From c32bad7e6579fe0cdff4dea8ee944fd77845e3e5 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Mon, 24 Jun 2024 14:10:23 +0200 Subject: [PATCH] clip : suppress unused variable warnings This commit suppresses unused variable warnings for the variables e in the catch blocks. The motivation for this change is to suppress the warnings that are generated on Windows when using the MSVC compiler. The warnings are not displayed when using GCC because GCC will mark all catch parameters as used. Signed-off-by: Daniel Bevenius --- examples/llava/clip.cpp | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 95fbe3d02..b4d7ca2f1 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -1123,6 +1123,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { hparams.image_grid_pinpoints[n] = 0; } catch (std::runtime_error & e) { hparams.image_grid_pinpoints[0]=0; + GGML_UNUSED(e); } try { @@ -1130,12 +1131,14 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); } catch (std::runtime_error & e) { strcpy(hparams.mm_patch_merge_type, "flat"); + GGML_UNUSED(e); } try { hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 } catch(const std::exception& e) { hparams.image_crop_resolution = hparams.image_size; + GGML_UNUSED(e); } int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); @@ -1175,6 +1178,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_class_embedding = true; } catch (const std::exception& e) { new_clip->has_class_embedding = false; + GGML_UNUSED(e); } try { @@ -1183,6 +1187,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_pre_norm = true; } catch (std::exception & e) { new_clip->has_pre_norm = false; + GGML_UNUSED(e); } try { @@ -1191,6 +1196,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_post_norm = true; } catch (std::exception & e) { new_clip->has_post_norm = false; + GGML_UNUSED(e); } try { @@ -1198,6 +1204,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_patch_bias = true; } catch (std::exception & e) { new_clip->has_patch_bias = false; + GGML_UNUSED(e); } try { @@ -1205,6 +1212,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); } catch(const std::exception& e) { LOG_TEE("%s: failed to load vision model tensors\n", __func__); + GGML_UNUSED(e); } // LLaVA projection @@ -1215,26 +1223,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { // Yi-type llava vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & e) { GGML_UNUSED(e); } try { // missing in Yi-type llava vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & e) { GGML_UNUSED(e); } try { // Yi-type llava vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & e) { GGML_UNUSED(e); } try { // Yi-type llava vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & e) { GGML_UNUSED(e); } try { vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & e) { GGML_UNUSED(e); } } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));