commit
bebea657cb
2 changed files with 17 additions and 36 deletions
|
@ -4,7 +4,7 @@ add_executable(${TARGET} server.cpp json.hpp httplib.h)
|
|||
target_compile_definitions(${TARGET} PRIVATE
|
||||
# single thread
|
||||
CPPHTTPLIB_THREAD_POOL_COUNT=1
|
||||
# crash the server in the debug mode, otherwise send http 500 error
|
||||
# crash the server in debug mode, otherwise send an http 500 error
|
||||
$<$<CONFIG:Debug>:
|
||||
CPPHTTPLIB_NO_EXCEPTIONS=1
|
||||
>
|
||||
|
|
|
@ -55,8 +55,6 @@ struct llama_server_context
|
|||
|
||||
size_t num_tokens_predicted = 0;
|
||||
size_t n_past = 0;
|
||||
size_t n_consumed = 0;
|
||||
size_t n_session_consumed = 0;
|
||||
size_t n_remain = 0;
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
@ -87,7 +85,6 @@ struct llama_server_context
|
|||
|
||||
n_remain = 0;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
}
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
|
@ -105,7 +102,7 @@ struct llama_server_context
|
|||
return true;
|
||||
}
|
||||
|
||||
bool loadPrompt() {
|
||||
void loadPrompt() {
|
||||
params.prompt.insert(0, 1, ' '); // always add a first space
|
||||
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
|
@ -135,14 +132,11 @@ struct llama_server_context
|
|||
n_past--;
|
||||
}
|
||||
has_next_token = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void beginCompletion()
|
||||
{
|
||||
// number of tokens to keep when resetting context
|
||||
|
||||
|
||||
n_remain = params.n_predict;
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
}
|
||||
|
@ -196,9 +190,8 @@ struct llama_server_context
|
|||
auto n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++)
|
||||
{
|
||||
logits[it->first] += it->second;
|
||||
for (const auto &it : params.logit_bias) {
|
||||
logits[it.first] += it.second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
|
@ -275,7 +268,7 @@ struct llama_server_context
|
|||
return result;
|
||||
}
|
||||
|
||||
has_next_token = params.n_predict == -1 ? true : n_remain != 0;
|
||||
has_next_token = params.n_predict == -1 || n_remain != 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -334,7 +327,7 @@ struct llama_server_context
|
|||
std::vector<float> embedding(std::string content, int threads) {
|
||||
content.insert(0, 1, ' ');
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, content, true);
|
||||
if (tokens.size() > 0)
|
||||
if (!tokens.empty())
|
||||
{
|
||||
if (llama_eval(ctx, tokens.data(), tokens.size(), 0, threads))
|
||||
{
|
||||
|
@ -344,7 +337,7 @@ struct llama_server_context
|
|||
}
|
||||
}
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
auto *const embeddings = llama_get_embeddings(ctx);
|
||||
std::vector<float> embeddings_(embeddings, embeddings + n_embd);
|
||||
return embeddings_;
|
||||
}
|
||||
|
@ -392,7 +385,7 @@ void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms, con
|
|||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
|
||||
void server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
|
||||
{
|
||||
gpt_params default_params;
|
||||
server_params default_sparams;
|
||||
|
@ -534,7 +527,6 @@ bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_para
|
|||
server_print_usage(argc, argv, default_params, default_sparams);
|
||||
exit(1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
json format_generation_settings(llama_server_context &llama) {
|
||||
|
@ -575,12 +567,12 @@ bool parse_options_completion(json body, llama_server_context& llama, Response &
|
|||
llama.stream = false;
|
||||
}
|
||||
if (!body["n_predict"].is_null()) {
|
||||
llama.params.n_predict = body["n_predict"].get<int>();
|
||||
llama.params.n_predict = body["n_predict"].get<int32_t>();
|
||||
} else {
|
||||
llama.params.n_predict = default_params.n_predict;
|
||||
}
|
||||
if (!body["top_k"].is_null()) {
|
||||
llama.params.top_k = body["top_k"].get<int>();
|
||||
llama.params.top_k = body["top_k"].get<int32_t>();
|
||||
} else {
|
||||
llama.params.top_k = default_params.top_k;
|
||||
}
|
||||
|
@ -600,7 +592,7 @@ bool parse_options_completion(json body, llama_server_context& llama, Response &
|
|||
llama.params.typical_p = default_params.typical_p;
|
||||
}
|
||||
if (!body["repeat_last_n"].is_null()) {
|
||||
llama.params.repeat_last_n = body["repeat_last_n"].get<int>();
|
||||
llama.params.repeat_last_n = body["repeat_last_n"].get<int32_t>();
|
||||
} else {
|
||||
llama.params.repeat_last_n = default_params.repeat_last_n;
|
||||
}
|
||||
|
@ -625,7 +617,7 @@ bool parse_options_completion(json body, llama_server_context& llama, Response &
|
|||
llama.params.frequency_penalty = default_params.frequency_penalty;
|
||||
}
|
||||
if (!body["mirostat"].is_null()) {
|
||||
llama.params.mirostat = body["mirostat"].get<float>();
|
||||
llama.params.mirostat = body["mirostat"].get<int>();
|
||||
} else {
|
||||
llama.params.mirostat = default_params.mirostat;
|
||||
}
|
||||
|
@ -640,17 +632,17 @@ bool parse_options_completion(json body, llama_server_context& llama, Response &
|
|||
llama.params.mirostat_eta = default_params.mirostat_eta;
|
||||
}
|
||||
if (!body["penalize_nl"].is_null()) {
|
||||
llama.params.penalize_nl = body["penalize_nl"].get<float>();
|
||||
llama.params.penalize_nl = body["penalize_nl"].get<bool>();
|
||||
} else {
|
||||
llama.params.penalize_nl = default_params.penalize_nl;
|
||||
}
|
||||
if (!body["n_keep"].is_null()) {
|
||||
llama.params.n_keep = body["n_keep"].get<int>();
|
||||
llama.params.n_keep = body["n_keep"].get<int32_t>();
|
||||
} else {
|
||||
llama.params.n_keep = default_params.n_keep;
|
||||
}
|
||||
if (!body["seed"].is_null()) {
|
||||
llama.params.seed = body["seed"].get<int>();
|
||||
llama.params.seed = body["seed"].get<int32_t>();
|
||||
} else {
|
||||
llama.params.seed = time(NULL);
|
||||
}
|
||||
|
@ -717,10 +709,7 @@ int main(int argc, char **argv)
|
|||
llama_server_context llama;
|
||||
params.model = "ggml-model.bin";
|
||||
|
||||
if (server_params_parse(argc, argv, sparams, params) == false)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
server_params_parse(argc, argv, sparams, params);
|
||||
|
||||
llama.verbose = sparams.verbose;
|
||||
llama.json_indent = sparams.verbose ? 4 : -1;
|
||||
|
@ -768,15 +757,7 @@ int main(int argc, char **argv)
|
|||
return;
|
||||
}
|
||||
|
||||
if (!llama.loadPrompt()) {
|
||||
json data = {{"status", "error"}, {"reason", "Context too long."}};
|
||||
res.set_content(
|
||||
data.dump(llama.json_indent, ' ', false, json::error_handler_t::replace),
|
||||
"application/json");
|
||||
res.status = 400;
|
||||
return;
|
||||
}
|
||||
|
||||
llama.loadPrompt();
|
||||
llama.beginCompletion();
|
||||
|
||||
if (!llama.stream) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue