[WIP] create inference workflow, gguf convert script but fix

This commit is contained in:
HimariO 2024-10-18 19:01:02 +08:00
parent 7e9fc7202e
commit bcd49f5984
2 changed files with 172 additions and 22 deletions

View file

@ -43,6 +43,7 @@ def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3//3
wq = ten[:c]
wk = ten[c: c * 2]
@ -103,12 +104,13 @@ def main(data_type='fp32'):
fout.add_bool("clip.has_qwen2vl_merger", True)
fout.add_string("clip.projector_type", "qwen2vl_merger")
print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", True)
fout.add_bool("clip.use_gelu", False)
elif 'gelu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", False)
fout.add_bool("clip.use_gelu", True)
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
else:
raise ValueError()

View file

@ -17,7 +17,62 @@
#include <fstream>
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
const int patch_size = 14 * 2;
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
auto img_tokens = image_embed->n_image_pos;
llama_pos mrope_pos[img_tokens * 3];
for (size_t y = 0; y < ph; y++)
{
for (size_t x = 0; x < pw; x++)
{
int i = y * pw + x;
mrope_pos[i] = *st_pos_id;
mrope_pos[i + img_tokens] = *st_pos_id + y;
mrope_pos[i + img_tokens * 2] = *st_pos_id + x;
}
}
*st_pos_id += std::max(pw, ph);
int processed = 0;
for (int i = 0; i < img_tokens; i += n_batch) {
int n_eval = img_tokens - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_pos batch_mrope_pos[n_eval * 3];
memcpy(batch_mrope_pos, &mrope_pos[processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval], &mrope_pos[img_tokens + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
llama_batch batch = {
int32_t(n_eval), // n_tokens
nullptr, // token
(image_embed->embed+i*n_embd), // embed
batch_mrope_pos, // pos
nullptr, // n_seq_id
nullptr, // seq_id
nullptr, // logits
*n_past, // all_pos_0
1, 0,
};
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
processed += n_eval;
}
return true;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
int N = (int) tokens.size();
std::vector<llama_pos> pos;
for (int i = 0; i < N; i += n_batch) {
@ -29,7 +84,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
// TODO: add mrope pos ids somewhere else
pos.resize(batch.n_tokens * 3);
for (int j = 0; j < batch.n_tokens * 3; j ++) {
pos[j] = j % batch.n_tokens;
pos[j] = *st_pos_id + (j % batch.n_tokens);
}
batch.pos = pos.data();
@ -38,26 +93,27 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
return false;
}
*n_past += n_eval;
*st_pos_id += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id);
return true;
}
static const char * sample(struct gpt_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past) {
int * n_past, int * st_pos_id) {
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
gpt_sampler_accept(smpl, id, true);
static std::string ret;
@ -66,7 +122,7 @@ static const char * sample(struct gpt_sampler * smpl,
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
eval_id(ctx_llama, id, n_past, st_pos_id);
return ret.c_str();
}
@ -161,15 +217,16 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
int n_past = 0;
int cur_pos_id = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<image>");
size_t image_pos = prompt.find("<|vision_start|>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
// new templating mode: Provide the full prompt including system message and use <|vision_start|> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
user_prompt = prompt.substr(image_pos + std::string("<|vision_start|>").length());
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
@ -186,8 +243,8 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
}
} else {
// llava-1.5 native mode
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
user_prompt = prompt + "\nASSISTANT:";
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>";
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n";
if (params->verbose_prompt) {
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
@ -196,10 +253,12 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
}
}
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
if (image_embed != nullptr)
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true);
if (image_embed != nullptr) {
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip);
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size);
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false);
// generate the response
@ -213,7 +272,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
@ -658,10 +717,15 @@ static void tmp_dump_img_embed(struct llava_context * ctx_llava, gpt_params * pa
int ne = n_embd * 4;
float vals[56 * 56 * 3];
float embd[ne];
for (int i = 0; i < 56*56*3; i++)
for (int i = 0; i < 3*56*56; i++)
{
vals[i] = (float)(i % (56 * 56)) / (56*56);
vals[i] = 0.1;
}
// for (int i = 0; i < 56*56; i++)
// {
// for (int c = 0; c < 3; c++)
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
// }
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
@ -676,6 +740,85 @@ static void tmp_dump_img_embed(struct llava_context * ctx_llava, gpt_params * pa
}
}
static void tmp_dump_img_embed_from_file(struct llava_context * ctx_llava, gpt_params * params) {
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
int ne = n_embd * image_embed->n_image_pos;
// int ne = 1280 * image_embed->n_image_pos * 4;
std::ofstream outFile("img_embed_f.bin", std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(image_embed->embed), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to img_embed_f.bin, tokens: " << image_embed->n_image_pos << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
llava_image_embed_free(image_embed);
}
static void tmp_dump_img_mid_embed(struct llava_context * ctx_llava, gpt_params * params) {
// auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
// int ne = n_embd * image_embed->n_image_pos;
int ne = 1280 * 4 * 4;
float vals[56 * 56 * 3];
float embd[ne];
for (int i = 0; i < 3*56*56; i++)
{
vals[i] = 0.1;
}
// for (int i = 0; i < 56*56; i++)
// {
// for (int c = 0; c < 3; c++)
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
// }
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
std::ofstream outFile("img_layer_1_embed.bin", std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(embd), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to mrope.bin" << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
}
static void tmp_dump_patch_embed(struct llava_context * ctx_llava, gpt_params * params) {
// auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
// int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
// int ne = n_embd * image_embed->n_image_pos;
int ne = 1280 * 4 *4;
float vals[56 * 56 * 3];
float embd[ne];
for (int i = 0; i < 3*56*56; i++)
{
vals[i] = 0.1;
}
// for (int i = 0; i < 56*56; i++)
// {
// for (int c = 0; c < 3; c++)
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
// }
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
std::ofstream outFile("patch_embed.bin", std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(embd), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to mrope.bin" << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
}
/*
-----------------------------------------------------------------------------------------------------------------
*/
@ -714,16 +857,21 @@ int main(int argc, char ** argv) {
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
} else if (params.image.empty() | true) {
} else if (params.image[0].empty()) {
// This section is for testing LLM parts of the model during development phase!
auto ctx_llava = llava_init_context(&params, model);
// process the prompt
tmp_dump_img_embed(ctx_llava, &params);
// tmp_dump_img_embed_from_file(ctx_llava, &params);
// tmp_dump_img_mid_embed(ctx_llava, &params);
// tmp_dump_patch_embed(ctx_llava, &params);
// tmp_test_4d_reshape(ctx_llava, &params);
// tmp_test_rope(ctx_llava, &params);
// tmp_test_mrope(ctx_llava, &params);
// tmp_test_mrope_2d(ctx_llava, &params);
// process_prompt(ctx_llava, nullptr, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);