[WIP] create inference workflow, gguf convert script but fix
This commit is contained in:
parent
7e9fc7202e
commit
bcd49f5984
2 changed files with 172 additions and 22 deletions
|
@ -43,6 +43,7 @@ def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
|||
c3, _ = ten.shape
|
||||
else: # bias
|
||||
c3 = ten.shape[0]
|
||||
assert c3 % 3 == 0
|
||||
c = c3//3
|
||||
wq = ten[:c]
|
||||
wk = ten[c: c * 2]
|
||||
|
@ -103,12 +104,13 @@ def main(data_type='fp32'):
|
|||
fout.add_bool("clip.has_qwen2vl_merger", True)
|
||||
fout.add_string("clip.projector_type", "qwen2vl_merger")
|
||||
|
||||
print(cfg.vision_config)
|
||||
if 'silu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", True)
|
||||
fout.add_bool("clip.use_gelu", False)
|
||||
elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
||||
fout.add_bool("clip.use_silu", False)
|
||||
fout.add_bool("clip.use_gelu", True)
|
||||
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
|
|
|
@ -17,7 +17,62 @@
|
|||
#include <fstream>
|
||||
|
||||
|
||||
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
|
||||
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
const int patch_size = 14 * 2;
|
||||
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
|
||||
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
|
||||
auto img_tokens = image_embed->n_image_pos;
|
||||
llama_pos mrope_pos[img_tokens * 3];
|
||||
for (size_t y = 0; y < ph; y++)
|
||||
{
|
||||
for (size_t x = 0; x < pw; x++)
|
||||
{
|
||||
int i = y * pw + x;
|
||||
mrope_pos[i] = *st_pos_id;
|
||||
mrope_pos[i + img_tokens] = *st_pos_id + y;
|
||||
mrope_pos[i + img_tokens * 2] = *st_pos_id + x;
|
||||
}
|
||||
}
|
||||
*st_pos_id += std::max(pw, ph);
|
||||
|
||||
int processed = 0;
|
||||
for (int i = 0; i < img_tokens; i += n_batch) {
|
||||
int n_eval = img_tokens - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
|
||||
llama_pos batch_mrope_pos[n_eval * 3];
|
||||
memcpy(batch_mrope_pos, &mrope_pos[processed], n_eval * sizeof(llama_pos));
|
||||
memcpy(&batch_mrope_pos[n_eval], &mrope_pos[img_tokens + processed], n_eval * sizeof(llama_pos));
|
||||
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
|
||||
|
||||
llama_batch batch = {
|
||||
int32_t(n_eval), // n_tokens
|
||||
nullptr, // token
|
||||
(image_embed->embed+i*n_embd), // embed
|
||||
batch_mrope_pos, // pos
|
||||
nullptr, // n_seq_id
|
||||
nullptr, // seq_id
|
||||
nullptr, // logits
|
||||
*n_past, // all_pos_0
|
||||
1, 0,
|
||||
};
|
||||
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
processed += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
|
||||
int N = (int) tokens.size();
|
||||
std::vector<llama_pos> pos;
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
|
@ -29,7 +84,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
|||
// TODO: add mrope pos ids somewhere else
|
||||
pos.resize(batch.n_tokens * 3);
|
||||
for (int j = 0; j < batch.n_tokens * 3; j ++) {
|
||||
pos[j] = j % batch.n_tokens;
|
||||
pos[j] = *st_pos_id + (j % batch.n_tokens);
|
||||
}
|
||||
batch.pos = pos.data();
|
||||
|
||||
|
@ -38,26 +93,27 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
|||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
*st_pos_id += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id);
|
||||
}
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id);
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
int * n_past, int * st_pos_id) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
static std::string ret;
|
||||
|
@ -66,7 +122,7 @@ static const char * sample(struct gpt_sampler * smpl,
|
|||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
eval_id(ctx_llama, id, n_past, st_pos_id);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
|
@ -161,15 +217,16 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
|||
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
|
||||
int n_past = 0;
|
||||
int cur_pos_id = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
|
||||
std::string system_prompt, user_prompt;
|
||||
size_t image_pos = prompt.find("<image>");
|
||||
size_t image_pos = prompt.find("<|vision_start|>");
|
||||
if (image_pos != std::string::npos) {
|
||||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
// new templating mode: Provide the full prompt including system message and use <|vision_start|> as a placeholder for the image
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
user_prompt = prompt.substr(image_pos + std::string("<|vision_start|>").length());
|
||||
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
|
@ -186,8 +243,8 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
}
|
||||
} else {
|
||||
// llava-1.5 native mode
|
||||
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
||||
user_prompt = prompt + "\nASSISTANT:";
|
||||
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>";
|
||||
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n";
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
|
@ -196,10 +253,12 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
|
||||
if (image_embed != nullptr)
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true);
|
||||
if (image_embed != nullptr) {
|
||||
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip);
|
||||
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size);
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false);
|
||||
|
||||
// generate the response
|
||||
|
||||
|
@ -213,7 +272,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
|
@ -658,10 +717,15 @@ static void tmp_dump_img_embed(struct llava_context * ctx_llava, gpt_params * pa
|
|||
int ne = n_embd * 4;
|
||||
float vals[56 * 56 * 3];
|
||||
float embd[ne];
|
||||
for (int i = 0; i < 56*56*3; i++)
|
||||
for (int i = 0; i < 3*56*56; i++)
|
||||
{
|
||||
vals[i] = (float)(i % (56 * 56)) / (56*56);
|
||||
vals[i] = 0.1;
|
||||
}
|
||||
// for (int i = 0; i < 56*56; i++)
|
||||
// {
|
||||
// for (int c = 0; c < 3; c++)
|
||||
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
|
||||
// }
|
||||
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
|
||||
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
|
||||
|
||||
|
@ -676,6 +740,85 @@ static void tmp_dump_img_embed(struct llava_context * ctx_llava, gpt_params * pa
|
|||
}
|
||||
}
|
||||
|
||||
static void tmp_dump_img_embed_from_file(struct llava_context * ctx_llava, gpt_params * params) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
|
||||
int ne = n_embd * image_embed->n_image_pos;
|
||||
// int ne = 1280 * image_embed->n_image_pos * 4;
|
||||
|
||||
std::ofstream outFile("img_embed_f.bin", std::ios::binary);
|
||||
if (outFile.is_open()) {
|
||||
outFile.write(reinterpret_cast<const char*>(image_embed->embed), ne * sizeof(float));
|
||||
|
||||
outFile.close();
|
||||
std::cout << "Data successfully written to img_embed_f.bin, tokens: " << image_embed->n_image_pos << std::endl;
|
||||
} else {
|
||||
std::cerr << "Error opening file!" << std::endl;
|
||||
}
|
||||
|
||||
llava_image_embed_free(image_embed);
|
||||
}
|
||||
|
||||
static void tmp_dump_img_mid_embed(struct llava_context * ctx_llava, gpt_params * params) {
|
||||
// auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
// int ne = n_embd * image_embed->n_image_pos;
|
||||
int ne = 1280 * 4 * 4;
|
||||
float vals[56 * 56 * 3];
|
||||
float embd[ne];
|
||||
for (int i = 0; i < 3*56*56; i++)
|
||||
{
|
||||
vals[i] = 0.1;
|
||||
}
|
||||
// for (int i = 0; i < 56*56; i++)
|
||||
// {
|
||||
// for (int c = 0; c < 3; c++)
|
||||
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
|
||||
// }
|
||||
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
|
||||
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
|
||||
|
||||
std::ofstream outFile("img_layer_1_embed.bin", std::ios::binary);
|
||||
if (outFile.is_open()) {
|
||||
outFile.write(reinterpret_cast<const char*>(embd), ne * sizeof(float));
|
||||
|
||||
outFile.close();
|
||||
std::cout << "Data successfully written to mrope.bin" << std::endl;
|
||||
} else {
|
||||
std::cerr << "Error opening file!" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void tmp_dump_patch_embed(struct llava_context * ctx_llava, gpt_params * params) {
|
||||
// auto * image_embed = load_image(ctx_llava, params, "/home/ron/Downloads/gguf/dog.jpeg");
|
||||
// int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
|
||||
// int ne = n_embd * image_embed->n_image_pos;
|
||||
int ne = 1280 * 4 *4;
|
||||
float vals[56 * 56 * 3];
|
||||
float embd[ne];
|
||||
for (int i = 0; i < 3*56*56; i++)
|
||||
{
|
||||
vals[i] = 0.1;
|
||||
}
|
||||
// for (int i = 0; i < 56*56; i++)
|
||||
// {
|
||||
// for (int c = 0; c < 3; c++)
|
||||
// vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
|
||||
// }
|
||||
// auto param = &ctx_llava->ctx_clip->vision_model.hparams;
|
||||
tmp_clip_image_encode(ctx_llava->ctx_clip, 16, vals, 56, 56, embd);
|
||||
|
||||
std::ofstream outFile("patch_embed.bin", std::ios::binary);
|
||||
if (outFile.is_open()) {
|
||||
outFile.write(reinterpret_cast<const char*>(embd), ne * sizeof(float));
|
||||
|
||||
outFile.close();
|
||||
std::cout << "Data successfully written to mrope.bin" << std::endl;
|
||||
} else {
|
||||
std::cerr << "Error opening file!" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
-----------------------------------------------------------------------------------------------------------------
|
||||
*/
|
||||
|
@ -714,16 +857,21 @@ int main(int argc, char ** argv) {
|
|||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
} else if (params.image.empty() | true) {
|
||||
} else if (params.image[0].empty()) {
|
||||
// This section is for testing LLM parts of the model during development phase!
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
// process the prompt
|
||||
tmp_dump_img_embed(ctx_llava, ¶ms);
|
||||
// tmp_dump_img_embed_from_file(ctx_llava, ¶ms);
|
||||
|
||||
// tmp_dump_img_mid_embed(ctx_llava, ¶ms);
|
||||
// tmp_dump_patch_embed(ctx_llava, ¶ms);
|
||||
// tmp_test_4d_reshape(ctx_llava, ¶ms);
|
||||
// tmp_test_rope(ctx_llava, ¶ms);
|
||||
// tmp_test_mrope(ctx_llava, ¶ms);
|
||||
// tmp_test_mrope_2d(ctx_llava, ¶ms);
|
||||
|
||||
// process_prompt(ctx_llava, nullptr, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue