Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
c1736f30ac
23 changed files with 172 additions and 72 deletions
|
@ -450,7 +450,7 @@ These words will not be included in the completion, so make sure to add them to
|
|||
|
||||
`post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain.
|
||||
|
||||
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error.
|
||||
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name.
|
||||
|
||||
**Response format**
|
||||
|
||||
|
|
|
@ -1856,6 +1856,8 @@ struct server_context {
|
|||
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
||||
slot.n_sent_text += result.text_to_send.size();
|
||||
// add the token to slot queue and cache
|
||||
} else {
|
||||
result.text_to_send = "";
|
||||
}
|
||||
|
||||
slot.add_token(result);
|
||||
|
|
|
@ -411,7 +411,7 @@ struct vk_op_unary_push_constants {
|
|||
uint32_t ne;
|
||||
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
|
||||
uint32_t d_offset;
|
||||
uint32_t misalign_offsets;
|
||||
float param1; float param2;
|
||||
uint32_t ne0_012mp; uint32_t ne0_012L;
|
||||
uint32_t ne0_01mp; uint32_t ne0_01L;
|
||||
|
@ -459,7 +459,7 @@ struct vk_op_binary_push_constants {
|
|||
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
|
||||
uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23;
|
||||
uint32_t d_offset;
|
||||
uint32_t misalign_offsets;
|
||||
float param1; float param2; int32_t param3;
|
||||
};
|
||||
|
||||
|
@ -546,7 +546,7 @@ struct vk_staging_memcpy {
|
|||
};
|
||||
|
||||
struct vk_op_upscale_push_constants {
|
||||
uint32_t ne; uint32_t d_offset;
|
||||
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
||||
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
|
||||
float sf0; float sf1; float sf2; float sf3;
|
||||
|
@ -1404,10 +1404,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
// spec constants and tile sizes for non-quant matmul/matmul_id
|
||||
l_warptile = { 256, 128, 256, 64 };
|
||||
m_warptile = { 256, 128, 128, 64 };
|
||||
s_warptile = { 128, 32, 16, 64 };
|
||||
s_warptile = { 128, 64, 64, 64 };
|
||||
l_wg_denoms = {128, 256, 1 };
|
||||
m_wg_denoms = {128, 128, 1 };
|
||||
s_wg_denoms = { 32, 16, 1 };
|
||||
s_wg_denoms = { 64, 64, 1 };
|
||||
|
||||
// spec constants and tile sizes for quant matmul (non-Qi_K)
|
||||
l_warptile_mmq = { 256, 128, 256, 64 };
|
||||
|
@ -2017,11 +2017,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
|
||||
if (device->float_controls_rte_fp16) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
|
||||
} else {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true);
|
||||
}
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
|
||||
|
@ -5076,6 +5076,57 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
|||
}
|
||||
}
|
||||
|
||||
static uint32_t get_misalign_bytes(ggml_backend_vk_context * ctx, const ggml_tensor * t)
|
||||
{
|
||||
return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));;
|
||||
}
|
||||
|
||||
template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
GGML_UNUSED(p);
|
||||
GGML_UNUSED(src0);
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(src2);
|
||||
GGML_UNUSED(dst);
|
||||
static_assert(!std::is_const<T>::value, "unexpected type");
|
||||
GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0);
|
||||
GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0);
|
||||
GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0);
|
||||
GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0);
|
||||
}
|
||||
|
||||
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
|
||||
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
|
||||
|
||||
p.misalign_offsets = (a_offset << 16) | d_offset;
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(src2);
|
||||
}
|
||||
|
||||
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
|
||||
const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
|
||||
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
|
||||
|
||||
GGML_ASSERT(dst->op != GGML_OP_GET_ROWS || (a_offset == 0 && b_offset == 0 && d_offset == 0));
|
||||
|
||||
p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset;
|
||||
|
||||
GGML_UNUSED(src2);
|
||||
}
|
||||
|
||||
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
|
||||
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
|
||||
|
||||
p.a_offset = a_offset;
|
||||
p.d_offset = d_offset;
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(src2);
|
||||
}
|
||||
|
||||
template<typename PC>
|
||||
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
|
||||
VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||
|
@ -5179,8 +5230,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
}
|
||||
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
||||
GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT
|
||||
uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
if(!src0_uma) {
|
||||
d_X = src0_buf_ctx->dev_buffer;
|
||||
x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
|
@ -5196,6 +5246,12 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
|
||||
GGML_ASSERT(d_Z != nullptr);
|
||||
}
|
||||
// Compute misalignment offset for descriptors and store it in in push constants, then align the descriptor offsets.
|
||||
init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, dst);
|
||||
x_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
y_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
|
||||
if (op_supports_incontiguous) {
|
||||
x_sz = ggml_nbytes(src0);
|
||||
|
@ -5383,7 +5439,6 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
|
|||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
|
@ -5395,7 +5450,7 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
|
|||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
d_offset,
|
||||
0,
|
||||
0.0f, 0.0f, offset,
|
||||
}, dryrun);
|
||||
}
|
||||
|
@ -5599,7 +5654,7 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
|||
const float sf3 = (float)dst->ne[3] / src0->ne[3];
|
||||
|
||||
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
|
||||
(uint32_t)ggml_nelements(dst), 0,
|
||||
(uint32_t)ggml_nelements(dst), 0, 0,
|
||||
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
|
||||
sf0, sf1, sf2, sf3,
|
||||
|
@ -5709,13 +5764,12 @@ static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
d_offset,
|
||||
0,
|
||||
0.0f, 0.0f,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
}, dryrun);
|
||||
|
|
|
@ -21,9 +21,9 @@ void main() {
|
|||
get_indices(idx, i00, i01, i02, i03);
|
||||
|
||||
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
|
||||
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
|
||||
} else {
|
||||
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]));
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ void main() {
|
|||
uint i00, i01, i02, i03;
|
||||
get_indices(idx, i00, i01, i02, i03);
|
||||
|
||||
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
|
||||
|
||||
idx += num_threads;
|
||||
}
|
||||
|
|
|
@ -12,6 +12,6 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
|
||||
}
|
||||
|
|
|
@ -30,12 +30,12 @@ void main() {
|
|||
const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03;
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]);
|
||||
data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : data_b[get_boffset() + src1_idx]);
|
||||
#else
|
||||
if (is_src0) {
|
||||
data_d[p.d_offset + dst_idx] = data_a[src0_idx];
|
||||
data_d[get_doffset() + dst_idx] = data_a[get_aoffset() + src0_idx];
|
||||
} else {
|
||||
data_d[p.d_offset + dst_idx] = data_b[src1_idx];
|
||||
data_d[get_doffset() + dst_idx] = data_b[get_boffset() + src1_idx];
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -19,9 +19,9 @@ void main() {
|
|||
if (idx + (num_iter-1)*num_threads < p.ne) {
|
||||
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[p.d_offset + idx] = data_a[idx];
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
#endif
|
||||
idx += num_threads;
|
||||
}
|
||||
|
@ -32,9 +32,9 @@ void main() {
|
|||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + idx] = D_TYPE(data_a[idx]);
|
||||
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
|
||||
#else
|
||||
data_d[p.d_offset + idx] = data_a[idx];
|
||||
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
|
||||
#endif
|
||||
idx += num_threads;
|
||||
}
|
||||
|
|
|
@ -13,8 +13,8 @@ void main() {
|
|||
}
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
#else
|
||||
data_d[p.d_offset + dst_idx(idx)] = data_a[src0_idx(idx)];
|
||||
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -12,6 +12,6 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(cos(val));
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(cos(val));
|
||||
}
|
||||
|
|
|
@ -20,7 +20,7 @@ void main() {
|
|||
uint i00, i01, i02, i03;
|
||||
get_indices(idx, i00, i01, i02, i03);
|
||||
|
||||
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
|
||||
|
||||
idx += num_threads;
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@ layout (push_constant) uniform parameter
|
|||
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
|
||||
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
|
||||
uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
|
||||
uint d_offset;
|
||||
uint misalign_offsets;
|
||||
float param1; float param2; int param3;
|
||||
} p;
|
||||
|
||||
|
@ -22,6 +22,10 @@ uint get_idx() {
|
|||
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
}
|
||||
|
||||
uint get_aoffset() { return p.misalign_offsets >> 16; }
|
||||
uint get_boffset() { return (p.misalign_offsets >> 8) & 0xFF; }
|
||||
uint get_doffset() { return p.misalign_offsets & 0xFF; }
|
||||
|
||||
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
|
||||
uint fastmod(uint a, uint b) {
|
||||
if ((b & (b-1)) == 0) {
|
||||
|
|
|
@ -6,7 +6,7 @@ layout (push_constant) uniform parameter
|
|||
uint ne;
|
||||
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
|
||||
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
|
||||
uint d_offset;
|
||||
uint misalign_offsets;
|
||||
float param1; float param2;
|
||||
|
||||
uint ne0_012mp; uint ne0_012L;
|
||||
|
@ -24,6 +24,9 @@ uint get_idx() {
|
|||
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||
}
|
||||
|
||||
uint get_aoffset() { return p.misalign_offsets >> 16; }
|
||||
uint get_doffset() { return p.misalign_offsets & 0xFFFF; }
|
||||
|
||||
// see init_fastdiv_values in ggml-vulkan.cpp
|
||||
uint fastdiv(uint n, uint mp, uint L) {
|
||||
uint msbs, lsbs;
|
||||
|
|
|
@ -15,10 +15,10 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
|
||||
const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
|
||||
|
||||
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
#extension GL_EXT_shader_16bit_storage : require
|
||||
#extension GL_EXT_spirv_intrinsics: enable
|
||||
#extension GL_EXT_control_flow_attributes : require
|
||||
|
||||
#if RTE16
|
||||
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
|
||||
|
@ -23,40 +24,64 @@ layout (push_constant) uniform parameter
|
|||
|
||||
#include "types.comp"
|
||||
|
||||
#define BLOCK_SIZE 256
|
||||
layout(constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
const uint NUM_ITER = 512 / BLOCK_SIZE;
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
void main() {
|
||||
const uint i = gl_GlobalInvocationID.x;
|
||||
if (i >= p.pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1);
|
||||
const uint kx = i / ksize;
|
||||
const uint kd = kx * ksize;
|
||||
const uint ky = (i - kd) / p.OW;
|
||||
const uint ix = i % p.OW;
|
||||
const uint gidx = gl_GlobalInvocationID.x;
|
||||
|
||||
const uint oh = gl_GlobalInvocationID.y;
|
||||
const uint batch = gl_GlobalInvocationID.z / p.IC;
|
||||
const uint ic = gl_GlobalInvocationID.z % p.IC;
|
||||
|
||||
const uint iiw = ix * p.s0 + kx * p.d0 - p.p0;
|
||||
const uint iih = oh * p.s1 + ky * p.d1 - p.p1;
|
||||
|
||||
const uint offset_dst =
|
||||
((batch * p.OH + oh) * p.OW + ix) * p.CHW +
|
||||
(ic * (p.KW * p.KH) + ky * p.KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= p.IH || iiw < 0 || iiw >= p.IW) {
|
||||
data_d[offset_dst] = D_TYPE(0.0f);
|
||||
} else {
|
||||
const uint offset_src = ic * p.offset_delta + batch * p.batch_offset;
|
||||
data_d[offset_dst] = D_TYPE(data_a[offset_src + iih * p.IW + iiw]);
|
||||
A_TYPE values[NUM_ITER];
|
||||
uint offset_dst[NUM_ITER];
|
||||
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
|
||||
values[idx] = A_TYPE(0);
|
||||
}
|
||||
|
||||
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
|
||||
|
||||
const uint i = gidx * NUM_ITER + idx;
|
||||
|
||||
const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1);
|
||||
const uint kx = i / ksize;
|
||||
const uint kd = kx * ksize;
|
||||
const uint ky = (i - kd) / p.OW;
|
||||
const uint ix = i % p.OW;
|
||||
|
||||
const uint iiw = ix * p.s0 + kx * p.d0 - p.p0;
|
||||
const uint iih = oh * p.s1 + ky * p.d1 - p.p1;
|
||||
|
||||
offset_dst[idx] =
|
||||
((batch * p.OH + oh) * p.OW + ix) * p.CHW +
|
||||
(ic * (p.KW * p.KH) + ky * p.KW + kx);
|
||||
|
||||
if (i >= p.pelements) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (iih < p.IH && iiw < p.IW) {
|
||||
const uint offset_src = ic * p.offset_delta + batch * p.batch_offset;
|
||||
values[idx] = data_a[offset_src + iih * p.IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) {
|
||||
|
||||
const uint i = gidx * NUM_ITER + idx;
|
||||
|
||||
if (i >= p.pelements) {
|
||||
continue;
|
||||
}
|
||||
|
||||
data_d[offset_dst[idx]] = D_TYPE(values[idx]);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -20,7 +20,7 @@ void main() {
|
|||
uint i00, i01, i02, i03;
|
||||
get_indices(idx, i00, i01, i02, i03);
|
||||
|
||||
data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)]));
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)]));
|
||||
|
||||
idx += num_threads;
|
||||
}
|
||||
|
|
|
@ -24,5 +24,5 @@ void main() {
|
|||
|
||||
const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03;
|
||||
|
||||
data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : 0.0f);
|
||||
data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : 0.0f);
|
||||
}
|
||||
|
|
|
@ -22,5 +22,5 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx_mod(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx_mod(idx)]);
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@ void main() {
|
|||
continue;
|
||||
}
|
||||
|
||||
data_d[p.d_offset + idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(p.param1));
|
||||
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) * FLOAT_TYPE(p.param1));
|
||||
idx += num_threads;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -12,6 +12,6 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(sin(val));
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(sin(val));
|
||||
}
|
||||
|
|
|
@ -12,6 +12,6 @@ void main() {
|
|||
return;
|
||||
}
|
||||
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]);
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val * val);
|
||||
const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
|
||||
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val * val);
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
uint ne; uint d_offset;
|
||||
uint ne; uint a_offset; uint d_offset;
|
||||
uint nb00; uint nb01; uint nb02; uint nb03;
|
||||
uint ne10; uint ne11; uint ne12; uint ne13;
|
||||
float sf0; float sf1; float sf2; float sf3;
|
||||
|
@ -32,5 +32,5 @@ void main() {
|
|||
const uint i02 = uint(i12 / p.sf2);
|
||||
const uint i03 = uint(i13 / p.sf3);
|
||||
|
||||
data_d[p.d_offset + idx] = D_TYPE(data_a[i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
|
||||
data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]);
|
||||
}
|
||||
|
|
|
@ -3945,6 +3945,18 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
}
|
||||
}
|
||||
|
||||
for (int K : {3, 5}) {
|
||||
for (int IC : {256, 2560}) {
|
||||
for (int IW_IH : {32, 64, 256}) {
|
||||
if (IC == 2560 && IW_IH == 256) {
|
||||
// too big
|
||||
continue;
|
||||
}
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return test_cases;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue