metal : matrix-matrix multiplication kernel (#2615)
* metal: matrix-matrix multiplication kernel This commit removes MPS and uses custom matrix-matrix multiplication kernels for all quantization types. This commit also adds grouped-query attention to support llama2 70B. * metal: fix performance degradation from gqa Integers are slow on the GPU, and 64-bit divides are extremely slow. In the context of GQA, we introduce a 64-bit divide that cannot be optimized out by the compiler, which results in a decrease of ~8% in inference performance. This commit fixes that issue by calculating a part of the offset with a 32-bit divide. Naturally, this limits the size of a single matrix to ~4GB. However, this limitation should suffice for the near future. * metal: fix bugs for GQA and perplexity test. I mixed up ne02 and nb02 in previous commit.
This commit is contained in:
parent
b5ffb2849d
commit
bf83bff674
6 changed files with 528 additions and 636 deletions
18
llama.cpp
18
llama.cpp
|
@ -1845,7 +1845,7 @@ static bool llama_eval_internal(
|
|||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (lctx.ctx_metal && N == 1) {
|
||||
if (lctx.ctx_metal) {
|
||||
// TODO: disabled until #2413 is resolved
|
||||
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
|
||||
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
|
||||
|
@ -1857,22 +1857,6 @@ static bool llama_eval_internal(
|
|||
ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
|
||||
}
|
||||
} else {
|
||||
// IMPORTANT:
|
||||
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
|
||||
// ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
|
||||
// coprocessor.
|
||||
//
|
||||
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
|
||||
// But for now, we have focused only on Matrix x Vector Metal multiplication.
|
||||
//
|
||||
// TODO: avoid these syncs via shared memory (ref #1696)
|
||||
//
|
||||
if (lctx.ctx_metal) {
|
||||
// We need to sync the GPU KV cache with the CPU KV cache
|
||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
|
||||
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
|
||||
}
|
||||
|
||||
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
|
||||
}
|
||||
#else
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue