llama/ggml: add LLM training support

more compact progress bar

refactor: llama_prepare_sbatch/ubatch

llama_save_model_to_file

gqa_mode arg for repeat_back

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt
This commit is contained in:
Johannes Gäßler 2024-11-17 14:58:51 +01:00
parent a5203b4465
commit c25557362a
26 changed files with 1294 additions and 339 deletions

View file

@ -53,6 +53,7 @@ else()
add_subdirectory(tokenize)
add_subdirectory(tts)
add_subdirectory(gen-docs)
add_subdirectory(training)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(convert-llama2c-to-ggml)

View file

@ -0,0 +1,5 @@
set(TARGET llama-finetune)
add_executable(${TARGET} finetune.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,17 @@
# llama.cpp/examples/training
This directory contains examples related to language model training using llama.cpp/GGML.
So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP.
Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory.
**For CPU training, compile llama.cpp without any additional backends such as CUDA.**
**For CUDA training, use the maximum number of GPU layers.**
Proof of concept:
``` sh
export model_name=llama_3.2-1b && export quantization=f32
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
```
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.

View file

@ -0,0 +1,97 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
common_params params;
params.logits_all = true;
params.escape = false;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
return 1;
}
if (params.use_mmap) {
LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n", __func__);
params.use_mmap = false;
}
if (params.cache_type_k == GGML_TYPE_F16) {
LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
params.cache_type_k = GGML_TYPE_F32;
}
if (params.cache_type_v == GGML_TYPE_F16) {
LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
params.cache_type_v = GGML_TYPE_F32;
}
common_init();
llama_backend_init();
llama_numa_init(params.numa);
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
constexpr float val_split = 0.05f;
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get())/2);
struct ggml_opt_optimizer_params optimizer_params = ggml_opt_get_default_optimizer_params(nullptr);
optimizer_params.adamw.alpha = 1e-7f; // learning rate
struct llama_opt_params lopt_params {
/*n_ctx_train =*/ 0,
/*param_filter =*/ llama_opt_param_filter_all,
/*param_filter_ud =*/ nullptr,
/*get_opt_pars =*/ ggml_opt_get_constant_optimizer_params,
/*get_opt_pars_ud =*/ &optimizer_params,
};
llama_opt_init(ctx.get(), model.get(), lopt_params);
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - val_split);
ggml_opt_result_t result_train = ggml_opt_result_init();
ggml_opt_result_t result_eval = ggml_opt_result_init();
for (int epoch = 0; epoch < 2; ++epoch) {
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
fprintf(stderr, "\n");
ggml_opt_result_reset(result_train);
ggml_opt_result_reset(result_eval);
}
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_eval);
llama_model_save_to_file(model.get(), "finetuned-model.gguf");
llama_backend_free();
return 0;
}