ggml : add RPC backend

The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).
This commit is contained in:
Radoslav Gerganov 2024-04-18 14:07:22 +03:00
parent 541600201e
commit bfdd4f4045
11 changed files with 980 additions and 1 deletions

View file

@ -123,6 +123,7 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_RPC "llama: use RPC" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_SYCL "llama: use SYCL" OFF)
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
@ -494,6 +495,13 @@ if (LLAMA_MPI)
endif()
endif()
if (LLAMA_RPC)
add_compile_definitions(GGML_USE_RPC)
set(GGML_HEADERS_RPC ggml-rpc.h)
set(GGML_SOURCES_RPC ggml-rpc.cpp)
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
@ -1176,6 +1184,7 @@ add_library(ggml OBJECT
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}

View file

@ -1060,6 +1060,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
#endif // GGML_USE_CUDA_SYCL_VULKAN
return true;
}
if (arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.rpc_servers = argv[i];
return true;
}
if (arg == "--no-mmap") {
params.use_mmap = false;
return true;
@ -1557,6 +1565,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
}
printf(" --rpc SERVERS comma separated list of RPC servers\n");
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");

View file

@ -82,6 +82,7 @@ struct gpt_params {
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
std::string rpc_servers = ""; // comma separated list of RPC servers
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;

View file

@ -49,4 +49,7 @@ else()
add_subdirectory(server)
endif()
add_subdirectory(export-lora)
if (LLAMA_RPC)
add_subdirectory(rpc)
endif()
endif()

View file

@ -187,6 +187,7 @@ int main(int argc, char ** argv) {
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_rpc_init(params.rpc_servers.empty() ? nullptr : params.rpc_servers.c_str());
llama_model * model;
llama_context * ctx;

View file

@ -0,0 +1,2 @@
add_executable(rpc-server rpc-server.cpp)
target_link_libraries(rpc-server PRIVATE ggml llama)

101
examples/rpc/rpc-server.cpp Normal file
View file

@ -0,0 +1,101 @@
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include "ggml-rpc.h"
#include <memory>
#include <string>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
static ggml_backend_t create_backend() {
ggml_backend_t backend = NULL;
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
#ifdef GGML_USE_METAL
fprintf(stderr, "%s: using Metal backend\n", __func__);
backend = ggml_backend_metal_init();
if (!backend) {
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
}
#endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
fprintf(stderr, "%s: using CPU backend\n", __func__);
backend = ggml_backend_cpu_init();
}
return backend;
}
static int create_server_socket(const char * host, int port) {
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
return -1;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
serv_addr.sin_port = htons(port);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
return -1;
}
if (listen(sockfd, 5) < 0) {
return -1;
}
return sockfd;
}
int main(int argc, char * argv[])
{
if (argc < 3) {
fprintf(stderr, "Usage: %s <host> <port>\n", argv[0]);
return 1;
}
const char * host = argv[1];
int port = std::stoi(argv[2]);
ggml_backend_t backend = create_backend();
if (!backend) {
fprintf(stderr, "Failed to create backend\n");
return 1;
}
printf("Starting RPC server on %s:%d\n", host, port);
int server_socket = create_server_socket(host, port);
if (server_socket < 0) {
fprintf(stderr, "Failed to create server socket\n");
return 1;
}
while (true) {
struct sockaddr_in cli_addr;
socklen_t clilen = sizeof(cli_addr);
int client_socket = accept(server_socket, (struct sockaddr *) &cli_addr, &clilen);
if (client_socket < 0) {
fprintf(stderr, "Failed to accept client connection\n");
return 1;
}
printf("Accepted client connection\n");
rpc_serve_client(backend, client_socket);
printf("Client connection closed\n");
close(client_socket);
}
return 0;
}

767
ggml-rpc.cpp Normal file
View file

@ -0,0 +1,767 @@
#include "ggml-rpc.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include <memory>
#include <string>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#define UNUSED GGML_UNUSED
#define GGML_DEBUG 1
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
// RPC data structures
static ggml_guid_t ggml_backend_rpc_guid() {
static ggml_guid guid = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
return &guid;
}
struct ggml_backend_rpc_buffer_type_context {
int sockfd;
std::string name;
};
struct ggml_backend_rpc_context {
std::string endpoint;
std::string name;
int sockfd;
ggml_backend_buffer_type_t buft;
};
struct ggml_backend_rpc_buffer_context {
int sockfd;
uint64_t remote_ptr;
std::string name;
};
// RPC helper functions
static int socket_connect(const char * host, int port) {
struct sockaddr_in addr;
int sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
return -1;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
struct hostent * server = gethostbyname(host);
if (server == NULL) {
fprintf(stderr, "Cannot resolve host '%s'\n", host);
return -1;
}
bcopy((char *)server->h_addr, (char *)&addr.sin_addr.s_addr, server->h_length);
if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
return -1;
}
return sock;
}
static bool send_data(int sockfd, const void * data, size_t size) {
size_t bytes_sent = 0;
while (bytes_sent < size) {
ssize_t n = send(sockfd, (const uint8_t *)data + bytes_sent, size - bytes_sent, 0);
if (n < 0) {
return false;
}
bytes_sent += n;
}
return true;
}
static bool recv_data(int sockfd, void * data, size_t size) {
size_t bytes_recv = 0;
while (bytes_recv < size) {
ssize_t n = recv(sockfd, (uint8_t *)data + bytes_recv, size - bytes_recv, 0);
if (n <= 0) {
return false;
}
bytes_recv += n;
}
return true;
}
static bool send_rpc_cmd(int sockfd, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
uint8_t cmd_byte = cmd;
if (!send_data(sockfd, &cmd_byte, sizeof(cmd_byte))) {
return false;
}
uint64_t input_size = input.size();
if (!send_data(sockfd, &input_size, sizeof(input_size))) {
return false;
}
if (!send_data(sockfd, input.data(), input.size())) {
return false;
}
uint64_t output_size;
if (!recv_data(sockfd, &output_size, sizeof(output_size))) {
return false;
}
if (output_size == 0) {
output.clear();
return true;
}
output.resize(output_size);
if (!recv_data(sockfd, output.data(), output_size)) {
return false;
}
return true;
}
// RPC client-side implementation
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, FREE_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.empty());
delete ctx;
}
GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
static std::unordered_map<ggml_backend_buffer_t, void *> cache;
if (cache.find(buffer) != cache.end()) {
return cache[buffer];
}
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, BUFFER_GET_BASE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr;
memcpy(&base_ptr, output.data(), sizeof(base_ptr));
void * base = reinterpret_cast<void *>(base_ptr);
cache[buffer] = base;
return base;
}
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
rpc_tensor result;
result.id = reinterpret_cast<uint64_t>(tensor);
result.type = tensor->type;
if (tensor->buffer) {
ggml_backend_buffer_t buffer = tensor->buffer;
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
result.buffer = ctx->remote_ptr;
} else {
result.buffer = 0;
}
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result.ne[i] = tensor->ne[i];
result.nb[i] = tensor->nb[i];
}
result.op = tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result.op_params[i] = tensor->op_params[i];
}
result.flags = tensor->flags;
for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
}
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = tensor->nb[i];
}
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
result->op = (ggml_op) tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result->op_params[i] = tensor->op_params[i];
}
result->flags = tensor->flags;
result->data = reinterpret_cast<void *>(tensor->data);
snprintf(result->name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
UNUSED(buffer);
if (ggml_is_quantized(tensor->type)) {
GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
}
}
GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
int input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, SET_TENSOR, input, output);
GGML_ASSERT(status);
}
GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, GET_TENSOR, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == size);
// output serialization format: | data (size bytes) |
memcpy(data, output.data(), size);
}
GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
ggml_backend_buffer_t dst_buffer = dst->buffer;
ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
if (src_ctx->sockfd != dst_ctx->sockfd) {
return false;
}
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor src | rpc_tensor dst |
int input_size = 2*sizeof(rpc_tensor);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_src = serialize_tensor(src);
rpc_tensor rpc_dst = serialize_tensor(dst);
memcpy(input.data(), &rpc_src, sizeof(rpc_src));
memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, COPY_TENSOR, input, output);
GGML_ASSERT(status);
// output serialization format: | result (1 byte) |
GGML_ASSERT(output.size() == 1);
return output[0];
}
GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// serialization format: | bufptr (8 bytes) | value (1 byte) |
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sockfd, BUFFER_CLEAR, input, output);
GGML_ASSERT(status);
}
static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_get_name,
/* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
/* .get_base = */ ggml_backend_rpc_buffer_get_base,
/* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
/* .clear = */ ggml_backend_rpc_buffer_clear,
/* .reset = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->name.c_str();
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
// input serialization format: | size (8 bytes) |
int input_size = sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(buft_ctx->sockfd, ALLOC_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
uint64_t remote_ptr;
memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
size_t remote_size;
memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{buft_ctx->sockfd, remote_ptr, "RPC"},
remote_size);
return buffer;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
UNUSED(buft);
// TODO: this is hardcoded for now but it should come from the remote backend
return 32;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
UNUSED(buft);
return ggml_nbytes(tensor);
}
GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
if (!ggml_backend_is_rpc(backend)) {
return false;
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return buft_ctx->sockfd == rpc_ctx->sockfd;
}
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend,
/* .is_host = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return rpc_ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context;
//close(rpc_ctx->sockfd);
delete buft_ctx;
delete rpc_ctx->buft;
delete rpc_ctx;
delete backend;
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ctx->buft;
}
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
}
static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
if (tensor == nullptr) {
return;
}
if (visited.find(tensor) != visited.end()) {
return;
}
visited.insert(tensor);
for (int i = 0; i < GGML_MAX_SRC; i++) {
add_tensor(tensor->src[i], tensors, visited);
}
add_tensor(tensor->view_src, tensors, visited);
tensors.push_back(serialize_tensor(tensor));
}
static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
uint32_t n_nodes = cgraph->n_nodes;
std::vector<rpc_tensor> tensors;
std::unordered_set<ggml_tensor*> visited;
for (uint32_t i = 0; i < n_nodes; i++) {
add_tensor(cgraph->nodes[i], tensors, visited);
}
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_tensors = tensors.size();
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
output.resize(output_size, 0);
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
for (uint32_t i = 0; i < n_nodes; i++) {
out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
}
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
*out_ntensors = n_tensors;
rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(rpc_ctx->sockfd, GRAPH_COMPUTE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0];
}
GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
UNUSED(backend);
UNUSED(op);
GGML_ASSERT(false && "not implemented");
return false;
}
static ggml_backend_i ggml_backend_rpc_interface = {
/* .get_name = */ ggml_backend_rpc_name,
/* .free = */ ggml_backend_rpc_free,
/* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_rpc_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
/* .supports_op = */ ggml_backend_rpc_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static std::vector<std::string> endpoints;
GGML_API GGML_CALL void ggml_rpc_init(const char * rpc_servers) {
endpoints.clear();
GGML_ASSERT(rpc_servers != NULL);
std::string servers(rpc_servers);
size_t pos = 0;
while ((pos = servers.find(",")) != std::string::npos) {
std::string server = servers.substr(0, pos);
endpoints.push_back(server);
servers.erase(0, pos + 1);
}
endpoints.push_back(servers);
}
static ggml_backend_t instances[GGML_RPC_MAX_SERVERS] = {0};
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(int server_id) {
ggml_backend_rpc_init(server_id);
return ggml_backend_rpc_get_default_buffer_type(instances[server_id]);
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(int server_id) {
if (server_id < 0 || server_id >= ggml_backend_rpc_get_server_count()) {
return nullptr;
}
if (instances[server_id]) {
return instances[server_id];
}
std::string endpoint = endpoints[server_id];
GGML_PRINT_DEBUG("Connecting to %s\n", endpoint.c_str());
// split the endpoint into host and port
size_t pos = endpoint.find(":");
std::string host = endpoint.substr(0, pos);
int port = std::stoi(endpoint.substr(pos + 1));
int sockfd = socket_connect(host.c_str(), port);
GGML_ASSERT(sockfd >= 0 && "failed to connect to the server");
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .sockfd = */ sockfd,
/* .name = */ "RPC" + std::to_string(server_id)
};
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .context = */ buft_ctx
};
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC",
/* .sockfd = */ sockfd,
/* .buft = */ buft
};
instances[server_id] = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
/* .context = */ ctx
};
return instances[server_id];
}
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
GGML_API GGML_CALL int ggml_backend_rpc_get_server_count(void) {
return endpoints.size();
}
// RPC server-side implementation
static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | size (8 bytes) |
uint64_t size;
memcpy(&size, input.data(), sizeof(size));
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
uint64_t remote_ptr = reinterpret_cast<uint64_t>(buffer);
uint64_t remote_size = buffer->size;
GGML_PRINT_DEBUG("[%s] size: %lu -> remote_ptr: %lx, remote_size: %lu\n", __func__, size, remote_ptr, remote_size);
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
output.resize(2*sizeof(uint64_t), 0);
memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
}
static void rpc_buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | remote_ptr (8 bytes) |
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %lx\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
void * base = ggml_backend_buffer_get_base(buffer);
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &base_ptr, sizeof(base_ptr));
}
static void rpc_free_buffer(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) |
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %lx\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
ggml_backend_buffer_free(buffer);
}
static void rpc_buffer_clear(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
uint8_t value;
memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
GGML_PRINT_DEBUG("[%s] remote_ptr: %lx, value: %u\n", __func__, remote_ptr, value);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
ggml_backend_buffer_clear(buffer, value);
}
static void rpc_set_tensor(const std::vector<uint8_t> & input) {
// serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %lu, size: %lu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
ggml_backend_tensor_set(tensor, data, offset, size);
ggml_free(ctx);
}
static void rpc_get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
uint64_t size;
memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %lu, size: %lu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
// output serialization format: | data (size bytes) |
output.resize(size, 0);
ggml_backend_tensor_get(tensor, output.data(), offset, size);
ggml_free(ctx);
}
static void rpc_copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor src | rpc_tensor dst |
const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
struct ggml_init_params params {
/*.mem_size =*/ 2*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
bool result = ggml_backend_buffer_copy_tensor(src, dst);
// output serialization format: | result (1 byte) |
output.resize(1, 0);
output[0] = result;
ggml_free(ctx);
}
static struct ggml_tensor * create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
if (id == 0) {
return nullptr;
}
if (tensor_map.find(id) != tensor_map.end()) {
return tensor_map[id];
}
const rpc_tensor * tensor = tensor_ptrs.at(id);
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
tensor_map[id] = result;
for (int i = 0; i < GGML_MAX_SRC; i++) {
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
}
result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
result->view_offs = tensor->view_offs;
return result;
}
static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_nodes;
memcpy(&n_nodes, input.data(), sizeof(n_nodes));
const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
uint32_t n_tensors;
memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead();
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
graph->n_nodes = n_nodes;
std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
for (uint32_t i = 0; i < n_tensors; i++) {
tensor_ptrs[tensors[i].id] = &tensors[i];
}
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
for (uint32_t i = 0; i < n_nodes; i++) {
graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
}
ggml_status status = ggml_backend_graph_compute(backend, graph);
// output serialization format: | status (1 byte) |
output.resize(1, 0);
output[0] = status;
ggml_free(ctx);
}
void rpc_serve_client(ggml_backend_t backend, int sockfd) {
while (true) {
uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) {
break;
}
std::vector<uint8_t> input;
std::vector<uint8_t> output;
uint64_t input_size;
if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
break;
}
input.resize(input_size);
if (!recv_data(sockfd, input.data(), input_size)) {
break;
}
switch (cmd) {
case ALLOC_BUFFER: {
rpc_alloc_buffer(backend, input, output);
break;
}
case BUFFER_GET_BASE: {
rpc_buffer_get_base(input, output);
break;
}
case FREE_BUFFER: {
rpc_free_buffer(input);
break;
}
case BUFFER_CLEAR: {
rpc_buffer_clear(input);
break;
}
case SET_TENSOR: {
rpc_set_tensor(input);
break;
}
case GET_TENSOR: {
rpc_get_tensor(input, output);
break;
}
case COPY_TENSOR: {
rpc_copy_tensor(input, output);
break;
}
case GRAPH_COMPUTE: {
rpc_graph_compute(backend, input, output);
break;
}
default: {
fprintf(stderr, "Unknown command: %d\n", cmd);
break;
}
}
uint64_t output_size = output.size();
if (!send_data(sockfd, &output_size, sizeof(output_size))) {
break;
}
if (!send_data(sockfd, output.data(), output_size)) {
break;
}
}
}

53
ggml-rpc.h Normal file
View file

@ -0,0 +1,53 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_RPC_MAX_SERVERS 16
struct rpc_tensor {
uint64_t id;
uint32_t type;
uint64_t buffer;
uint32_t ne[GGML_MAX_DIMS];
uint32_t nb[GGML_MAX_DIMS];
uint32_t op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
uint64_t src[GGML_MAX_SRC];
uint64_t view_src;
uint64_t view_offs;
uint64_t data;
char name[GGML_MAX_NAME];
};
enum rpc_cmd {
ALLOC_BUFFER = 0,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
};
GGML_API GGML_CALL void ggml_rpc_init(const char * rpc_servers);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(int server_id);
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(int server_id);
GGML_API GGML_CALL int ggml_backend_rpc_get_server_count(void);
GGML_API GGML_CALL void rpc_serve_client(ggml_backend_t backend, int sockfd);
#ifdef __cplusplus
}
#endif

View file

@ -7,6 +7,10 @@
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_RPC
# include "ggml-rpc.h"
#endif
#ifdef GGML_USE_CUDA
# include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
@ -1690,6 +1694,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
#ifdef GGML_USE_METAL
buft = ggml_backend_metal_buffer_type();
#elif defined(GGML_USE_RPC)
buft = ggml_backend_rpc_buffer_type(gpu);
#elif defined(GGML_USE_CUDA)
buft = ggml_backend_cuda_buffer_type(gpu);
#elif defined(GGML_USE_VULKAN)
@ -1739,6 +1745,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g
static size_t llama_get_device_count() {
#if defined(GGML_USE_CUDA)
return ggml_backend_cuda_get_device_count();
#elif defined(GGML_USE_RPC)
return ggml_backend_rpc_get_server_count();
#elif defined(GGML_USE_SYCL)
return ggml_backend_sycl_get_device_count();
#elif defined(GGML_USE_VULKAN)
@ -1754,6 +1762,10 @@ static size_t llama_get_device_memory(int device) {
size_t free;
ggml_backend_cuda_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_RPC)
// TODO: implement
GGML_UNUSED(device);
return 1;
#elif defined(GGML_USE_SYCL)
size_t total;
size_t free;
@ -15483,7 +15495,7 @@ bool llama_supports_mlock(void) {
bool llama_supports_gpu_offload(void) {
#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
#else
@ -15512,6 +15524,16 @@ void llama_numa_init(enum ggml_numa_strategy numa) {
}
}
void llama_rpc_init(const char * rpc_servers) {
#ifdef GGML_USE_RPC
ggml_rpc_init(rpc_servers);
#else
if (rpc_servers != nullptr) {
LLAMA_LOG_WARN("%s: RPC support is not enabled in this build\n", __func__);
}
#endif
}
void llama_backend_free(void) {
#ifdef GGML_USE_MPI
ggml_mpi_backend_free();
@ -15703,6 +15725,16 @@ struct llama_context * llama_new_context_with_model(
}
ctx->backends.push_back(ctx->backend_metal);
}
#elif defined(GGML_USE_RPC)
for (int server = 0; server < ggml_backend_rpc_get_server_count(); ++server) {
ggml_backend_t backend = ggml_backend_rpc_init(server);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize RPC%d backend\n", __func__, server);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
#elif defined(GGML_USE_CUDA)
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used

View file

@ -383,6 +383,7 @@ extern "C" {
//optional:
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
LLAMA_API void llama_rpc_init(const char * rpc_servers);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);