Refactoring: more concise and readable
This commit is contained in:
parent
d8aba05a62
commit
c2af31149f
1 changed files with 81 additions and 103 deletions
|
@ -17,6 +17,7 @@
|
||||||
# and vocabulary.
|
# and vocabulary.
|
||||||
#
|
#
|
||||||
|
|
||||||
|
import argparse
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
import struct
|
import struct
|
||||||
|
@ -24,45 +25,29 @@ import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||||
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||||
print(" ftype == 0 -> float32")
|
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
|
||||||
print(" ftype == 1 -> float16")
|
args = parser.parse_args()
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# output in the same directory as the model
|
# output in the same directory as the model
|
||||||
dir_model = sys.argv[1]
|
dir_model = args.dir_model
|
||||||
|
ftype = args.ftype
|
||||||
|
|
||||||
fname_hparams = f"{dir_model}/params.json"
|
fname_hparams = f"{dir_model}/params.json"
|
||||||
fname_tokenizer = f"{dir_model}/../tokenizer.model"
|
fname_tokenizer = f"{dir_model}/../tokenizer.model"
|
||||||
|
|
||||||
def get_n_parts(dim):
|
def get_n_parts(dim):
|
||||||
mappings = {
|
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
||||||
4096: 1,
|
n_parts = mappings.get(dim)
|
||||||
5120: 2,
|
if n_parts is None:
|
||||||
6656: 4,
|
|
||||||
8192: 8
|
|
||||||
}
|
|
||||||
if dim not in mappings:
|
|
||||||
print(f"Invalid dim: {dim}")
|
print(f"Invalid dim: {dim}")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
return mappings[dim]
|
return n_parts
|
||||||
|
|
||||||
# possible data types
|
|
||||||
# ftype == 0 -> float32
|
|
||||||
# ftype == 1 -> float16
|
|
||||||
#
|
|
||||||
# map from ftype to string
|
# map from ftype to string
|
||||||
ftype_str = ["f32", "f16"]
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
ftype = 1
|
|
||||||
if len(sys.argv) > 2:
|
|
||||||
ftype = int(sys.argv[2])
|
|
||||||
if ftype < 0 or ftype > 1:
|
|
||||||
print(f"Invalid ftype: {ftype}")
|
|
||||||
sys.exit(1)
|
|
||||||
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
|
|
||||||
|
|
||||||
with open(fname_hparams, "r") as f:
|
with open(fname_hparams, "r") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
@ -78,15 +63,13 @@ print(f"n_parts = {n_parts}\n")
|
||||||
for p in range(n_parts):
|
for p in range(n_parts):
|
||||||
print(f"Processing part {p}\n")
|
print(f"Processing part {p}\n")
|
||||||
|
|
||||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
#fname_model = args[1] + "/consolidated.00.pth"
|
||||||
fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
||||||
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
|
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
|
||||||
if (p > 0):
|
|
||||||
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin.{p}"
|
|
||||||
|
|
||||||
model = torch.load(fname_model, map_location="cpu")
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
fout = open(fname_out, "wb")
|
with open(fname_out, "wb") as fout:
|
||||||
|
|
||||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||||
|
@ -122,19 +105,18 @@ for p in range(n_parts):
|
||||||
fout.write(struct.pack("i", len(text)))
|
fout.write(struct.pack("i", len(text)))
|
||||||
fout.write(text)
|
fout.write(text)
|
||||||
|
|
||||||
for k, v in model.items():
|
for name, data in model.items():
|
||||||
name = k
|
shape = data.shape
|
||||||
shape = v.shape
|
|
||||||
|
|
||||||
# skip layers.X.attention.inner_attention.rope.freqs
|
# skip layers.X.attention.inner_attention.rope.freqs
|
||||||
if name[-5:] == "freqs":
|
if name.endswith("freqs"):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
print(f"Processing variable: {name} with shape: {data.shape} and type: {data.dtype}\n")
|
print(f"Processing variable: {name} with shape: {shape} and type: {data.dtype}\n")
|
||||||
|
|
||||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||||
data = v.numpy().squeeze()
|
data = np.squeeze(data)
|
||||||
n_dims = len(data.shape);
|
n_dims = len(data.shape)
|
||||||
|
|
||||||
# for efficiency - transpose some matrices
|
# for efficiency - transpose some matrices
|
||||||
# "model/h.*/attn/c_attn/w"
|
# "model/h.*/attn/c_attn/w"
|
||||||
|
@ -148,8 +130,6 @@ for p in range(n_parts):
|
||||||
# print(" Transposing")
|
# print(" Transposing")
|
||||||
# data = data.transpose()
|
# data = data.transpose()
|
||||||
|
|
||||||
dshape = data.shape
|
|
||||||
|
|
||||||
# default type is fp16
|
# default type is fp16
|
||||||
ftype_cur = 1
|
ftype_cur = 1
|
||||||
if ftype == 0 or n_dims == 1:
|
if ftype == 0 or n_dims == 1:
|
||||||
|
@ -160,16 +140,14 @@ for p in range(n_parts):
|
||||||
# header
|
# header
|
||||||
sname = name.encode('utf-8')
|
sname = name.encode('utf-8')
|
||||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||||
for i in range(n_dims):
|
for dim in reversed(data.shape):
|
||||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
fout.write(struct.pack("i", dim))
|
||||||
fout.write(sname);
|
|
||||||
|
fout.write(sname)
|
||||||
|
|
||||||
# data
|
# data
|
||||||
data.tofile(fout)
|
data.tofile(fout)
|
||||||
|
|
||||||
# I hope this deallocates the memory ..
|
del model
|
||||||
model = None
|
|
||||||
|
|
||||||
fout.close()
|
|
||||||
|
|
||||||
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue