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m1);
}
sumf_d8 -= dm2f1.y * sumi_m1;
}
}
return d8*(sumf_d - sumf_m);
return sumf + d8*sumf_d8;
}
#define VDR_Q3_K_Q8_1_MMVQ 1
@ -311,7 +328,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
return d3 * sumf;
}
// contiguous u/y values
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d3, const float & d8) {
@ -324,8 +341,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
const int vi = __vsubss4((v[i/2] >> (4*(i%2))) & 0x0F0F0F0F, 0x04040404);
sumi_sc = ggml_cuda_dp4a(vi, u[i], sumi_sc); // SIMD dot product
sumi_sc = ggml_cuda_dp4a(v[i], u[i], sumi_sc); // SIMD dot product
}
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
@ -362,7 +378,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
// contiguous u/y values
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
@ -425,7 +441,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
return dm5f.x*sumf_d - dm5f.y*sumf_m;
}
// contiguous u/y values
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
@ -479,13 +495,16 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
return d*sumf;
}
// contiguous u/y values
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
const float & d6, const float * __restrict__ d8) {
float sumf_d = 0.0f;
const int sc_packed = get_int_b4(sc, 0);
const int8_t * sc_reg = (const int8_t *) &sc_packed;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
@ -499,7 +518,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
}
sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y);
}
return d6 * sumf_d;
@ -768,6 +787,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
}
#define VDR_IQ2_XXS_Q8_1_MMVQ 2
#define VDR_IQ2_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -802,6 +822,7 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
}
#define VDR_IQ2_XS_Q8_1_MMVQ 2
#define VDR_IQ2_XS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -840,6 +861,7 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
}
#define VDR_IQ2_S_Q8_1_MMVQ 2
#define VDR_IQ2_S_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -887,6 +909,7 @@ static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
}
#define VDR_IQ3_XXS_Q8_1_MMVQ 2
#define VDR_IQ3_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -921,6 +944,7 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
}
#define VDR_IQ3_S_Q8_1_MMVQ 2
#define VDR_IQ3_S_Q8_1_MMQ 2
// TODO: don't use lookup table for signs
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
@ -962,6 +986,9 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
return d * sumi;
}
#define VDR_IQ1_S_Q8_1_MMVQ 1
#define VDR_IQ1_S_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx;
@ -992,6 +1019,9 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
return d1q * (ds.x*sumi + ds.y*delta);
}
#define VDR_IQ1_M_Q8_1_MMVQ 1
#define VDR_IQ1_M_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -1051,6 +1081,7 @@ static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
}
#define VDR_IQ4_NL_Q8_1_MMVQ 2
#define VDR_IQ4_NL_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
@ -1074,6 +1105,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
}
#define VDR_IQ4_XS_Q8_1_MMVQ 4
#define VDR_IQ4_XS_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {

14
ggml/src/ggml-cuda/vendors/cuda.h vendored Normal file
View file

@ -0,0 +1,14 @@
#pragma once
#include <cuda_runtime.h>
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define cublasComputeType_t cudaDataType_t
#endif // CUDART_VERSION < 11020

177
ggml/src/ggml-cuda/vendors/hip.h vendored Normal file
View file

@ -0,0 +1,177 @@
#pragma once
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEventSynchronize hipEventSynchronize
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaHostRegister hipHostRegister
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync
#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define __trap() do { abort(); __builtin_unreachable(); } while(0)
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#define __CUDA_ARCH__ 1300
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
#define RDNA2
#endif
#if defined(__gfx1010__) || defined(__gfx1012__)
#define RDNA1
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
#if __has_builtin(__builtin_elementwise_sub_sat)
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
return reinterpret_cast<const int &>(c);
#else
int8x4_t c;
int16_t tmp;
#pragma unroll
for (int i = 0; i < 4; i++) {
tmp = va[i] - vb[i];
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
c[i] = tmp;
}
return reinterpret_cast<int &>(c);
#endif // __has_builtin(__builtin_elementwise_sub_sat)
}
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
return __vsubss4(a, b);
}
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
}
return c;
}
static __device__ __forceinline__ unsigned int __vcmpne4(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
}
return c;
}
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
// __shfl_xor() for half2 was added in ROCm 5.6
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
typedef union half2_b32 {
half2 val;
int b32;
} half2_b32_t;
half2_b32_t tmp;
tmp.val = var;
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
return tmp.val;
}
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000

171
ggml/src/ggml-cuda/vendors/musa.h vendored Normal file
View file

@ -0,0 +1,171 @@
#pragma once
#include <musa_runtime.h>
#include <musa.h>
#include <mublas.h>
#include <musa_fp16.h>
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F MUBLAS_COMPUTE_32F_FAST_16F
#define CUBLAS_GEMM_DEFAULT MUBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP MUBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N MUBLAS_OP_N
#define CUBLAS_OP_T MUBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS MUBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH MUBLAS_MATH_MODE_DEFAULT
#define CUDA_R_16F MUSA_R_16F
#define CUDA_R_32F MUSA_R_32F
#define cublasComputeType_t cudaDataType_t
#define cublasCreate mublasCreate
#define cublasDestroy mublasDestroy
#define cublasGemmEx mublasGemmEx
#define cublasGemmBatchedEx mublasGemmBatchedEx
#define cublasGemmStridedBatchedEx mublasGemmStridedBatchedEx
#define cublasHandle_t mublasHandle_t
#define cublasSetMathMode mublasSetMathMode
#define cublasSetStream mublasSetStream
#define cublasSgemm mublasSgemm
#define cublasStatus_t mublasStatus_t
#define cublasGetStatusString mublasStatus_to_string
#define cudaDataType_t musaDataType_t
#define cudaDeviceCanAccessPeer musaDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess musaDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess musaDeviceEnablePeerAccess
#define cudaDeviceProp musaDeviceProp
#define cudaDeviceSynchronize musaDeviceSynchronize
#define cudaError_t musaError_t
#define cudaErrorPeerAccessAlreadyEnabled musaErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled musaErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags musaEventCreateWithFlags
#define cudaEventDisableTiming musaEventDisableTiming
#define cudaEventRecord musaEventRecord
#define cudaEventSynchronize musaEventSynchronize
#define cudaEvent_t musaEvent_t
#define cudaEventDestroy musaEventDestroy
#define cudaFree musaFree
#define cudaFreeHost musaFreeHost
#define cudaGetDevice musaGetDevice
#define cudaGetDeviceCount musaGetDeviceCount
#define cudaGetDeviceProperties musaGetDeviceProperties
#define cudaGetErrorString musaGetErrorString
#define cudaGetLastError musaGetLastError
#define cudaHostRegister musaHostRegister
#define cudaHostRegisterPortable musaHostRegisterPortable
#define cudaHostRegisterReadOnly musaHostRegisterReadOnly
#define cudaHostUnregister musaHostUnregister
#define cudaLaunchHostFunc musaLaunchHostFunc
#define cudaMalloc musaMalloc
#define cudaMallocHost musaMallocHost
#define cudaMemcpy musaMemcpy
#define cudaMemcpyAsync musaMemcpyAsync
#define cudaMemcpyPeerAsync musaMemcpyPeerAsync
#define cudaMemcpy2DAsync musaMemcpy2DAsync
#define cudaMemcpyDeviceToDevice musaMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost musaMemcpyDeviceToHost
#define cudaMemcpyHostToDevice musaMemcpyHostToDevice
#define cudaMemcpyKind musaMemcpyKind
#define cudaMemset musaMemset
#define cudaMemsetAsync musaMemsetAsync
#define cudaMemGetInfo musaMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize musaOccupancyMaxPotentialBlockSize
#define cudaSetDevice musaSetDevice
#define cudaStreamCreateWithFlags musaStreamCreateWithFlags
#define cudaStreamDestroy musaStreamDestroy
#define cudaStreamFireAndForget musaStreamFireAndForget
#define cudaStreamNonBlocking musaStreamNonBlocking
#define cudaStreamPerThread musaStreamPerThread
#define cudaStreamSynchronize musaStreamSynchronize
#define cudaStreamWaitEvent musaStreamWaitEvent
#define cudaStream_t musaStream_t
#define cudaSuccess musaSuccess
// Additional mappings for MUSA virtual memory pool
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED MU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE MU_MEM_ACCESS_FLAGS_PROT_READWRITE
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED MU_MEM_ALLOC_GRANULARITY_RECOMMENDED
#define CU_MEM_ALLOCATION_TYPE_PINNED MU_MEM_ALLOCATION_TYPE_PINNED
#define CU_MEM_LOCATION_TYPE_DEVICE MU_MEM_LOCATION_TYPE_DEVICE
#define CUdevice MUdevice
#define CUdeviceptr MUdeviceptr
#define CUmemAccessDesc MUmemAccessDesc
#define CUmemAllocationProp MUmemAllocationProp
#define CUmemGenericAllocationHandle MUmemGenericAllocationHandle
#define cuDeviceGet muDeviceGet
#define cuDeviceGetAttribute muDeviceGetAttribute
#define cuMemAddressFree muMemAddressFree
#define cuMemAddressReserve muMemAddressReserve
#define cuMemCreate muMemCreate
#define cuMemGetAllocationGranularity muMemGetAllocationGranularity
#define cuMemMap muMemMap
#define cuMemRelease muMemRelease
#define cuMemSetAccess muMemSetAccess
#define cuMemUnmap muMemUnmap
#define cudaFuncAttributeMaxDynamicSharedMemorySize musaFuncAttributeMaxDynamicSharedMemorySize
#define cudaFuncSetAttribute musaFuncSetAttribute
#define cudaMemcpy3DPeerParms musaMemcpy3DPeerParms
#define make_cudaExtent make_musaExtent
#define make_cudaPitchedPtr make_musaPitchedPtr
// Additional mappings for MUSA graphs
#define CUDA_SUCCESS MUSA_SUCCESS
#define CUresult MUresult
#define cuGetErrorString muGetErrorString
#define cudaErrorGraphExecUpdateFailure musaErrorGraphExecUpdateFailure
#define cudaErrorInvalidDeviceFunction musaErrorInvalidDeviceFunction
#define cudaGraphDestroy musaGraphDestroy
#define cudaGraphExecDestroy musaGraphExecDestroy
#define cudaGraphExec_t musaGraphExec_t
#define cudaGraphExecUpdate musaGraphExecUpdate
#define cudaGraphExecUpdateResultInfo musaGraphExecUpdateResult
#define cudaGraphGetNodes musaGraphGetNodes
#define cudaGraphInstantiate musaGraphInstantiate
#define cudaGraphKernelNodeGetParams musaGraphKernelNodeGetParams
#define cudaGraphKernelNodeSetParams musaGraphKernelNodeSetParams
#define cudaGraphLaunch musaGraphLaunch
#define cudaGraphNodeGetType musaGraphNodeGetType
#define cudaGraphNode_t musaGraphNode_t
#define cudaGraphNodeType musaGraphNodeType
#define cudaGraphNodeTypeKernel musaGraphNodeTypeKernel
#define cudaGraph_t musaGraph_t
#define cudaKernelNodeParams musaKernelNodeParams
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
#define cudaStreamEndCapture musaStreamEndCapture
// XXX: Clang builtins mapping
#define __vsub4 __vsub4_musa
#define __vcmpeq4 __vcmpeq4_musa
#define __vcmpne4 __vcmpne4_musa
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsub4_musa(const int a, const int b) {
return __vsubss4(a, b);
}
static __device__ __forceinline__ unsigned int __vcmpeq4_musa(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
}
return c;
}
static __device__ __forceinline__ unsigned int __vcmpne4_musa(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
}
return c;
}

View file

@ -80,8 +80,9 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
/**
* Converts float32 to brain16.
*
* This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
* Subnormals shall be flushed to zero, and NANs will be quiet.
* This is binary identical with Google Brain float conversion.
* Floats shall round to nearest even, and NANs shall be quiet.
* Subnormals aren't flushed to zero, except perhaps when used.
* This code should vectorize nicely if using modern compilers.
*/
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
@ -95,10 +96,6 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
h.bits = (u.i >> 16) | 64; /* force to quiet */
return h;
}
if (!(u.i & 0x7f800000)) { /* subnormal */
h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
return h;
}
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
return h;
}
@ -146,6 +143,7 @@ extern "C" {
#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>
#include <sys/prctl.h>
#endif
// 16-bit float
@ -609,6 +607,10 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
@ -630,21 +632,121 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
// bitset
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
static size_t ggml_bitset_size(size_t n) {
return (n + BITSET_MASK) >> BITSET_SHR;
}
static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
}
static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
}
static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
}
// hash set
#define GGML_HASHSET_FULL ((size_t)-1)
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
void ggml_hash_set_free(struct ggml_hash_set * hash_set);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns the minimum size for a hash set that can hold min_sz elements
size_t ggml_hash_size(size_t min_sz);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// remove all elements from the hash set
void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns true if key is in the hash set
static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// hash function for ggml_tensor
static inline size_t ggml_hash(const struct ggml_tensor * p) {
// the last 4 bits are always zero due to alignment
return (size_t)(uintptr_t)p >> 4;
}
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
i = (i + 1) % hash_set->size;
if (i == h) {
// visited all hash table entries -> not found
return GGML_HASHSET_FULL;
}
}
return i;
}
static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
}
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
do {
if (!ggml_bitset_get(hash_set->used, i)) {
ggml_bitset_set(hash_set->used, i);
hash_set->keys[i] = key;
return i;
}
if (hash_set->keys[i] == key) {
return GGML_HASHSET_ALREADY_EXISTS;
}
i = (i + 1) % hash_set->size;
} while (i != h);
// visited all hash table entries -> not found
GGML_ABORT("fatal error");
}
static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
do {
if (!ggml_bitset_get(hash_set->used, i)) {
ggml_bitset_set(hash_set->used, i);
hash_set->keys[i] = key;
return i;
}
if (hash_set->keys[i] == key) {
return i;
}
i = (i + 1) % hash_set->size;
} while (i != h);
// visited all hash table entries -> not found
GGML_ABORT("fatal error");
}
#ifdef __cplusplus
}

View file

@ -566,7 +566,7 @@ uint32_t safe_divide(uint32_t a, uint32_t b) {
}
if ((a % b) != 0) {
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
GGML_ASSERT(!"safe_divide result would've had remainder");
GGML_ABORT("safe_divide result would've had remainder");
}
return a / b;
}
@ -1460,7 +1460,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
if (!ggml_vk_supports_op(dst)) {
fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op");
GGML_ABORT("unsupported op");
}
const int32_t ne00 = src0 ? src0->ne[0] : 0;
@ -1562,7 +1562,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
} break;
@ -1745,7 +1745,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
continue;
not_implemented: {}
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
//GGML_ASSERT(false);
//GGML_ABORT("fatal error");
}
// Evaluate sequence

View file

@ -31,6 +31,8 @@ struct ggml_metal_kernel {
enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ADD,
GGML_METAL_KERNEL_TYPE_ADD_ROW,
GGML_METAL_KERNEL_TYPE_SUB,
GGML_METAL_KERNEL_TYPE_SUB_ROW,
GGML_METAL_KERNEL_TYPE_MUL,
GGML_METAL_KERNEL_TYPE_MUL_ROW,
GGML_METAL_KERNEL_TYPE_DIV,
@ -82,6 +84,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_RMS_NORM,
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
GGML_METAL_KERNEL_TYPE_NORM,
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
@ -193,24 +197,27 @@ enum ggml_metal_kernel_type {
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
GGML_METAL_KERNEL_TYPE_CONCAT,
GGML_METAL_KERNEL_TYPE_SQR,
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_COUNT
};
struct ggml_metal_context {
struct ggml_backend_metal_context {
int n_cb;
id<MTLDevice> device;
@ -224,6 +231,10 @@ struct ggml_metal_context {
bool support_simdgroup_mm;
bool should_capture_next_compute;
// abort ggml_metal_graph_compute if callback returns true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// MSL code
@ -289,7 +300,7 @@ static void * ggml_metal_host_malloc(size_t n) {
return data;
}
static struct ggml_metal_context * ggml_metal_init(int n_cb) {
static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
#if TARGET_OS_OSX && !GGML_METAL_NDEBUG
@ -306,7 +317,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
// Configure context
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
struct ggml_backend_metal_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_context));
ctx->device = device;
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
ctx->queue = [ctx->device newCommandQueue];
@ -487,6 +498,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW, sub_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
@ -538,6 +551,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
@ -651,16 +666,19 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
}
@ -668,7 +686,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
return ctx;
}
static void ggml_metal_free(struct ggml_metal_context * ctx) {
static void ggml_metal_free(struct ggml_backend_metal_context * ctx) {
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
@ -734,7 +752,7 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs
return nil;
}
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx, const struct ggml_tensor * op) {
for (size_t i = 0, n = 3; i < n; ++i) {
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
return false;
@ -761,15 +779,20 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_PERMUTE:
case GGML_OP_CONCAT:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_REPEAT:
case GGML_OP_SCALE:
case GGML_OP_CLAMP:
case GGML_OP_SQR:
case GGML_OP_SUM_ROWS:
return true;
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_SUM_ROWS:
case GGML_OP_SOFT_MAX:
case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM:
@ -799,6 +822,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
return false;
}
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
return true;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return ctx->support_simdgroup_reduction &&
@ -810,8 +836,8 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
switch (op->src[0]->type) {
case GGML_TYPE_F32:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
@ -824,8 +850,8 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
}
case GGML_TYPE_F16:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
@ -837,7 +863,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{
return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1;
return op->ne[3] == 1;
}
default:
return false;
@ -845,7 +871,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
}
static enum ggml_status ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_backend_metal_context * ctx,
struct ggml_cgraph * gf) {
@autoreleasepool {
@ -869,7 +895,7 @@ static enum ggml_status ggml_metal_graph_compute(
NSError * error = nil;
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
GGML_ASSERT(!"capture failed");
GGML_ABORT("capture failed");
}
}
@ -878,8 +904,11 @@ static enum ggml_status ggml_metal_graph_compute(
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
command_buffer_builder[cb_idx] = command_buffer;
// enqueue the command buffers in order to specify their execution order
[command_buffer enqueue];
// always enqueue the first two command buffers
// enqueue all of the command buffers if we don't need to abort
if (cb_idx < 2 || ctx->abort_callback == NULL) {
[command_buffer enqueue];
}
}
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
@ -931,7 +960,7 @@ static enum ggml_status ggml_metal_graph_compute(
if (!ggml_metal_supports_op(ctx, dst)) {
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op");
GGML_ABORT("unsupported op");
}
if (should_capture) {
@ -1043,6 +1072,7 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
{
@ -1066,18 +1096,20 @@ static enum ggml_status ggml_metal_graph_compute(
nb = ne00 / 4;
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
}
bcast_row = true;
} else {
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
}
}
@ -1131,7 +1163,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
}
[encoder setComputePipelineState:pipeline];
@ -1387,7 +1419,7 @@ static enum ggml_status ggml_metal_graph_compute(
default:
{
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
} break;
case GGML_OP_SQR:
@ -1402,6 +1434,48 @@ static enum ggml_status ggml_metal_graph_compute(
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SQRT:
{
GGML_ASSERT(ggml_is_contiguous(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQRT].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SIN:
{
GGML_ASSERT(ggml_is_contiguous(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIN].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_COS:
{
GGML_ASSERT(ggml_is_contiguous(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_COS].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
@ -1531,6 +1605,121 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
} break;
case GGML_OP_SSM_CONV:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SSM_SCAN:
{
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
struct ggml_tensor * src4 = gf->nodes[i]->src[4];
struct ggml_tensor * src5 = gf->nodes[i]->src[5];
GGML_ASSERT(src3);
GGML_ASSERT(src4);
GGML_ASSERT(src5);
size_t offs_src3 = 0;
size_t offs_src4 = 0;
size_t offs_src5 = 0;
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
const int64_t ne30 = src3->ne[0]; GGML_UNUSED(ne30);
const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
const uint64_t nb30 = src3->nb[0];
const uint64_t nb31 = src3->nb[1];
const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
const int64_t ne41 = src4->ne[1]; GGML_UNUSED(ne41);
const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
const uint64_t nb40 = src4->nb[0];
const uint64_t nb41 = src4->nb[1];
const uint64_t nb42 = src4->nb[2];
const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
const uint64_t nb50 = src5->nb[0];
const uint64_t nb51 = src5->nb[1];
const uint64_t nb52 = src5->nb[2];
const int64_t d_state = ne00;
const int64_t d_inner = ne01;
const int64_t n_seq_tokens = ne11;
const int64_t n_seqs = ne02;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
[encoder setBytes:&d_state length:sizeof(d_state) atIndex:7];
[encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8];
[encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9];
[encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20];
[encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22];
[encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23];
[encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24];
[encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25];
[encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26];
[encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27];
[encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_MUL_MAT:
{
GGML_ASSERT(ne00 == ne10);
@ -1580,8 +1769,8 @@ static enum ggml_status ggml_metal_graph_compute(
// some Metal matrix data types require aligned pointers
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
default: break;
}
@ -1609,7 +1798,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
default: GGML_ABORT("MUL MAT-MAT not implemented");
}
[encoder setComputePipelineState:pipeline];
@ -1782,14 +1971,10 @@ static enum ggml_status ggml_metal_graph_compute(
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_ASSERT(false && "not implemented");
GGML_ABORT("not implemented");
}
};
if (ggml_is_quantized(src0t)) {
GGML_ASSERT(ne00 >= nth0*nth1);
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
@ -1915,7 +2100,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
default: GGML_ABORT("MUL_MAT_ID not implemented");
}
[encoder setComputePipelineState:pipeline];
@ -2082,7 +2267,7 @@ static enum ggml_status ggml_metal_graph_compute(
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
GGML_ASSERT(false && "not implemented");
GGML_ABORT("not implemented");
}
};
@ -2182,7 +2367,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
default: GGML_ABORT("not implemented");
}
[encoder setComputePipelineState:pipeline];
@ -2233,10 +2418,8 @@ static enum ggml_status ggml_metal_graph_compute(
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous(src0));
//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
const float eps = 1e-6f; // TODO: temporarily hardcoded
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
@ -2312,7 +2495,7 @@ static enum ggml_status ggml_metal_graph_compute(
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const bool is_neox = mode & 2;
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
id<MTLComputePipelineState> pipeline = nil;
@ -2320,13 +2503,13 @@ static enum ggml_status ggml_metal_graph_compute(
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
};
} else {
switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
};
}
@ -2403,7 +2586,7 @@ static enum ggml_status ggml_metal_graph_compute(
switch (dst->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
};
[encoder setComputePipelineState:pipeline];
@ -2560,7 +2743,7 @@ static enum ggml_status ggml_metal_graph_compute(
switch (order) {
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
default: GGML_ASSERT(false);
default: GGML_ABORT("fatal error");
};
[encoder setComputePipelineState:pipeline];
@ -2623,9 +2806,14 @@ static enum ggml_status ggml_metal_graph_compute(
float scale;
float max_bias;
float logit_softcap;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
memcpy(&logit_softcap, ((int32_t *) dst->op_params) + 2, sizeof(logit_softcap));
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = src0->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
@ -2649,7 +2837,7 @@ static enum ggml_status ggml_metal_graph_compute(
{
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size");
GGML_ABORT("add template specialization for this size");
}
}
} else {
@ -2662,7 +2850,7 @@ static enum ggml_status ggml_metal_graph_compute(
{
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size");
GGML_ABORT("add template specialization for this size");
}
}
}
@ -2676,30 +2864,31 @@ static enum ggml_status ggml_metal_graph_compute(
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
[encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:28];
if (!use_vec_kernel) {
// half8x8 kernel
@ -2775,26 +2964,26 @@ static enum ggml_status ggml_metal_graph_compute(
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
switch (dstt) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
default: GGML_ABORT("not implemented");
};
} break;
case GGML_TYPE_F16:
{
switch (dstt) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
default: GGML_ABORT("not implemented");
};
} break;
default: GGML_ASSERT(false && "not implemented");
default: GGML_ABORT("not implemented");
}
[encoder setComputePipelineState:pipeline];
@ -2822,7 +3011,7 @@ static enum ggml_status ggml_metal_graph_compute(
default:
{
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -2833,7 +3022,9 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder endEncoding];
[command_buffer commit];
if (cb_idx < 2 || ctx->abort_callback == NULL) {
[command_buffer commit];
}
});
// Wait for completion and check status of each command buffer
@ -2853,6 +3044,23 @@ static enum ggml_status ggml_metal_graph_compute(
return GGML_STATUS_FAILED;
}
id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? command_buffers[i + 1] : nil);
if (!next_buffer) {
continue;
}
bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued);
if (next_queued) {
continue;
}
if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) {
GGML_METAL_LOG_INFO("%s: command buffer %d aborted", __func__, i);
return GGML_STATUS_ABORTED;
}
[next_buffer commit];
}
if (should_capture) {
@ -3156,7 +3364,7 @@ GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
}
GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ggml_metal_free(ctx);
free(backend);
}
@ -3168,13 +3376,13 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffe
}
GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_graph_compute(metal_ctx, cgraph);
}
GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_supports_op(metal_ctx, op);
}
@ -3219,9 +3427,9 @@ static ggml_guid_t ggml_backend_metal_guid(void) {
}
ggml_backend_t ggml_backend_metal_init(void) {
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
struct ggml_backend_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
if (ctx == NULL) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return NULL;
}
@ -3243,15 +3451,24 @@ bool ggml_backend_is_metal(ggml_backend_t backend) {
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
}
void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = user_data;
}
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
@ -3259,7 +3476,7 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ctx->should_capture_next_compute = true;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -12,25 +12,25 @@ extern "C" {
#endif
// Quantization
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1_ref(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_0_ref(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q5_K_ref(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k);
void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k);
void quantize_row_iq3_s_ref (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k);
void quantize_row_iq2_s_ref (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
@ -127,6 +127,10 @@ void iq2xs_free_impl(enum ggml_type type);
void iq3xs_init_impl(int grid_size);
void iq3xs_free_impl(int grid_size);
#if defined(__ARM_FEATURE_SVE)
extern int ggml_sve_cnt_b;
#endif
#ifdef __cplusplus
}
#endif

View file

@ -82,17 +82,18 @@ static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of
// RPC commands
enum rpc_cmd {
ALLOC_BUFFER = 0,
GET_ALIGNMENT,
GET_MAX_SIZE,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
GET_DEVICE_MEMORY,
RPC_CMD_ALLOC_BUFFER = 0,
RPC_CMD_GET_ALIGNMENT,
RPC_CMD_GET_MAX_SIZE,
RPC_CMD_BUFFER_GET_BASE,
RPC_CMD_FREE_BUFFER,
RPC_CMD_BUFFER_CLEAR,
RPC_CMD_SET_TENSOR,
RPC_CMD_GET_TENSOR,
RPC_CMD_COPY_TENSOR,
RPC_CMD_GRAPH_COMPUTE,
RPC_CMD_GET_DEVICE_MEMORY,
RPC_CMD_COUNT,
};
// RPC data structures
@ -197,6 +198,10 @@ static std::shared_ptr<socket_t> create_server_socket(const char * host, int por
fprintf(stderr, "Failed to set SO_REUSEADDR\n");
return nullptr;
}
if (inet_addr(host) == INADDR_NONE) {
fprintf(stderr, "Invalid host address: %s\n", host);
return nullptr;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
@ -326,7 +331,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.empty());
delete ctx;
@ -342,7 +347,7 @@ GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t b
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | base_ptr (8 bytes) |
@ -401,7 +406,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t b
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input, output);
GGML_ASSERT(status);
}
@ -415,7 +420,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t b
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == size);
// output serialization format: | data (size bytes) |
@ -440,7 +445,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t b
memcpy(input.data(), &rpc_src, sizeof(rpc_src));
memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, input, output);
GGML_ASSERT(status);
// output serialization format: | result (1 byte) |
GGML_ASSERT(output.size() == 1);
@ -455,7 +460,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer
memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, input, output);
GGML_ASSERT(status);
}
@ -484,7 +489,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
@ -507,7 +512,7 @@ static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | alignment (8 bytes) |
@ -525,7 +530,7 @@ static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | max_size (8 bytes) |
@ -618,7 +623,7 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
serialize_graph(cgraph, input);
std::vector<uint8_t> output;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0];
@ -632,7 +637,7 @@ GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const
}
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
return false;
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
@ -674,6 +679,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const
}
auto sock = get_socket(endpoint);
if (sock == nullptr) {
fprintf(stderr, "Failed to connect to %s\n", endpoint);
return nullptr;
}
size_t alignment = get_alignment(sock);
@ -715,7 +721,7 @@ static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * f
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | free (8 bytes) | total (8 bytes) |
@ -879,6 +885,14 @@ ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rp
if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
return nullptr;
}
// require that the tensor data does not go beyond the buffer end
uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
result->op = (ggml_op) tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result->op_params[i] = tensor->op_params[i];
@ -898,7 +912,7 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
@ -913,6 +927,17 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
// sanitize tensor->data
{
const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
}
}
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
ggml_backend_tensor_set(tensor, data, offset, size);
ggml_free(ctx);
@ -943,6 +968,17 @@ bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
// sanitize tensor->data
{
const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
}
}
// output serialization format: | data (size bytes) |
output.resize(size, 0);
ggml_backend_tensor_get(tensor, output.data(), offset, size);
@ -1064,59 +1100,69 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
if (!recv_data(sockfd, &cmd, 1)) {
break;
}
if (cmd >= RPC_CMD_COUNT) {
// fail fast if the command is invalid
fprintf(stderr, "Unknown command: %d\n", cmd);
break;
}
std::vector<uint8_t> input;
std::vector<uint8_t> output;
uint64_t input_size;
if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
break;
}
input.resize(input_size);
try {
input.resize(input_size);
} catch (const std::bad_alloc & e) {
fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", input_size);
break;
}
if (!recv_data(sockfd, input.data(), input_size)) {
break;
}
bool ok = true;
switch (cmd) {
case ALLOC_BUFFER: {
case RPC_CMD_ALLOC_BUFFER: {
ok = server.alloc_buffer(input, output);
break;
}
case GET_ALIGNMENT: {
case RPC_CMD_GET_ALIGNMENT: {
server.get_alignment(output);
break;
}
case GET_MAX_SIZE: {
case RPC_CMD_GET_MAX_SIZE: {
server.get_max_size(output);
break;
}
case BUFFER_GET_BASE: {
case RPC_CMD_BUFFER_GET_BASE: {
ok = server.buffer_get_base(input, output);
break;
}
case FREE_BUFFER: {
case RPC_CMD_FREE_BUFFER: {
ok = server.free_buffer(input);
break;
}
case BUFFER_CLEAR: {
case RPC_CMD_BUFFER_CLEAR: {
ok = server.buffer_clear(input);
break;
}
case SET_TENSOR: {
case RPC_CMD_SET_TENSOR: {
ok = server.set_tensor(input);
break;
}
case GET_TENSOR: {
case RPC_CMD_GET_TENSOR: {
ok = server.get_tensor(input, output);
break;
}
case COPY_TENSOR: {
case RPC_CMD_COPY_TENSOR: {
ok = server.copy_tensor(input, output);
break;
}
case GRAPH_COMPUTE: {
case RPC_CMD_GRAPH_COMPUTE: {
ok = server.graph_compute(input, output);
break;
}
case GET_DEVICE_MEMORY: {
case RPC_CMD_GET_DEVICE_MEMORY: {
// output serialization format: | free (8 bytes) | total (8 bytes) |
output.resize(2*sizeof(uint64_t), 0);
memcpy(output.data(), &free_mem, sizeof(free_mem));
@ -1169,8 +1215,10 @@ void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free
return;
}
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
fflush(stdout);
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
printf("Client connection closed\n");
fflush(stdout);
}
#ifdef _WIN32
WSACleanup();

View file

@ -38,6 +38,7 @@
#include "ggml-sycl/backend.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp"
bool ggml_sycl_loaded(void);
void ggml_sycl_free_data(struct ggml_tensor * tensor);
@ -49,7 +50,7 @@ bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend);
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
static inline int get_sycl_env(const char *env_name, int default_val);
static inline int get_work_group_size(const sycl::device& device);
void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
const void *ptr_src, size_t size) {
@ -291,29 +292,6 @@ static void sqr_f32(const float * x, float * dst, const int k,
dst[i] = x[i] * x[i];
}
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(0) < ne02) { // src0
int offset_src =
nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx + item_ct1.get_group(1) * ne0 +
(item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = y[offset_src];
}
}
static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
@ -892,117 +870,6 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
template <bool vals_smem, int ncols_template, int block_size_template>
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = item_ct1.get_local_id(2);
const int rowx = item_ct1.get_group(2);
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
float slope = 1.0f;
// ALiBi
if (max_bias > 0.0f) {
const uint32_t h = rowx/nrows_y; // head index
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = sycl::pow(base, float(exp));
}
float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
float max_val = -INFINITY;
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
vals[col] = val;
max_val = sycl::max(max_val, val);
}
// find the max value in the block
max_val = warp_reduce_max(max_val, item_ct1);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = -INFINITY;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (lane_id == 0) {
buf[warp_id] = max_val;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
max_val = buf[lane_id];
max_val = warp_reduce_max(max_val, item_ct1);
}
float tmp = 0.f;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const float val = sycl::native::exp(vals[col] - max_val);
tmp += val;
vals[col] = val;
}
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp, item_ct1);
if (block_size > WARP_SIZE) {
item_ct1.barrier(sycl::access::fence_space::local_space);
if (warp_id == 0) {
buf[lane_id] = 0.f;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (lane_id == 0) {
buf[warp_id] = tmp;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
tmp = buf[lane_id];
tmp = warp_reduce_sum(tmp, item_ct1);
}
const float inv_sum = 1.f / tmp;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
return;
}
const int idst = rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
}
}
static void scale_f32(const float * x, float * dst, const float scale, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
@ -1027,43 +894,6 @@ static void clamp_f32(const float * x, float * dst, const float min, const float
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
template <typename T>
static void im2col_kernel(const float *x, T *dst, int offset_delta,
int IW, int IH, int OW, int KW, int KH,
int pelements, int CHW, int s0, int s1, int p0,
int p1, int d0, int d1,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (i >= pelements) {
return;
}
const int ksize = OW * (KH > 1 ? KW : 1);
const int kx = i / ksize;
const int kd = kx * ksize;
const int ky = (i - kd) / OW;
const int ix = i % OW;
const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
const int64_t offset_dst =
(item_ct1.get_group(1) * OW + ix) * CHW +
(item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] =
sycl::vec<float, 1>(0.0f)
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
} else {
const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
dst[offset_dst] =
sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
}
}
template <typename Ti, typename To>
static void pool2d_nchw_kernel(
const int ih, const int iw, const int oh, const int ow,
@ -1458,20 +1288,6 @@ static void sqr_f32_sycl(const float *x, float *dst, const int k,
});
}
static void concat_f32_sycl(const float *x, const float *y, float *dst,
const int ne0, int ne1, int ne2, int ne02,
queue_ptr stream) {
int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
sycl::range<3> gridDim(ne2, ne1, num_blocks);
stream->parallel_for(
sycl::nd_range<3>(gridDim *
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
concat_f32(x, y, dst, ne0, ne02, item_ct1);
});
}
static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
@ -1871,7 +1687,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
});
});
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -1890,132 +1706,6 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
});
}
template <bool vals_smem, int ncols_template, int block_size_template>
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
const size_t n_local_scratch, queue_ptr stream) {
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,
local_buf_acc.get_pointer());
});
});
}
static void soft_max_f32_sycl(const float * x, const float * mask,
float * dst, const int ncols_x, const int nrows_x,
const int nrows_y, const float scale, const float max_bias,
queue_ptr stream) {
int nth = WARP_SIZE;
int max_block_size = get_work_group_size(stream->get_device());
while (nth < ncols_x && nth < max_block_size) nth *= 2;
if (nth>max_block_size) nth = max_block_size;
const sycl::range<3> block_dims(1, 1, nth);
const sycl::range<3> block_nums(1, 1, nrows_x);
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
if (n_local_scratch*sizeof(float) < local_mem_size) {
if (ncols_x > max_block_size) {
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
return;
}
switch (ncols_x) {
case 32:
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 64:
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 128:
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 256:
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 512:
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 1024:
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 2048:
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
case 4096:
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
default:
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, n_local_scratch, stream);
break;
}
} else {
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
max_bias, m0, m1, n_head_log2, block_nums,
block_dims, WARP_SIZE, stream);
}
}
template <typename T>
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
int OW, int OH, int KW, int KH, int IC,
int offset_delta, int s0, int s1, int p0,
int p1, int d0, int d1,
queue_ptr stream) {
const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
sycl::range<3> block_nums(IC, OH, num_blocks);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums *
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
parallel_elements, (IC * KH * KW), s0, s1, p0,
p1, d0, d1, item_ct1);
});
}
}
static bool g_sycl_loaded = false;
bool ggml_sycl_loaded(void) {
@ -2156,6 +1846,8 @@ static ggml_sycl_device_info ggml_sycl_init() {
info.devices[i].cc =
100 * prop.get_major_version() + 10 * prop.get_minor_version();
info.max_work_group_sizes[i] = prop.get_max_work_group_size();
}
for (int id = 0; id < info.device_count; ++id) {
@ -2321,8 +2013,8 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
// GGML_SYCL_DEBUG("current device index %d\n", id);
src_ptr = (char *) extra->data_device[id];
} else {
// GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
GGML_ASSERT(false);
// GGML_SYCL_DEBUG("GGML_ABORT("fatal error")\n");
GGML_ABORT("fatal error");
}
char * dst_ptr = (char *) dst;
@ -2409,7 +2101,7 @@ static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_te
default:
// TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}
}
@ -2438,7 +2130,7 @@ inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_t
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -2638,28 +2330,6 @@ inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor
(void) src1_dd;
}
inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
#pragma message("TODO: generalize concat kernel for dim != 2")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
int dim = dst->op_params[0];
GGML_ASSERT(dim == 2);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
}
(void) src1;
(void) dst;
}
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
@ -2744,7 +2414,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYC
case GGML_TYPE_Q6_K:
return 64;
default:
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
@ -2813,6 +2483,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
#if !GGML_SYCL_DNNL
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
@ -2822,6 +2493,13 @@ inline void ggml_sycl_op_mul_mat_sycl(
dpct::library_data_t::real_half)));
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
#else
auto dnnl_stream = ctx.stream_dnnl(stream);
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(), dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>());
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
#endif
}
else {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
@ -2844,13 +2522,18 @@ inline void ggml_sycl_op_mul_mat_sycl(
const float alpha = 1.0f;
const float beta = 0.0f;
#if !GGML_SYCL_DNNL
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
dst_dd_i, ldc)));
#else
auto dnnl_stream = ctx.stream_dnnl(stream);
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
#endif
}
(void) dst;
(void) src1_ddq_i;
@ -2904,47 +2587,6 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
(void) src1_dd;
}
inline void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int64_t IC = src1->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? src1->ne[1] : 1;
const int64_t IW = src1->ne[0];
const int64_t KH = is_2D ? src0->ne[1] : 1;
const int64_t KW = src0->ne[0];
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
if (dst->type == GGML_TYPE_F16) {
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
} else {
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
}
(void) src0;
(void) src0_dd;
}
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
@ -3007,33 +2649,6 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const gg
(void) src1_dd;
}
inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
nrows_x, nrows_y, scale, max_bias, main_stream);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
@ -3396,7 +3011,7 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
@ -3595,12 +3210,6 @@ static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_ten
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_concat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_concat);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
@ -3729,10 +3338,6 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();;
bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
void * src0_ddq = src0->data;
sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
float * src1_ddf = (float *) src1->data;
@ -3750,15 +3355,10 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
: src1_f16_alloc.get();
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
char * dst_t;
dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
if (no_mixed_dtypes) {
cu_compute_type = dpct::library_data_t::real_half;
cu_data_type = dpct::library_data_t::real_half;
}
// dst strides
size_t nbd2 = dst->nb[2];
@ -3767,26 +3367,10 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
const void * alpha = &alpha_f32;
const void * beta = &beta_f32;
if (no_mixed_dtypes) {
alpha = &alpha_f16;
beta = &beta_f16;
}
// TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
// when oneMKL open source supports half, half, float, float: datatypes
dst_t = (char *) dst_ddf;
if (no_mixed_dtypes) {
dst_t = (char *) dst_f16.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(sycl::half);
nbd3 /= sizeof(float) / sizeof(sycl::half);
}
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
@ -3848,11 +3432,6 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
cu_compute_type)));
}
if (no_mixed_dtypes) {
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -3912,7 +3491,8 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE
&& (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda || src1->ne[1] > MMVQ_MIN_BATCH_SIZE);
bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
@ -3924,6 +3504,10 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
#endif // SYCL_USE_XMX
// mmvq path is faster in the CUDA backend.
if (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda)
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
@ -4030,37 +3614,13 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_ten
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
const ggml_tensor_extra_gpu *src0_extra =
(const ggml_tensor_extra_gpu *)src0->extra;
const ggml_tensor_extra_gpu *src1_extra =
(const ggml_tensor_extra_gpu *)src1->extra;
const ggml_tensor_extra_gpu *dst_extra =
(const ggml_tensor_extra_gpu *)dst->extra;
ggml_tensor_extra_gpu src0_row_extra;
ggml_tensor_extra_gpu src1_row_extra;
ggml_tensor_extra_gpu dst_row_extra;
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
src1_row.backend = GGML_BACKEND_TYPE_GPU;
dst_row.backend = GGML_BACKEND_TYPE_GPU;
src0_row.extra = &src0_row_extra;
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
? (char *)src0->data
: (char *)src0_extra->data_device[ctx.device];
char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
? (char *)src1->data
: (char *)src1_extra->data_device[ctx.device];
char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
? (char *)dst->data
: (char *)dst_extra->data_device[ctx.device];
char *src0_original = (char *)src0->data;
char *src1_original = (char *)src1->data;
char *dst_original = (char *)dst->data;
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
@ -4089,12 +3649,9 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_ten
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row_extra.data_device[ctx.device] =
src0_original + i02*nb02;
src1_row_extra.data_device[ctx.device] =
src1_original + + i11*nb11 + i12*nb12;
dst_row_extra.data_device[ctx.device] =
dst_original + i1*nb1 + i2*nb2;
src0_row.data = src0_original + i02*nb02;
src1_row.data = src1_original + + i11*nb11 + i12*nb12;
dst_row.data = dst_original + i1*nb1 + i2*nb2;
ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
}
@ -4103,8 +3660,8 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_ten
ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
ggml_sycl_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
src1_row_extra.data_device[ctx.device] = src1_contiguous.get();
dst_row_extra.data_device[ctx.device] = dst_contiguous.get();
src1_row.data = src1_contiguous.get();
dst_row.data = dst_contiguous.get();
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;
@ -4160,7 +3717,7 @@ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_ten
});
}
src0_row_extra.data_device[ctx.device] = src0_original + i02*nb02;
src0_row.data = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
@ -4250,7 +3807,7 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
(void) dst;
@ -4335,6 +3892,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
ggml_sycl_func_t func;
switch (tensor->op) {
case GGML_OP_CONV_TRANSPOSE_1D:
func = ggml_sycl_op_conv_transpose_1d;
break;
case GGML_OP_REPEAT:
func = ggml_sycl_repeat;
break;
@ -4390,7 +3950,7 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
func = ggml_sycl_group_norm;
break;
case GGML_OP_CONCAT:
func = ggml_sycl_concat;
func = ggml_sycl_op_concat;
break;
case GGML_OP_UPSCALE:
func = ggml_sycl_upscale;
@ -4459,6 +4019,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
case GGML_OP_ARGSORT:
func = ggml_sycl_argsort;
break;
case GGML_OP_TIMESTEP_EMBEDDING:
func = ggml_sycl_op_timestep_embedding;
break;
default:
return false;
}
@ -5444,6 +5007,15 @@ GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t back
GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1]->type;
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
return false;
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
@ -5483,6 +5055,10 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
return false;
}
}
ggml_type src0_type = op->src[0]->type;
if (src0_type == GGML_TYPE_BF16) {
return false;
}
return true;
} break;
case GGML_OP_GET_ROWS:
@ -5530,7 +5106,8 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
int dim = op->op_params[0];
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16 && dim == 2;
} break;
case GGML_OP_DUP:
case GGML_OP_NONE:
@ -5562,6 +5139,7 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:
return true;
default:
return false;

View file

@ -13,7 +13,9 @@
#ifndef GGML_SYCL_BACKEND_HPP
#define GGML_SYCL_BACKEND_HPP
#include "concat.hpp"
#include "common.hpp"
#include "conv.hpp"
#include "convert.hpp"
#include "dequantize.hpp"
#include "dmmv.hpp"
@ -21,5 +23,8 @@
#include "mmvq.hpp"
#include "rope.hpp"
#include "norm.hpp"
#include "softmax.hpp"
#include "tsembd.hpp"
#include "im2col.hpp"
#endif // GGML_SYCL_BACKEND_HPP

View file

@ -51,3 +51,14 @@ void ggml_sycl_host_free(void* ptr) try {
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size) {
const int64_t max_range = std::numeric_limits<int>::max();
int64_t sycl_down_blk_size = block_size;
int64_t global_range = accumulate_block_num * sycl_down_blk_size;
while(global_range > max_range) {
sycl_down_blk_size /= 2;
global_range = accumulate_block_num * sycl_down_blk_size;
}
return sycl_down_blk_size;
}

View file

@ -19,6 +19,10 @@
#include "dpct/helper.hpp"
#include "ggml-sycl.h"
#include "presets.hpp"
#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
#endif
#define GGML_COMMON_DECL_SYCL
#define GGML_COMMON_IMPL_SYCL
@ -47,10 +51,6 @@ static int g_ggml_sycl_debug = 0;
} \
}()
// #define DEBUG_SYCL_MALLOC
static int g_work_group_size = 0;
// typedef sycl::half ggml_fp16_t;
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 // todo for hardward optimize.
@ -104,7 +104,7 @@ static void crash() {
const char* msg) {
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
GGML_ASSERT(!"SYCL error");
GGML_ABORT("SYCL error");
}
#define SYCL_CHECK(err) \
@ -134,6 +134,7 @@ typedef sycl::float2 dfloat2;
#endif // GGML_SYCL_F16
#define MMVQ_MAX_BATCH_SIZE 8
#define MMVQ_MIN_BATCH_SIZE 4
static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
@ -193,6 +194,8 @@ struct ggml_sycl_device_info {
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
};
const ggml_sycl_device_info & ggml_sycl_info();
@ -269,7 +272,7 @@ struct ggml_backend_sycl_context {
queue_ptr stream(int device, int stream) {
if (qptrs[device][stream] == nullptr) {
qptrs[device][stream] = &(dpct::get_current_device().default_queue());
qptrs[device][stream] = &(dpct::get_device(device).default_queue());
}
return qptrs[device][stream];
}
@ -278,6 +281,52 @@ struct ggml_backend_sycl_context {
return stream(device, 0);
}
#if GGML_SYCL_DNNL
dnnl::engine make_engine(sycl::queue* q) {
// Get the device associated with the queue
sycl::device dev = q->get_device();
// Get the context associated with the queue
sycl::context ctx = q->get_context();
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
return eng;
}
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
dnnl::stream stream_dnnl(int device, int _stream) {
auto q = stream(device, _stream);
return stream_dnnl(q);
}
dnnl::engine engine_dnnl(sycl::queue* qptr) {
auto it = engine_map.find(qptr);
if (it == engine_map.end()) {
auto eng = make_engine(qptr);
engine_map[qptr] = eng;
return eng;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl(sycl::queue* qptr) {
auto it = stream_map.find(qptr);
if (it == stream_map.end()) {
auto eng = engine_dnnl(qptr);
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
stream_map[qptr] = stream;
return stream;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl() {
return stream_dnnl(device, 0);
}
#endif
// pool
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
@ -295,15 +344,6 @@ struct ggml_backend_sycl_context {
}
};
// common host functions
static inline int get_work_group_size(const sycl::device& device) {
dpct::device_info prop;
dpct::get_device_info(prop, device);
return prop.get_max_work_group_size();
}
// common device functions
static __dpct_inline__ float warp_reduce_sum(float x,
@ -357,4 +397,12 @@ inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
}
// Helper for accessing pointers with no warnings
template <typename Tp, int dim>
static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
return acc.template get_multi_ptr<sycl::access::decorated::no>().get();
}
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
#endif // GGML_SYCL_COMMON_HPP

View file

@ -0,0 +1,195 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include "concat.hpp"
#include "common.hpp"
static void concat_f32_dim0(const float *x, const float *y, float *dst,
const int ne0, const int ne00,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (nidx < ne00) { // src0
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
item_ct1.get_group(0) * ne00 * item_ct1.get_group_range(1);
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx - ne00 + item_ct1.get_group(1) * (ne0 - ne00) +
item_ct1.get_group(0) * (ne0 - ne00) * item_ct1.get_group_range(1);
dst[offset_dst] = y[offset_src];
}
}
static void concat_f32_dim1(const float *x, const float *y, float *dst,
const int ne0, const int ne01,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(1) < ne01) { // src0
int offset_src =
nidx + item_ct1.get_group(1) * ne0 + item_ct1.get_group(0) * ne0 * ne01;
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx + (item_ct1.get_group(1) - ne01) * ne0 +
item_ct1.get_group(0) * ne0 * (item_ct1.get_group_range(1) - ne01);
dst[offset_dst] = y[offset_src];
}
}
static void concat_f32_dim2(const float *x, const float *y, float *dst,
const int ne0, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(0) < ne02) { // src0
int offset_src = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx + item_ct1.get_group(1) * ne0 +
(item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = y[offset_src];
}
}
static void concat_f32_sycl(const float *x, const float *y, float *dst,
int ne00, int ne01, int ne02, int ne0, int ne1,
int ne2, int dim, queue_ptr stream) {
int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
sycl::range<3> gridDim(ne2, ne1, num_blocks);
switch (dim) {
case 0:
stream->parallel_for(
sycl::nd_range<3>(gridDim *
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
concat_f32_dim0(x, y, dst, ne0, ne00, item_ct1);
});
break;
case 1:
stream->parallel_for(
sycl::nd_range<3>(gridDim *
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
concat_f32_dim1(x, y, dst, ne0, ne01, item_ct1);
});
break;
default:
stream->parallel_for(
sycl::nd_range<3>(gridDim *
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
concat_f32_dim2(x, y, dst, ne0, ne02, item_ct1);
});
break;
}
}
// non-contiguous kernel (slow)
static void concat_f32_sycl_non_cont(
queue_ptr stream, const char *src0, const char *src1, char *dst,
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03, uint64_t nb00,
uint64_t nb01, uint64_t nb02, uint64_t nb03, int64_t /*ne10*/,
int64_t /*ne11*/, int64_t /*ne12*/, int64_t /*ne13*/, uint64_t nb10,
uint64_t nb11, uint64_t nb12, uint64_t nb13, int64_t ne0, int64_t ne1,
int64_t ne2, int64_t ne3, uint64_t nb0, uint64_t nb1, uint64_t nb2,
uint64_t nb3, int32_t dim) {
sycl::range<3> gridDim(ne3, ne2, ne1);
stream->parallel_for(
sycl::nd_range<3>(gridDim, sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
int64_t i3 = item_ct1.get_group(0);
int64_t i2 = item_ct1.get_group(1);
int64_t i1 = item_ct1.get_group(2);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
const float *x;
for (int i0 = item_ct1.get_local_id(2); i0 < ne0;
i0 += item_ct1.get_local_range(2)) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const float *)(src0 + (i3)*nb03 + (i2)*nb02 + (i1)*nb01 +
(i0)*nb00);
} else {
x = (const float *)(src1 + (i3 - o[3]) * nb13 + (i2 - o[2]) * nb12 +
(i1 - o[1]) * nb11 + (i0 - o[0]) * nb10);
}
float *y = (float *)(dst + i3 * nb3 + i2 * nb2 + i1 * nb1 + i0 * nb0);
*y = *x;
}
});
}
void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst) {
queue_ptr stream = ctx.stream();
const int32_t dim = ((int32_t *)dst->op_params)[0];
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
const float *src0_d = (const float *)src0->data;
const float *src1_d = (const float *)src1->data;
float *dst_d = (float *)dst->data;
if (dim != 3) {
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_sycl(
src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * (dst->nb[3] / 4), src0->ne[0], src0->ne[1],
src0->ne[2], dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(dst_d, src0_d, size0).wait()));
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(dst_d + size0 / 4, src1_d, size1).wait()));
}
} else
concat_f32_sycl_non_cont(
stream, (const char *)src0->data, (const char *)src1->data,
(char *)dst->data, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], src1->ne[0],
src1->ne[1], src1->ne[2], src1->ne[3], src1->nb[0], src1->nb[1],
src1->nb[2], src1->nb[3], dst->ne[0], dst->ne[1], dst->ne[2],
dst->ne[3], dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
}

View file

@ -0,0 +1,21 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_CONCAT_HPP
#define GGML_SYCL_CONCAT_HPP
#include "common.hpp"
void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst);
#endif // GGML_SYCL_CONCAT_HPP

View file

@ -0,0 +1,99 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include "conv.hpp"
static void conv_transpose_1d_kernel(
const int s0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2,
const int src1_ne0, const int dst_ne0,
const float * src0, const float * src1, float * dst,
const sycl::nd_item<3> &item_ct1) {
int global_index = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
if (global_index >= output_size) {
return;
}
int out_index = global_index / dst_ne0;
float accumulator = 0;
for (int c = 0; c < src0_ne2; c++) {
int idx = global_index % dst_ne0;
int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0);
int input_offset = src1_ne0 * c;
for (int i = 0; i < src1_ne0; i++) {
if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) {
continue;
}
int weight_idx = idx - i*s0;
float kernel_weight = src0[kernel_offset + weight_idx];
float input_value = src1[input_offset+i];
accumulator += kernel_weight * input_value;
}
}
dst[global_index] = accumulator;
}
static void conv_transpose_1d_f32_f32_sycl(
const int s0, const int output_size,
const int src0_ne0, const int src0_ne1, const int src0_ne2,
const int src1_ne0, const int dst_ne0,
const float *src0, const float *src1, float *dst,
const queue_ptr& stream) {
const int num_blocks = (output_size + SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE;
const sycl::range<3> block_dims(1, 1, SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE);
const sycl::range<3> block_nums(1, 1, num_blocks);
stream->parallel_for(
sycl::nd_range<3>(
block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
conv_transpose_1d_kernel(
s0, output_size,
src0_ne0, src0_ne1, src0_ne2,
src1_ne0, dst_ne0,
src0, src1, dst, item_ct1);
});
}
void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst) {
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const int32_t * opts = (const int32_t *)dst->op_params;
const int s0 = opts[0];
const int64_t output_size = ggml_nelements(dst);
conv_transpose_1d_f32_f32_sycl(s0, output_size,
src0->ne[0], src0->ne[1], src0->ne[2],
src1->ne[0], dst->ne[0],
src0_d, src1_d, dst_d, stream);
}

View file

@ -0,0 +1,21 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_CONV_HPP
#define GGML_SYCL_CONV_HPP
#include "common.hpp"
void ggml_sycl_op_conv_transpose_1d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst);
#endif // GGML_SYCL_CONV_HPP

View file

@ -3,19 +3,19 @@
#include "presets.hpp"
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k,
const sycl::nd_item<3> &item_ct1) {
const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
const int64_t i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2));
if (i >= k) {
return;
}
const int ib = i/qk; // block index
const int iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2;
const int64_t ib = i/qk; // block index
const int64_t iqs = (i%qk)/qr; // quant index
const int64_t iybs = i - i%qk; // y block start index
const int64_t y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
@ -27,9 +27,9 @@ static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_sycl(const void *__restrict__ vx,
dst_t *__restrict__ y, const int k,
dst_t *__restrict__ y, const int64_t k,
dpct::queue_ptr stream) {
const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
const int64_t num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -45,9 +45,9 @@ static void dequantize_block_sycl(const void *__restrict__ vx,
}
template <typename dst_t>
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
@ -77,9 +77,9 @@ static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
@ -108,10 +108,10 @@ static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb32 = k / 32;
const int nb = (k + 255) / 256;
const int64_t nb32 = k / 32;
const int64_t nb = (k + 255) / 256;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -126,10 +126,10 @@ static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb32 = k / 32;
const int nb = (k + 255) / 256;
const int64_t nb32 = k / 32;
const int64_t nb = (k + 255) / 256;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -145,9 +145,9 @@ static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
template <typename dst_t>
static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -158,16 +158,16 @@ static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
dequantize_block_q4_K(vx, y, scale_local_acc.get_pointer(), item_ct1);
dequantize_block_q4_K(vx, y, get_pointer(scale_local_acc), item_ct1);
});
});
}
}
template <typename dst_t>
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
@ -197,9 +197,9 @@ static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
@ -229,9 +229,9 @@ static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -250,9 +250,9 @@ static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -271,9 +271,9 @@ static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -292,9 +292,9 @@ static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -313,9 +313,9 @@ static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -333,9 +333,9 @@ static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
template <typename dst_t>
static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -354,9 +354,9 @@ static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
const int64_t nb = k / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -374,9 +374,9 @@ static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = (k + QK_K - 1) / QK_K;
const int64_t nb = (k + QK_K - 1) / QK_K;
#if QK_K == 64
dequantize_row_iq4_nl_sycl(vx, y, k, stream);
#else
@ -398,9 +398,9 @@ static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
}
template <typename dst_t>
static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int64_t k,
dpct::queue_ptr stream) {
const int nb = (k + QK_K - 1) / QK_K;
const int64_t nb = (k + QK_K - 1) / QK_K;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -418,34 +418,34 @@ static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
}
template <typename src_t, typename dst_t>
static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
const int64_t work_group_size = item_ct1.get_local_range(2);
const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);
// make each work-item deal with more elements since sycl global range can not exceed max int
const src_t * x = (src_t *) vx;
y[i] = x[i];
for (int64_t i = global_id; i < k; i += work_group_size * item_ct1.get_group_range(2)) {
y[i] = x[i];
}
}
template <typename src_t, typename dst_t>
static void convert_unary_sycl(const void *__restrict__ vx,
dst_t *__restrict__ y, const int k,
dst_t *__restrict__ y, const int64_t k,
dpct::queue_ptr stream) {
const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
const int64_t num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
// decrease global range when it exceeds the max int
int64_t local_size = downsample_sycl_global_range(num_blocks, SYCL_DEQUANTIZE_BLOCK_SIZE);
sycl::range<3> block_nums(1, 1, num_blocks);
sycl::range<3> local_range(1, 1, local_size);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(
sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
sycl::nd_range<3>(block_nums * local_range, local_range),
[=](sycl::nd_item<3> item_ct1) {
convert_unary<src_t>(vx, y, k, item_ct1);
});

View file

@ -17,7 +17,7 @@
template <typename T>
using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
int k, dpct::queue_ptr stream);
int64_t k, dpct::queue_ptr stream);
typedef to_t_sycl_t<float> to_fp32_sycl_t;
typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;

View file

@ -15,9 +15,9 @@
#include "common.hpp"
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
static __dpct_inline__ void dequantize_q4_0(const void *vx, const int64_t ib,
const int iqs, dfloat2 &v) {
const block_q4_0 * x = (const block_q4_0 *) vx;
@ -40,7 +40,7 @@ static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
#endif // GGML_SYCL_F16
}
static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
static __dpct_inline__ void dequantize_q4_1(const void *vx, const int64_t ib,
const int iqs, dfloat2 &v) {
const block_q4_1 * x = (const block_q4_1 *) vx;
@ -64,7 +64,7 @@ static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
#endif // GGML_SYCL_F16
}
static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
static __dpct_inline__ void dequantize_q5_0(const void *vx, const int64_t ib,
const int iqs, dfloat2 &v) {
const block_q5_0 * x = (const block_q5_0 *) vx;
@ -91,7 +91,7 @@ static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
#endif // GGML_SYCL_F16
}
static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
static __dpct_inline__ void dequantize_q5_1(const void *vx, const int64_t ib,
const int iqs, dfloat2 &v) {
const block_q5_1 * x = (const block_q5_1 *) vx;
@ -118,7 +118,7 @@ static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
#endif // GGML_SYCL_F16
}
static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
static __dpct_inline__ void dequantize_q8_0(const void *vx, const int64_t ib,
const int iqs, dfloat2 &v) {
const block_q8_0 * x = (const block_q8_0 *) vx;
@ -138,16 +138,16 @@ static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
}
template<typename dst_t>
static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t nb32,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int il = tid/8;
const int ir = tid%8;
const int ib = 8*i + ir;
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/8;
const int64_t ir = tid%8;
const int64_t ib = 8*i + ir;
if (ib >= nb32) {
return;
}
@ -168,16 +168,16 @@ static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restri
}
template<typename dst_t>
static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t nb32,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int il = tid/8;
const int ir = tid%8;
const int ib = 8*i + ir;
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/8;
const int64_t ir = tid%8;
const int64_t ib = 8*i + ir;
if (ib >= nb32) {
return;
}
@ -203,14 +203,14 @@ template<typename dst_t>
static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_q2_K * x = (const block_q2_K *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int n = tid/32;
const int l = tid - 32*n;
const int is = 8*n + l/16;
const int64_t n = tid/32;
const int64_t l = tid - 32*n;
const int64_t is = 8*n + l/16;
const uint8_t q = x[i].qs[32*n + l];
dst_t * y = yy + i*QK_K + 128*n;
@ -222,8 +222,8 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const int64_t is = tid/16; // 0 or 1
const int64_t il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
dst_t * y = yy + i*QK_K + 16*is + il;
@ -239,19 +239,19 @@ template<typename dst_t>
static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_q3_K * x = (const block_q3_K *) vx;
#if QK_K == 256
const int r = item_ct1.get_local_id(2) / 4;
const int tid = r/2;
const int is0 = r%2;
const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
const int n = tid / 4;
const int j = tid - 4*n;
const int64_t r = item_ct1.get_local_id(2) / 4;
const int64_t tid = r/2;
const int64_t is0 = r%2;
const int64_t l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
const int64_t n = tid / 4;
const int64_t j = tid - 4*n;
uint8_t m = 1 << (4*n + j);
int is = 8*n + 2*j + is0;
int64_t is = 8*n + 2*j + is0;
int shift = 2*j;
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
@ -267,11 +267,11 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
const int tid = item_ct1.get_local_id(2);
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const int im = il/8; // 0...1
const int in = il%8; // 0...7
const int64_t tid = item_ct1.get_local_id(2);
const int64_t is = tid/16; // 0 or 1
const int64_t il = tid%16; // 0...15
const int64_t im = il/8; // 0...1
const int64_t in = il%8; // 0...7
dst_t * y = yy + i*QK_K + 16*is + il;
@ -307,15 +307,15 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
uint8_t* scales_local, const sycl::nd_item<3> &item_ct1) {
const block_q4_K * x = (const block_q4_K *) vx;
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
#if QK_K == 256
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int il = tid/8;
const int ir = tid%8;
const int is = 2*il;
const int n = 4;
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/8;
const int64_t ir = tid%8;
const int64_t is = 2*il;
const int64_t n = 4;
dst_t * y = yy + i*QK_K + 64*il + n*ir;
@ -341,7 +341,7 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
y[l +32] = d2 * (q_vec[l] >> 4) - m2;
}
#else
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
const uint8_t * q = x[i].qs;
dst_t * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
@ -356,14 +356,14 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
const sycl::nd_item<3> &item_ct1) {
const block_q5_K * x = (const block_q5_K *) vx;
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = item_ct1.get_local_id(2);
const int il = tid/16; // il is in 0...3
const int ir = tid%16; // ir is in 0...15
const int is = 2*il; // is is in 0...6
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/16; // il is in 0...3
const int64_t ir = tid%16; // ir is in 0...15
const int64_t is = 2*il; // is is in 0...6
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
@ -386,11 +386,11 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
const uint8_t q = x[i].qs[tid];
const int im = tid/8; // 0...3
const int in = tid%8; // 0...7
const int is = tid/16; // 0 or 1
const int64_t im = tid/8; // 0...3
const int64_t in = tid%8; // 0...7
const int64_t is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
dst_t * y = yy + i*QK_K + tid;
@ -404,14 +404,14 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
const sycl::nd_item<3> &item_ct1) {
const block_q6_K * x = (const block_q6_K *) vx;
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = item_ct1.get_local_id(2);
const int ip = tid/32; // ip is 0 or 1
const int il = tid - 32*ip; // 0...32
const int is = 8*ip + il/16;
const int64_t tid = item_ct1.get_local_id(2);
const int64_t ip = tid/32; // ip is 0 or 1
const int64_t il = tid - 32*ip; // 0...32
const int64_t is = 8*ip + il/16;
dst_t * y = yy + i*QK_K + 128*ip + il;
@ -428,9 +428,9 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
#else
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int ip = tid/16; // 0 or 1
const int il = tid - 16*ip; // 0...15
const int64_t tid = item_ct1.get_local_id(2);
const int64_t ip = tid/16; // 0 or 1
const int64_t il = tid - 16*ip; // 0...15
dst_t * y = yy + i*QK_K + 16*ip + il;
@ -452,13 +452,13 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res
const uint8_t *ksigns_iq2xs_ptr,
const uint8_t *kmask_iq2xs_ptr) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * q2 = x[i].qs + 4*ib;
const uint8_t * aux8 = (const uint8_t *)q2;
@ -480,13 +480,13 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest
const uint8_t *ksigns_iq2xs,
const uint8_t *kmask_iq2xs) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq2_xs * x = (const block_iq2_xs *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * q2 = x[i].qs + 4*ib;
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
@ -504,13 +504,13 @@ __dpct_inline__ static void
dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq2_s * x = (const block_iq2_s *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
@ -532,13 +532,13 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res
const uint8_t *ksigns_iq2xs,
const uint8_t *kmask_iq2xs) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * q3 = x[i].qs + 8*ib;
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
@ -563,13 +563,13 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1,
const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq3_s * x = (const block_iq3_s *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint8_t * qs = x[i].qs + 8*ib;
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
@ -593,13 +593,13 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1,
const uint32_t *iq1s_grid_gpu) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq1_s * x = (const block_iq1_s *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
@ -623,13 +623,13 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1,
const uint32_t *iq1s_grid_gpu) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq1_m * x = (const block_iq1_m *) vx;
const int tid = item_ct1.get_local_id(2);
const int64_t tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
const uint16_t * sc = (const uint16_t *)x[i].scales;
iq1m_scale_t scale;
@ -656,12 +656,12 @@ __dpct_inline__ static void
dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
const int tid = item_ct1.get_local_id(2);
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[ib].qs + 4*il;
const float d = (float)x[ib].d;
@ -678,12 +678,12 @@ template <typename dst_t>
__dpct_inline__ static void
dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_group(2);
const int64_t i = item_ct1.get_group(2);
const block_iq4_xs * x = (const block_iq4_xs *)vx;
const int tid = item_ct1.get_local_id(2);
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
const int64_t tid = item_ct1.get_local_id(2);
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);

View file

@ -3,7 +3,8 @@
#include "dequantize.hpp"
#include "presets.hpp"
static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
static void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const sycl::half *x = (const sycl::half *)vx;
// automatic half -> float type cast if dfloat == float
@ -11,7 +12,7 @@ static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 &
v.y() = x[ib + iqs + 1];
}
static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
static void convert_f32(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const float * x = (const float *) vx;
// automatic half -> float type cast if dfloat == float
@ -227,7 +228,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
// sum up partial sums and write back result
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -346,7 +347,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
// sum up partial sums and write back result
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -499,7 +500,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
// sum up partial sums and write back result
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -633,7 +634,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
// sum up partial sums and write back result
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -748,7 +749,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
// sum up partial sums and write back result
#pragma unroll
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
@ -873,10 +874,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
@ -889,10 +890,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
@ -905,10 +906,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
@ -918,10 +919,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
});
}
@ -934,10 +935,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
@ -1010,7 +1011,7 @@ void ggml_sycl_op_dequantize_mul_mat_vec(
break;
default:
printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
GGML_ASSERT(false);
GGML_ABORT("fatal error");
break;
}

View file

@ -588,7 +588,7 @@ namespace dpct
out = prop;
}
/// dpct device extension
/// dpct device extension
class device_ext : public sycl::device {
typedef std::mutex mutex_type;
@ -697,7 +697,7 @@ namespace dpct
std::unique_lock<mutex_type> lock(m_mutex);
lock.unlock();
for (auto &q : _queues) {
q.wait_and_throw();
q.wait_and_throw();
}
// Guard the destruct of current_queues to make sure the ref count is
// safe.
@ -734,7 +734,12 @@ namespace dpct
void destroy_queue(sycl::queue queue) {
std::lock_guard<mutex_type> lock(m_mutex);
_queues.clear();
_queues.erase(std::remove_if(_queues.begin(), _queues.end(),
[=](const sycl::queue &q) -> bool
{
return q == queue;
}),
_queues.end());
}
void set_saved_queue(sycl::queue q) {
std::lock_guard<mutex_type> lock(m_mutex);
@ -764,13 +769,13 @@ namespace dpct
if (enable_exception_handler) {
eh = exception_handler;
}
auto q = sycl::queue(*this, eh,
sycl::property_list(
_queues.push_back(sycl::queue(
*this, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
sycl::property::queue::enable_profiling(),
#endif
properties...));
_queues.push_back(q);
properties...)));
return _queues.back();
}
@ -783,8 +788,8 @@ namespace dpct
if (enable_exception_handler) {
eh = exception_handler;
}
_queues.push_back(
sycl::queue(device, eh,
_queues.push_back(sycl::queue(
device, eh,
sycl::property_list(
#ifdef DPCT_PROFILING_ENABLED
sycl::property::queue::enable_profiling(),
@ -855,15 +860,88 @@ namespace dpct
unsigned int get_device_id(const sycl::device &dev)
{
unsigned int id = 0;
for (auto dev_item : _devs)
for (auto &dev_item : _devs)
{
if (*dev_item == dev)
{
break;
return id;
}
id++;
}
return id;
return -1;
}
inline std::string get_preferred_gpu_platform_name() {
std::string result;
std::string filter = "";
char* env = getenv("ONEAPI_DEVICE_SELECTOR");
if (env) {
if (std::strstr(env, "level_zero")) {
filter = "level-zero";
}
else if (std::strstr(env, "opencl")) {
filter = "opencl";
}
else if (std::strstr(env, "cuda")) {
filter = "cuda";
}
else if (std::strstr(env, "hip")) {
filter = "hip";
}
else {
throw std::runtime_error("invalid device filter: " + std::string(env));
}
} else {
auto default_device = sycl::device(sycl::default_selector_v);
auto default_platform_name = default_device.get_platform().get_info<sycl::info::platform::name>();
if (std::strstr(default_platform_name.c_str(), "Level-Zero") || default_device.is_cpu()) {
filter = "level-zero";
}
else if (std::strstr(default_platform_name.c_str(), "CUDA")) {
filter = "cuda";
}
else if (std::strstr(default_platform_name.c_str(), "HIP")) {
filter = "hip";
}
}
auto platform_list = sycl::platform::get_platforms();
for (const auto& platform : platform_list) {
auto devices = platform.get_devices();
auto gpu_dev = std::find_if(devices.begin(), devices.end(), [](const sycl::device& d) {
return d.is_gpu();
});
if (gpu_dev == devices.end()) {
// cout << "platform [" << platform_name
// << "] does not contain GPU devices, skipping\n";
continue;
}
auto platform_name = platform.get_info<sycl::info::platform::name>();
std::string platform_name_low_case;
platform_name_low_case.resize(platform_name.size());
std::transform(
platform_name.begin(), platform_name.end(), platform_name_low_case.begin(), ::tolower);
if (platform_name_low_case.find(filter) == std::string::npos) {
// cout << "platform [" << platform_name
// << "] does not match with requested "
// << filter << ", skipping\n";
continue;
}
result = platform_name;
}
if (result.empty())
throw std::runtime_error("can not find preferred GPU platform");
return result;
}
template <class DeviceSelector>
@ -910,7 +988,7 @@ namespace dpct
if (backend == "opencl:cpu") return 4;
if (backend == "opencl:acc") return 5;
printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
static bool compare_backend(std::string &backend1, std::string &backend2) {
return convert_backend_index(backend1) < convert_backend_index(backend2);
@ -930,10 +1008,15 @@ namespace dpct
// Keep track of the number of devices per backend
std::map<sycl::backend, size_t> DeviceNums;
std::map<std::string, std::vector<sycl::device>> backend_devices;
auto preferred_platform_name = get_preferred_gpu_platform_name();
while (!Platforms.empty()) {
auto Platform = Platforms.back();
Platforms.pop_back();
auto platform_name = Platform.get_info<sycl::info::platform::name>();
if (platform_name.compare(preferred_platform_name) != 0) {
continue;
}
auto devices = Platform.get_devices();
std::string backend_type = get_device_backend_and_type(devices[0]);
for (const auto &device : devices) {
@ -1989,6 +2072,11 @@ namespace dpct
return dev_mgr::instance().current_device();
}
static inline device_ext &get_device(unsigned int id)
{
return dev_mgr::instance().get_device(id);
}
static inline sycl::queue &get_in_order_queue()
{
return dev_mgr::instance().current_device().in_order_queue();
@ -2426,6 +2514,7 @@ namespace dpct
b, ldb, beta, c, ldc, batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32):
@ -2458,7 +2547,6 @@ namespace dpct
batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float):
@ -2595,6 +2683,7 @@ namespace dpct
stride_c, batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32):
@ -2623,7 +2712,6 @@ namespace dpct
beta, c, ldc, stride_c, batch_size);
break;
}
#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float):

101
ggml/src/ggml-sycl/gemm.hpp Normal file
View file

@ -0,0 +1,101 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_GEMM_HPP
#define GGML_SYCL_GEMM_HPP
#include <fstream>
#include <iostream>
#include "ggml-sycl.h"
#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
class DnnlGemmWrapper {
public:
using dt = dnnl::memory::data_type;
using tag = dnnl::memory::format_tag;
template<typename T>
static constexpr dt to_dt() {
if constexpr (std::is_same_v<T, float>) return dt::f32;
else if constexpr (std::is_same_v<T, sycl::half>) return dt::f16;
else static_assert(0);
}
static inline void row_gemm(sycl::queue& q, bool a_trans,
bool b_trans, int m, int n, int k,
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
{
// Get the device associated with the queue
sycl::device dev = q.get_device();
// Get the context associated with the queue
sycl::context ctx = q.get_context();
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
const dnnl::stream stream = dnnl::sycl_interop::make_stream(eng, q);
dnnl::memory::dims a_dims = { m, k };
dnnl::memory::dims b_dims = { k, n };
dnnl::memory::dims c_dims = { m, n };
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
// Create the primitive.
auto matmul_prim = dnnl::matmul(matmul_pd);
// Primitive arguments.
std::unordered_map<int, dnnl::memory> matmul_args;
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
matmul_args.insert({ DNNL_ARG_DST, c_mem });
matmul_prim.execute(stream, matmul_args);
}
static inline void row_gemm(const dnnl::stream& stream, bool a_trans,
bool b_trans, int m, int n, int k,
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
{
auto const eng = stream.get_engine();
dnnl::memory::dims a_dims = { m, k };
dnnl::memory::dims b_dims = { k, n };
dnnl::memory::dims c_dims = { m, n };
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
// Create the primitive.
auto matmul_prim = dnnl::matmul(matmul_pd);
// Primitive arguments.
std::unordered_map<int, dnnl::memory> matmul_args;
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
matmul_args.insert({ DNNL_ARG_DST, c_mem });
matmul_prim.execute(stream, matmul_args);
}
};
#endif
#endif // GGML_SYCL_GEMM_HPP

Some files were not shown because too many files have changed in this diff Show more