add gradient accumulation

specify number accumulation steps with '--grad-acc N'.
this will simulate a bigger batch size of grad_acc*batch.
This commit is contained in:
xaedes 2023-09-05 01:09:06 +02:00
parent d3afd7131e
commit c1c3b0e0c2
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
4 changed files with 264 additions and 198 deletions

View file

@ -1730,6 +1730,7 @@ struct train_params {
int n_ctx; int n_ctx;
int n_threads; int n_threads;
int n_batch; int n_batch;
int n_gradient_accumulation;
bool custom_n_ctx; bool custom_n_ctx;
@ -1804,6 +1805,7 @@ struct train_params get_default_train_params() {
params.n_ctx = 128; params.n_ctx = 128;
params.n_threads = 6; params.n_threads = 6;
params.n_batch = 8; params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.custom_n_ctx = false; params.custom_n_ctx = false;
@ -1880,6 +1882,7 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation);
fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
@ -2015,6 +2018,12 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
break; break;
} }
params->n_batch = std::stoi(argv[i]); params->n_batch = std::stoi(argv[i]);
} else if (arg == "--grad-acc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->n_gradient_accumulation = std::stoi(argv[i]);
} else if (arg == "--norm-rms-eps") { } else if (arg == "--norm-rms-eps") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -2299,13 +2308,14 @@ void print_duration(float fmillis) {
printf("%02lld:%02lld:%02lld", hours, minutes, seconds); printf("%02lld:%02lld:%02lld", hours, minutes, seconds);
} }
void opt_callback(void * vdata, float * sched) { void opt_callback(void * vdata, int accum_step, float * sched) {
struct opt_callback_data * data = (struct opt_callback_data *) vdata; struct opt_callback_data * data = (struct opt_callback_data *) vdata;
struct train_params * params = data->params; struct train_params * params = data->params;
struct ggml_opt_context * opt = data->opt; struct ggml_opt_context * opt = data->opt;
int n_batch = params->n_batch; int n_batch = params->n_batch;
int n_ctx = params->n_ctx; int n_ctx = params->n_ctx;
if (accum_step == 0) {
int64_t now = ggml_time_ms(); int64_t now = ggml_time_ms();
if (now > data->last_time) { if (now > data->last_time) {
float dt = now - data->last_time; float dt = now - data->last_time;
@ -2376,6 +2386,7 @@ void opt_callback(void * vdata, float * sched) {
printf(">"); printf(">");
// printf("improvement: %*d>", impr_plot, (int)0); // printf("improvement: %*d>", impr_plot, (int)0);
printf("\n"); printf("\n");
}
if (data->shuffle_countdown < n_batch) { if (data->shuffle_countdown < n_batch) {
printf("%s: reshuffle samples\n", __func__); printf("%s: reshuffle samples\n", __func__);
@ -2497,6 +2508,7 @@ int main(int argc, char ** argv) {
opt->params.past = params.opt_past; opt->params.past = params.opt_past;
opt->params.delta = params.opt_delta; opt->params.delta = params.opt_delta;
opt->params.max_no_improvement = params.opt_max_no_improvement; opt->params.max_no_improvement = params.opt_max_no_improvement;
opt->params.n_gradient_accumulation = params.n_gradient_accumulation;
opt->params.adam.n_iter = params.adam_n_iter; opt->params.adam.n_iter = params.adam_n_iter;
opt->params.adam.sched = 1.0f; opt->params.adam.sched = 1.0f;
opt->params.adam.alpha = params.adam_alpha; opt->params.adam.alpha = params.adam_alpha;
@ -2514,6 +2526,7 @@ int main(int argc, char ** argv) {
opt->params.past = params.opt_past; opt->params.past = params.opt_past;
opt->params.delta = params.opt_delta; opt->params.delta = params.opt_delta;
opt->params.max_no_improvement = params.opt_max_no_improvement; opt->params.max_no_improvement = params.opt_max_no_improvement;
opt->params.n_gradient_accumulation = params.n_gradient_accumulation;
opt->params.lbfgs.n_iter = params.lbfgs_n_iter; opt->params.lbfgs.n_iter = params.lbfgs_n_iter;
} }

View file

@ -1299,8 +1299,9 @@ struct train_params {
int n_ff; int n_ff;
int n_threads; int n_threads;
int n_batch;
int n_examples; int n_examples;
int n_batch;
int n_gradient_accumulation;
float f_norm_rms_eps; float f_norm_rms_eps;
float rope_freq_base; float rope_freq_base;
@ -1362,8 +1363,9 @@ struct train_params get_default_train_params() {
params.n_ff = 768; params.n_ff = 768;
params.n_threads = 6; params.n_threads = 6;
params.n_batch = 8;
params.n_examples = 1; params.n_examples = 1;
params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.f_norm_rms_eps = 1e-5f; params.f_norm_rms_eps = 1e-5f;
params.rope_freq_base = 10000.0f; params.rope_freq_base = 10000.0f;
@ -1428,8 +1430,9 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples);
fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation);
fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval);
fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off");
fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n");
@ -1591,6 +1594,12 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) {
break; break;
} }
params->n_batch = std::stoi(argv[i]); params->n_batch = std::stoi(argv[i]);
} else if (arg == "--grad-acc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->n_gradient_accumulation = std::stoi(argv[i]);
} else if (arg == "-n" || arg == "--examples") { } else if (arg == "-n" || arg == "--examples") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -1779,13 +1788,14 @@ struct opt_callback_data {
struct ggml_tensor * target_probs; struct ggml_tensor * target_probs;
}; };
void opt_callback(void * vdata, float * sched) { void opt_callback(void * vdata, int accum_step, float * sched) {
struct opt_callback_data * data = (struct opt_callback_data *) vdata; struct opt_callback_data * data = (struct opt_callback_data *) vdata;
struct train_params * params = data->params; struct train_params * params = data->params;
struct ggml_opt_context * opt = data->opt; struct ggml_opt_context * opt = data->opt;
int n_batch = params->n_batch; int n_batch = params->n_batch;
int n_ctx = params->n_ctx; int n_ctx = params->n_ctx;
if (accum_step == 0) {
const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every);
if (save_now) { if (save_now) {
int new_iters = opt->iter - data->last_save_iter; int new_iters = opt->iter - data->last_save_iter;
@ -1819,6 +1829,8 @@ void opt_callback(void * vdata, float * sched) {
int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);
}
if (data->shuffle_countdown < n_batch) { if (data->shuffle_countdown < n_batch) {
printf("%s: reshuffle samples\n", __func__); printf("%s: reshuffle samples\n", __func__);
shuffle_ints(data->samples_data, data->samples_data + data->samples_size); shuffle_ints(data->samples_data, data->samples_data + data->samples_size);
@ -1923,6 +1935,7 @@ int main(int argc, char ** argv) {
opt_params_adam.past = params.opt_past; opt_params_adam.past = params.opt_past;
opt_params_adam.delta = params.opt_delta; opt_params_adam.delta = params.opt_delta;
opt_params_adam.max_no_improvement = params.opt_max_no_improvement; opt_params_adam.max_no_improvement = params.opt_max_no_improvement;
opt_params_adam.n_gradient_accumulation = params.n_gradient_accumulation;
opt_params_adam.adam.n_iter = params.adam_n_iter; opt_params_adam.adam.n_iter = params.adam_n_iter;
opt_params_adam.adam.sched = 1.0f; opt_params_adam.adam.sched = 1.0f;
opt_params_adam.adam.alpha = params.adam_alpha; opt_params_adam.adam.alpha = params.adam_alpha;
@ -1936,9 +1949,10 @@ int main(int argc, char ** argv) {
opt_params_lbfgs.print_forward_graph = false; opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false; opt_params_lbfgs.print_backward_graph = false;
opt_params_lbfgs.n_threads = params.n_threads; opt_params_lbfgs.n_threads = params.n_threads;
opt_params_adam.past = params.opt_past; opt_params_lbfgs.past = params.opt_past;
opt_params_adam.delta = params.opt_delta; opt_params_lbfgs.delta = params.opt_delta;
opt_params_adam.max_no_improvement = params.opt_max_no_improvement; opt_params_lbfgs.max_no_improvement = params.opt_max_no_improvement;
opt_params_lbfgs.n_gradient_accumulation = params.n_gradient_accumulation;
opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter;
opt->ctx = model.ctx; opt->ctx = model.ctx;

128
ggml.c
View file

@ -19112,7 +19112,7 @@ static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float *
} }
static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
int i = 0; int64_t i = 0;
for (int p = 0; p < np; ++p) { for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ; const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once // TODO: add function to get all elements at once
@ -19122,6 +19122,17 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g
} }
} }
static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
}
}
}
// //
// ADAM // ADAM
// //
@ -19170,26 +19181,37 @@ static enum ggml_opt_result ggml_opt_adam(
const float eps = params.adam.eps; const float eps = params.adam.eps;
const float gclip = params.adam.gclip; const float gclip = params.adam.gclip;
const int decay_min_ndim = params.adam.decay_min_ndim; const int decay_min_ndim = params.adam.decay_min_ndim;
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
float * g = opt->adam.g->data; // gradients
float * m = opt->adam.m->data; // first moment float * m = opt->adam.m->data; // first moment
float * v = opt->adam.v->data; // second moment float * v = opt->adam.v->data; // second moment
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
if (callback) {
callback(callback_data, &sched);
}
// compute the function value
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
ggml_graph_compute(gb, &cplan);
opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
// compute the function value
float fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
callback(callback_data, accum_step, &sched);
}
// ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
opt->adam.fx_prev = fx;
opt->adam.fx_best = opt->adam.fx_prev; opt->adam.fx_best = opt->adam.fx_prev;
if (pf) { if (pf) {
pf[opt->iter % params.past] = opt->adam.fx_prev; pf[opt->iter % params.past] = opt->adam.fx_prev;
@ -19234,12 +19256,8 @@ static enum ggml_opt_result ggml_opt_adam(
if (gclip > 0.0f) { if (gclip > 0.0f) {
// gradient clipping // gradient clipping
ggml_float sum = 0.0; ggml_float sum = 0.0;
for (int p = 0; p < np; ++p) { for (int64_t i = 0; i < nx; ++i) {
const int64_t ne = ggml_nelements(ps[p]); sum += (ggml_float)(g[i]*g[i]);
for (int64_t j = 0; j < ne; ++j) {
float g = ggml_get_f32_1d(ps[p]->grad, j);
sum += (ggml_float)(g*g);
}
} }
ggml_float norm = sqrt(sum); ggml_float norm = sqrt(sum);
if (norm > (ggml_float) gclip) { if (norm > (ggml_float) gclip) {
@ -19254,9 +19272,9 @@ static enum ggml_opt_result ggml_opt_adam(
const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched; const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
for (int64_t j = 0; j < ne; ++j) { for (int64_t j = 0; j < ne; ++j) {
float x = ggml_get_f32_1d(ps[p], j); float x = ggml_get_f32_1d(ps[p], j);
float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm; float g_ = g[i]*gnorm;
m[i] = m[i]*beta1 + g*(1.0f - beta1); m[i] = m[i]*beta1 + g_*(1.0f - beta1);
v[i] = v[i]*beta2 + g*g*(1.0f - beta2); v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
float mh = m[i]*beta1h; float mh = m[i]*beta1h;
float vh = v[i]*beta2h; float vh = v[i]*beta2h;
vh = sqrtf(vh) + eps; vh = sqrtf(vh) + eps;
@ -19267,16 +19285,20 @@ static enum ggml_opt_result ggml_opt_adam(
} }
} }
fx = 0;
ggml_set_zero(opt->adam.g);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) { if (callback) {
callback(callback_data, &sched); callback(callback_data, accum_step, &sched);
} }
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan); ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
fx += ggml_get_f32_1d(f, 0);
}
fx *= accum_norm;
const float fx = ggml_get_f32_1d(f, 0);
opt->loss_after = fx; opt->loss_after = fx;
@ -19373,6 +19395,9 @@ static enum ggml_opt_result linesearch_backtracking(
const float dec = 0.5f; const float dec = 0.5f;
const float inc = 2.1f; const float inc = 2.1f;
const int n_accum = MAX(1, params->n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
if (*step <= 0.f) { if (*step <= 0.f) {
return GGML_LINESEARCH_INVALID_PARAMETERS; return GGML_LINESEARCH_INVALID_PARAMETERS;
} }
@ -19390,12 +19415,6 @@ static enum ggml_opt_result linesearch_backtracking(
dgtest = params->lbfgs.ftol*dginit; dgtest = params->lbfgs.ftol*dginit;
while (true) { while (true) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, &sched);
}
ggml_vec_cpy_f32(nx, x, xp); ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_mad_f32(nx, x, d, *step); ggml_vec_mad_f32(nx, x, d, *step);
@ -19403,14 +19422,22 @@ static enum ggml_opt_result linesearch_backtracking(
{ {
ggml_opt_set_params(np, ps, x); ggml_opt_set_params(np, ps, x);
*fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched);
}
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, cplan); ggml_graph_compute(gb, cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
*fx += ggml_get_f32_1d(f, 0);
}
*fx *= accum_norm;
ggml_opt_get_grad(np, ps, g);
*fx = ggml_get_f32_1d(f, 0);
} }
++count; ++count;
@ -19512,6 +19539,9 @@ static enum ggml_opt_result ggml_opt_lbfgs(
float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
const int n_accum = MAX(1, params.n_gradient_accumulation);
const float accum_norm = 1.0f / (float) n_accum;
float fx = 0.0f; // cost function value float fx = 0.0f; // cost function value
float xnorm = 0.0f; // ||x|| float xnorm = 0.0f; // ||x||
float gnorm = 0.0f; // ||g|| float gnorm = 0.0f; // ||g||
@ -19525,24 +19555,25 @@ static enum ggml_opt_result ggml_opt_lbfgs(
float * lm_s = opt->lbfgs.lms->data; float * lm_s = opt->lbfgs.lms->data;
float * lm_y = opt->lbfgs.lmy->data; float * lm_y = opt->lbfgs.lmy->data;
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, &sched);
}
// evaluate the function value and its gradient // evaluate the function value and its gradient
{ {
ggml_opt_set_params(np, ps, x); ggml_opt_set_params(np, ps, x);
fx = 0;
memset(g, 0, sizeof(float)*nx);
for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, accum_step, &sched);
}
// ggml_graph_reset (gf); // ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f); ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan); ggml_graph_compute(gb, &cplan);
ggml_opt_acc_grad(np, ps, g, accum_norm);
ggml_opt_get_grad(np, ps, g); fx += ggml_get_f32_1d(f, 0);
}
fx = ggml_get_f32_1d(f, 0); fx *= accum_norm;
opt->loss_before = fx; opt->loss_before = fx;
opt->loss_after = fx; opt->loss_after = fx;
@ -19729,6 +19760,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
.print_forward_graph = true, .print_forward_graph = true,
.print_backward_graph = true, .print_backward_graph = true,
.n_gradient_accumulation = 1,
.adam = { .adam = {
.n_iter = 10000, .n_iter = 10000,
.sched = 1.000f, .sched = 1.000f,
@ -19757,6 +19790,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
.print_forward_graph = true, .print_forward_graph = true,
.print_backward_graph = true, .print_backward_graph = true,
.n_gradient_accumulation = 1,
.lbfgs = { .lbfgs = {
.m = 6, .m = 6,
.n_iter = 100, .n_iter = 100,
@ -19790,7 +19825,7 @@ GGML_API void ggml_opt_init(
if (opt->ctx == NULL) { if (opt->ctx == NULL) {
struct ggml_init_params ctx_opt_params; struct ggml_init_params ctx_opt_params;
if (opt->params.type == GGML_OPT_ADAM) { if (opt->params.type == GGML_OPT_ADAM) {
ctx_opt_params.mem_size = GGML_MEM_ALIGN*2 + ggml_tensor_overhead()*2 + ggml_type_size(GGML_TYPE_F32)*nx*2; ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
if (opt->params.past > 0) { if (opt->params.past > 0) {
ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
} }
@ -19808,6 +19843,7 @@ GGML_API void ggml_opt_init(
switch (opt->params.type) { switch (opt->params.type) {
case GGML_OPT_ADAM: case GGML_OPT_ADAM:
{ {
opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
opt->adam.pf = params.past > 0 opt->adam.pf = params.past > 0

5
ggml.h
View file

@ -1708,7 +1708,7 @@ extern "C" {
GGML_LINESEARCH_INVALID_PARAMETERS, GGML_LINESEARCH_INVALID_PARAMETERS,
}; };
typedef void (*ggml_opt_callback)(void * data, float * sched); typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched);
// optimization parameters // optimization parameters
// //
@ -1739,6 +1739,8 @@ extern "C" {
bool print_forward_graph; bool print_forward_graph;
bool print_backward_graph; bool print_backward_graph;
int n_gradient_accumulation;
// ADAM parameters // ADAM parameters
struct { struct {
int n_iter; int n_iter;
@ -1784,6 +1786,7 @@ extern "C" {
float loss_after; float loss_after;
struct { struct {
struct ggml_tensor * g; // current gradient
struct ggml_tensor * m; // first moment struct ggml_tensor * m; // first moment
struct ggml_tensor * v; // second moment struct ggml_tensor * v; // second moment
struct ggml_tensor * pf; // past function values struct ggml_tensor * pf; // past function values