use template function directly

This commit is contained in:
hongruichen 2024-07-11 00:09:56 +08:00
parent 8932135fdb
commit be3aa9631f

View file

@ -269,168 +269,35 @@ void qnn_binary_op_impl(ggml_backend_qnn_context *ctx, const ggml_tensor *src0,
} // namespace
static void ggml_qnn_add(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
qnn_binary_op_impl<GGML_OP_ADD>(ctx, src0, src1, dst);
}
static void ggml_qnn_mul(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
qnn_binary_op_impl<GGML_OP_MUL>(ctx, src0, src1, dst);
}
/*
* ggml_qnn_mul_mat was re-added as a standalone function because
* the following comments came from https://github.com/ggerganov/llama.cpp/pull/1632
* MUL_MAT take most of the compute time (about 95%).
* So to speed up llama, we have to focus on MUL_MAT.
*
* We have three kinds of MUL_MAT to compute:
* mul_mat_f32: both src0 and src1 are F32.
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
*/
static void ggml_qnn_mul_mat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
qnn_binary_op_impl<GGML_OP_MUL_MAT>(ctx, src0, src1, dst);
}
static void ggml_qnn_repeat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_get_rows(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_acc(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_div(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_gelu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_silu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_tanh(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_relu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_hardswish(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_sqr(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_sqrt(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
qnn_binary_op_impl<GGML_OP_SQRT>(ctx, src0, src1, dst);
}
static void ggml_qnn_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_group_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_concat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_upscale(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_pad(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_rms_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_cpy(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_dup(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
ggml_qnn_cpy(ctx, src0, dst, nullptr);
(void)src1;
}
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_scale(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_clamp(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_soft_max(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_rope(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_pool2d(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_im2col(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_sum_rows(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_argsort(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
qnn::ggml_qnn_op_array_t qnn::ggml_qnn_op_array() {
static constexpr const qnn::ggml_qnn_op_t kQnnOpsTable[] = {
nullptr, // GGML_OP_NONE
nullptr, // GGML_OP_DUP
ggml_qnn_add, // GGML_OP_ADD
nullptr, // GGML_OP_ADD1
nullptr, // GGML_OP_ACC
nullptr, // GGML_OP_SUB
ggml_qnn_mul, // GGML_OP_MUL
nullptr, // GGML_OP_DIV
nullptr, // GGML_OP_SQR
ggml_qnn_sqrt, // GGML_OP_SQRT
nullptr, // GGML_OP_LOG
nullptr, // GGML_OP_SUM
nullptr, // GGML_OP_SUM_ROWS
nullptr, // GGML_OP_MEAN
nullptr, // GGML_OP_ARGMAX
nullptr, // GGML_OP_REPEAT
nullptr, // GGML_OP_REPEAT_BACK
nullptr, // GGML_OP_CONCAT
nullptr, // GGML_OP_SILU_BACK
nullptr, // GGML_OP_NORM
nullptr, // GGML_OP_RMS_NORM
nullptr, // GGML_OP_RMS_NORM_BACK
nullptr, // GGML_OP_GROUP_NORM
nullptr, // GGML_OP_NONE
nullptr, // GGML_OP_DUP
qnn_binary_op_impl<GGML_OP_ADD>, // GGML_OP_ADD
nullptr, // GGML_OP_ADD1
nullptr, // GGML_OP_ACC
nullptr, // GGML_OP_SUB
qnn_binary_op_impl<GGML_OP_MUL>, // GGML_OP_MUL
nullptr, // GGML_OP_DIV
nullptr, // GGML_OP_SQR
qnn_binary_op_impl<GGML_OP_SQRT>, // GGML_OP_SQRT
nullptr, // GGML_OP_LOG
nullptr, // GGML_OP_SUM
nullptr, // GGML_OP_SUM_ROWS
nullptr, // GGML_OP_MEAN
nullptr, // GGML_OP_ARGMAX
nullptr, // GGML_OP_REPEAT
nullptr, // GGML_OP_REPEAT_BACK
nullptr, // GGML_OP_CONCAT
nullptr, // GGML_OP_SILU_BACK
nullptr, // GGML_OP_NORM
nullptr, // GGML_OP_RMS_NORM
nullptr, // GGML_OP_RMS_NORM_BACK
nullptr, // GGML_OP_GROUP_NORM
ggml_qnn_mul_mat, // GGML_OP_MUL_MAT
nullptr, // GGML_OP_MUL_MAT_ID
nullptr, // GGML_OP_OUT_PROD
qnn_binary_op_impl<GGML_OP_MUL_MAT>, // GGML_OP_MUL_MAT
nullptr, // GGML_OP_MUL_MAT_ID
nullptr, // GGML_OP_OUT_PROD
nullptr, // GGML_OP_SCALE
nullptr, // GGML_OP_SET