Better 1.5 bit quantization (#5971)
* Trying blocvks of 16 for IQ1_S - seems slightly better * iq1s_blocks16: Adjust scale fudge factor to 1.125 * iq1s_blocks16: going to blocks of 32 with 2048 lattice points, so same bpw. This is even better than blocks of 16. Should I try blocks of 64? But to keep the same bpw, when I go to 4096 lattice points, I need to remove blocks alltogether and just have superblocks of 256 weights. * iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment * iq1s_blocks16: scalar and AVX2 dot products * iq1s_blocks16: CUDA dot product * iq1s_blocks16: Metal works, Neon does not Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s). Not seeing the bug in the Neon implementation for now. * iq1s_blocks16: fixed Neon * iq1s_blocks16: very slightly faster TG on Metal Still pathetic at 37 t/s * iq1s_blocks16: speedup Metal by packing codebook into uint32_t's * Formatting * iq1s_blocks16: uint32_t codebook is also better in CUDA TG-128 is now 204 t/s up from 194 t/s. PP-512 is 5890 t/s, so significantly better than other quants * iq1s_blocks16: slightly faster Neon dot product * iq1s_blocks16: faster AVX2 dot product * iq1s_blocks16: adjust to ggml-common.h --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
ef3ced26a3
commit
be858f6205
5 changed files with 1152 additions and 393 deletions
|
@ -217,8 +217,8 @@ static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N
|
|||
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/8];
|
||||
uint8_t scales[QK_K/16];
|
||||
uint8_t qs[QK_K/8];
|
||||
uint16_t qh[QK_K/32];
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue