Add support for using a different base model
This commit is contained in:
parent
57627f0e5f
commit
c150e1b0c3
8 changed files with 148 additions and 33 deletions
|
@ -146,6 +146,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
}
|
||||
params.lora_adapter = argv[i];
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "--embedding") {
|
||||
|
@ -250,6 +256,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " --mtest compute maximum memory usage\n");
|
||||
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
|
|
|
@ -35,6 +35,7 @@ struct gpt_params {
|
|||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
|
|
|
@ -115,7 +115,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
int err = llama_apply_lora_from_file(ctx, params.lora_adapter.c_str(), params.n_threads);
|
||||
int err = llama_apply_lora_from_file(ctx,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
return 1;
|
||||
|
|
|
@ -135,7 +135,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
int err = llama_apply_lora_from_file(ctx, params.lora_adapter.c_str(), params.n_threads);
|
||||
int err = llama_apply_lora_from_file(ctx,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
return 1;
|
||||
|
|
36
ggml.c
36
ggml.c
|
@ -5461,6 +5461,27 @@ static void ggml_compute_forward_dup_f16(
|
|||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
|
||||
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
|
||||
size_t id = 0;
|
||||
uint8_t * dst_ptr = (uint8_t *) dst->data;
|
||||
size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
||||
// todo: use work buffer
|
||||
float * src0_f32 = (float *) alloca(ne00 * sizeof(float));
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
for (int i01 = 0; i01 < ne01; i01++) {
|
||||
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
// convert to f32 and quantize
|
||||
for (int i00 = 0; i00 < ne00; i00++) {
|
||||
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
||||
}
|
||||
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
||||
id += dst_row_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
|
@ -5653,6 +5674,21 @@ static void ggml_compute_forward_dup_f32(
|
|||
}
|
||||
}
|
||||
}
|
||||
} else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
|
||||
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
|
||||
size_t id = 0;
|
||||
uint8_t * dst_ptr = (uint8_t *) dst->data;
|
||||
size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
for (int i01 = 0; i01 < ne01; i01++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
||||
id += dst_row_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false); // TODO: implement
|
||||
}
|
||||
|
|
90
llama.cpp
90
llama.cpp
|
@ -1,6 +1,8 @@
|
|||
// Defines fileno on msys:
|
||||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#endif
|
||||
|
||||
#include "llama_util.h"
|
||||
|
@ -1759,8 +1761,7 @@ int llama_model_quantize(
|
|||
}
|
||||
}
|
||||
|
||||
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, int n_threads) {
|
||||
// TODO: refactor all of this after PR #801
|
||||
int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
||||
|
||||
auto & model = ctx->model;
|
||||
|
@ -1801,10 +1802,10 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
|
||||
// create a temporary ggml context to store the lora tensors
|
||||
// todo: calculate size from biggest possible tensor
|
||||
std::vector<uint8_t> buf(1024ull * 1024ull * 1024ull);
|
||||
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf.size();
|
||||
params.mem_buffer = buf.data();
|
||||
params.mem_size = lora_buf.size();
|
||||
params.mem_buffer = lora_buf.data();
|
||||
params.no_alloc = false;
|
||||
|
||||
ggml_context * lora_ctx = ggml_init(params);
|
||||
|
@ -1816,6 +1817,32 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
model_tensors.insert(kv);
|
||||
}
|
||||
|
||||
|
||||
// load base model
|
||||
std::unique_ptr<llama_model_loader> model_loader;
|
||||
ggml_context * base_ctx = NULL;
|
||||
llama_buffer base_buf;
|
||||
if (path_base_model) {
|
||||
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
|
||||
|
||||
size_t ctx_size, mmapped_size;
|
||||
model_loader->calc_sizes(&ctx_size, &mmapped_size);
|
||||
base_buf.resize(ctx_size);
|
||||
|
||||
ggml_init_params base_params;
|
||||
base_params.mem_size = base_buf.size;
|
||||
base_params.mem_buffer = base_buf.addr;
|
||||
base_params.no_alloc = model_loader->use_mmap;
|
||||
|
||||
base_ctx = ggml_init(base_params);
|
||||
|
||||
model_loader->ggml_ctx = base_ctx;
|
||||
|
||||
// maybe this should in llama_model_loader
|
||||
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, false));
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: ", __func__);
|
||||
|
||||
// read tensors and apply
|
||||
|
@ -1892,13 +1919,31 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
|
||||
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
|
||||
|
||||
ggml_tensor * tensor = model_tensors[base_name];
|
||||
ggml_tensor * dest_t = model_tensors[base_name];
|
||||
ggml_tensor * base_t;
|
||||
if (model_loader) {
|
||||
// load from base model
|
||||
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
|
||||
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
||||
return 1;
|
||||
}
|
||||
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
|
||||
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
|
||||
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
|
||||
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
||||
model_loader->load_data_for(lt);
|
||||
lt.ggml_tensor->data = lt.data;
|
||||
}
|
||||
else {
|
||||
base_t = dest_t;
|
||||
}
|
||||
|
||||
ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
|
||||
ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
|
||||
|
||||
if (tensor->ne[0] != loraA->ne[1] || tensor->ne[1] != loraB->ne[1]) {
|
||||
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
||||
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
||||
" are you sure that this adapter is for this model?\n", __func__, tensor->ne[0], loraA->ne[1]);
|
||||
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -1910,14 +1955,14 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
BA = ggml_scale(lora_ctx, BA, scale_tensor);
|
||||
}
|
||||
|
||||
//printf("%s: (B)(%d %d %d %d) x (A)(%d %d %d %d) => (BA)(%d %d %d %d) + (T)(%d %d %d %d)\n",
|
||||
// base_name.c_str(),
|
||||
// (int)loraB->ne[0], (int)loraB->ne[1], (int)loraB->ne[2], (int)loraB->ne[3],
|
||||
// (int)loraA->ne[0], (int)loraA->ne[1], (int)loraA->ne[2], (int)loraA->ne[3],
|
||||
// (int)BA->ne[0], (int)BA->ne[1], (int)BA->ne[2], (int)BA->ne[3],
|
||||
// (int)tensor->ne[0], (int)tensor->ne[1], (int)tensor->ne[2], (int)tensor->ne[3]
|
||||
//);
|
||||
ggml_tensor * r = ggml_add_inplace(lora_ctx, tensor, BA);
|
||||
ggml_tensor * r;
|
||||
if (base_t == dest_t) {
|
||||
r = ggml_add_inplace(lora_ctx, dest_t, BA);
|
||||
}
|
||||
else {
|
||||
r = ggml_add(lora_ctx, base_t, BA);
|
||||
r = ggml_cpy(lora_ctx, r, dest_t);
|
||||
}
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(r);
|
||||
gf.n_threads = n_threads;
|
||||
|
@ -1934,7 +1979,11 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: this should be in a destructor, it will leak on failure
|
||||
ggml_free(lora_ctx);
|
||||
if (base_ctx) {
|
||||
ggml_free(base_ctx);
|
||||
}
|
||||
|
||||
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
||||
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
|
||||
|
@ -1942,6 +1991,15 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
return 0;
|
||||
}
|
||||
|
||||
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
try {
|
||||
return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
|
||||
} catch (const std::string & err) {
|
||||
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the KV cache that will contain the context for the
|
||||
// ongoing prediction with the model.
|
||||
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
|
||||
|
|
7
llama.h
7
llama.h
|
@ -97,12 +97,15 @@ extern "C" {
|
|||
enum llama_ftype ftype);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise
|
||||
// the adapter will the applied on top of the previous one
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the KV cache that will contain the context for the
|
||||
|
|
|
@ -168,7 +168,7 @@ struct llama_mmap {
|
|||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file) {
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
|
@ -181,12 +181,14 @@ struct llama_mmap {
|
|||
throw format("mmap failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, file->size, MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
|
@ -216,6 +218,7 @@ struct llama_mmap {
|
|||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
|
@ -224,6 +227,7 @@ struct llama_mmap {
|
|||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue