Merge remote-tracking branch 'origin/master' into sl/backend-sched
This commit is contained in:
commit
c3681af783
8 changed files with 173 additions and 166 deletions
|
@ -126,24 +126,7 @@ static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::str
|
|||
}
|
||||
|
||||
static std::string get_ftype(int ftype) {
|
||||
switch (ftype) {
|
||||
case 0:
|
||||
return "f32";
|
||||
case 1:
|
||||
return "f16";
|
||||
case 2:
|
||||
return "q4_0";
|
||||
case 3:
|
||||
return "q4_1";
|
||||
case 6:
|
||||
return "q5_0";
|
||||
case 7:
|
||||
return "q5_1";
|
||||
case 8:
|
||||
return "q8_0";
|
||||
default:
|
||||
throw std::runtime_error(format("%s: Unrecognized file type: %d\n", __func__, ftype));
|
||||
}
|
||||
return ggml_type_name(static_cast<ggml_type>(ftype));
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -533,6 +516,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
buffer_size += n_tensors * 128 /* CLIP PADDING */;
|
||||
|
||||
clip_ctx * new_clip = new clip_ctx;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
new_clip->backend = ggml_backend_cuda_init(0);
|
||||
printf("%s: CLIP using CUDA backend\n", __func__);
|
||||
|
@ -543,6 +527,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
printf("%s: CLIP using Metal backend\n", __func__);
|
||||
#endif
|
||||
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
printf("%s: CLIP using CPU backend\n", __func__);
|
||||
|
@ -931,26 +916,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
|
||||
ggml_type type = GGML_TYPE_Q4_1;
|
||||
|
||||
switch (itype) {
|
||||
case 2:
|
||||
type = GGML_TYPE_Q4_0;
|
||||
break;
|
||||
case 3:
|
||||
type = GGML_TYPE_Q4_1;
|
||||
break;
|
||||
case 6:
|
||||
type = GGML_TYPE_Q5_0;
|
||||
break;
|
||||
case 7:
|
||||
type = GGML_TYPE_Q5_1;
|
||||
break;
|
||||
case 8:
|
||||
type = GGML_TYPE_Q8_0;
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
|
||||
return false;
|
||||
};
|
||||
assert(itype < GGML_TYPE_COUNT);
|
||||
type = static_cast<ggml_type>(itype);
|
||||
|
||||
auto * ctx_clip = clip_model_load(fname_inp, 2);
|
||||
|
||||
|
@ -1010,6 +977,10 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
|
||||
if (quantize) {
|
||||
new_type = type;
|
||||
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
|
||||
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
|
||||
// fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
||||
}
|
||||
const size_t n_elms = ggml_nelements(cur);
|
||||
float * f32_data;
|
||||
|
||||
|
@ -1054,6 +1025,21 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
|||
case GGML_TYPE_Q8_0: {
|
||||
new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K: {
|
||||
new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K: {
|
||||
new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K: {
|
||||
new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K: {
|
||||
new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K: {
|
||||
new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
default: {
|
||||
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
|
||||
return false;
|
||||
|
|
|
@ -110,6 +110,10 @@ node index.js
|
|||
```
|
||||
|
||||
## API Endpoints
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include <mutex>
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <atomic>
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
|
@ -146,9 +147,15 @@ static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
|
|||
// parallel
|
||||
//
|
||||
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
SERVER_STATE_ERROR // An error occurred, load_model failed
|
||||
};
|
||||
|
||||
enum task_type {
|
||||
COMPLETION_TASK,
|
||||
CANCEL_TASK
|
||||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
|
@ -1395,7 +1402,7 @@ struct llama_server_context
|
|||
task.data = std::move(data);
|
||||
task.infill_mode = infill;
|
||||
task.embedding_mode = embedding;
|
||||
task.type = COMPLETION_TASK;
|
||||
task.type = TASK_TYPE_COMPLETION;
|
||||
task.multitask_id = multitask_id;
|
||||
|
||||
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
||||
|
@ -1517,7 +1524,7 @@ struct llama_server_context
|
|||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
task_server task;
|
||||
task.id = id_gen++;
|
||||
task.type = CANCEL_TASK;
|
||||
task.type = TASK_TYPE_CANCEL;
|
||||
task.target_id = task_id;
|
||||
queue_tasks.push_back(task);
|
||||
condition_tasks.notify_one();
|
||||
|
@ -1553,7 +1560,7 @@ struct llama_server_context
|
|||
queue_tasks.erase(queue_tasks.begin());
|
||||
switch (task.type)
|
||||
{
|
||||
case COMPLETION_TASK: {
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
||||
if (slot == nullptr)
|
||||
{
|
||||
|
@ -1582,7 +1589,7 @@ struct llama_server_context
|
|||
break;
|
||||
}
|
||||
} break;
|
||||
case CANCEL_TASK: { // release slot linked with the task id
|
||||
case TASK_TYPE_CANCEL: { // release slot linked with the task id
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
if (slot.task_id == task.target_id)
|
||||
|
@ -2453,7 +2460,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
static std::string random_string()
|
||||
{
|
||||
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
||||
|
@ -2790,15 +2796,117 @@ int main(int argc, char **argv)
|
|||
{"system_info", llama_print_system_info()},
|
||||
});
|
||||
|
||||
// load the model
|
||||
if (!llama.load_model(params))
|
||||
httplib::Server svr;
|
||||
|
||||
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
|
||||
|
||||
svr.set_default_headers({{"Server", "llama.cpp"},
|
||||
{"Access-Control-Allow-Origin", "*"},
|
||||
{"Access-Control-Allow-Headers", "content-type"}});
|
||||
|
||||
svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) {
|
||||
server_state current_state = state.load();
|
||||
switch(current_state) {
|
||||
case SERVER_STATE_READY:
|
||||
res.set_content(R"({"status": "ok"})", "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
break;
|
||||
case SERVER_STATE_LOADING_MODEL:
|
||||
res.set_content(R"({"status": "loading model"})", "application/json");
|
||||
res.status = 503; // HTTP Service Unavailable
|
||||
break;
|
||||
case SERVER_STATE_ERROR:
|
||||
res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
|
||||
res.status = 500; // HTTP Internal Server Error
|
||||
break;
|
||||
}
|
||||
});
|
||||
|
||||
svr.set_logger(log_server_request);
|
||||
|
||||
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
||||
{
|
||||
const char fmt[] = "500 Internal Server Error\n%s";
|
||||
char buf[BUFSIZ];
|
||||
try
|
||||
{
|
||||
std::rethrow_exception(std::move(ep));
|
||||
}
|
||||
catch (std::exception &e)
|
||||
{
|
||||
snprintf(buf, sizeof(buf), fmt, e.what());
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
||||
}
|
||||
res.set_content(buf, "text/plain; charset=utf-8");
|
||||
res.status = 500;
|
||||
});
|
||||
|
||||
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
|
||||
{
|
||||
if (res.status == 401)
|
||||
{
|
||||
res.set_content("Unauthorized", "text/plain; charset=utf-8");
|
||||
}
|
||||
if (res.status == 400)
|
||||
{
|
||||
res.set_content("Invalid request", "text/plain; charset=utf-8");
|
||||
}
|
||||
else if (res.status == 404)
|
||||
{
|
||||
res.set_content("File Not Found", "text/plain; charset=utf-8");
|
||||
res.status = 404;
|
||||
}
|
||||
});
|
||||
|
||||
// set timeouts and change hostname and port
|
||||
svr.set_read_timeout (sparams.read_timeout);
|
||||
svr.set_write_timeout(sparams.write_timeout);
|
||||
|
||||
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
||||
{
|
||||
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama.initialize();
|
||||
// Set the base directory for serving static files
|
||||
svr.set_base_dir(sparams.public_path);
|
||||
|
||||
httplib::Server svr;
|
||||
// to make it ctrl+clickable:
|
||||
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
log_data["hostname"] = sparams.hostname;
|
||||
log_data["port"] = std::to_string(sparams.port);
|
||||
|
||||
if (!sparams.api_key.empty()) {
|
||||
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
|
||||
}
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]()
|
||||
{
|
||||
if (!svr.listen_after_bind())
|
||||
{
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
});
|
||||
|
||||
// load the model
|
||||
if (!llama.load_model(params))
|
||||
{
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
} else {
|
||||
llama.initialize();
|
||||
state.store(SERVER_STATE_READY);
|
||||
}
|
||||
|
||||
// Middleware for API key validation
|
||||
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
||||
|
@ -2826,10 +2934,6 @@ int main(int argc, char **argv)
|
|||
return false;
|
||||
};
|
||||
|
||||
svr.set_default_headers({{"Server", "llama.cpp"},
|
||||
{"Access-Control-Allow-Origin", "*"},
|
||||
{"Access-Control-Allow-Headers", "content-type"}});
|
||||
|
||||
// this is only called if no index.html is found in the public --path
|
||||
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
|
||||
{
|
||||
|
@ -2937,8 +3041,6 @@ int main(int argc, char **argv)
|
|||
}
|
||||
});
|
||||
|
||||
|
||||
|
||||
svr.Get("/v1/models", [¶ms](const httplib::Request&, httplib::Response& res)
|
||||
{
|
||||
std::time_t t = std::time(0);
|
||||
|
@ -3157,81 +3259,6 @@ int main(int argc, char **argv)
|
|||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
svr.set_logger(log_server_request);
|
||||
|
||||
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
||||
{
|
||||
const char fmt[] = "500 Internal Server Error\n%s";
|
||||
char buf[BUFSIZ];
|
||||
try
|
||||
{
|
||||
std::rethrow_exception(std::move(ep));
|
||||
}
|
||||
catch (std::exception &e)
|
||||
{
|
||||
snprintf(buf, sizeof(buf), fmt, e.what());
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
||||
}
|
||||
res.set_content(buf, "text/plain; charset=utf-8");
|
||||
res.status = 500;
|
||||
});
|
||||
|
||||
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
|
||||
{
|
||||
if (res.status == 401)
|
||||
{
|
||||
res.set_content("Unauthorized", "text/plain; charset=utf-8");
|
||||
}
|
||||
if (res.status == 400)
|
||||
{
|
||||
res.set_content("Invalid request", "text/plain; charset=utf-8");
|
||||
}
|
||||
else if (res.status == 404)
|
||||
{
|
||||
res.set_content("File Not Found", "text/plain; charset=utf-8");
|
||||
res.status = 404;
|
||||
}
|
||||
});
|
||||
|
||||
// set timeouts and change hostname and port
|
||||
svr.set_read_timeout (sparams.read_timeout);
|
||||
svr.set_write_timeout(sparams.write_timeout);
|
||||
|
||||
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
||||
{
|
||||
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Set the base directory for serving static files
|
||||
svr.set_base_dir(sparams.public_path);
|
||||
|
||||
// to make it ctrl+clickable:
|
||||
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
log_data["hostname"] = sparams.hostname;
|
||||
log_data["port"] = std::to_string(sparams.port);
|
||||
|
||||
if (!sparams.api_key.empty()) {
|
||||
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
|
||||
}
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]()
|
||||
{
|
||||
if (!svr.listen_after_bind())
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
// "Bus error: 10" - this is on macOS, it does not crash on Linux
|
||||
//std::thread t2([&]()
|
||||
|
|
|
@ -1067,6 +1067,8 @@ bool ggml_metal_graph_compute(
|
|||
GGML_ASSERT(!"unsupported op");
|
||||
}
|
||||
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
||||
|
@ -2423,6 +2425,8 @@ bool ggml_metal_graph_compute(
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
[encoder popDebugGroup];
|
||||
}
|
||||
|
||||
if (encoder != nil) {
|
||||
|
|
32
ggml.c
32
ggml.c
|
@ -132,7 +132,7 @@ void ggml_print_backtrace(void) {
|
|||
"-ex", "bt -frame-info source-and-location",
|
||||
"-ex", "detach",
|
||||
"-ex", "quit",
|
||||
NULL);
|
||||
(char *) NULL);
|
||||
} else {
|
||||
waitpid(pid, NULL, 0);
|
||||
}
|
||||
|
@ -4315,13 +4315,13 @@ struct ggml_tensor * ggml_set_2d_inplace(
|
|||
static struct ggml_tensor * ggml_cpy_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * b) {
|
||||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && (a->grad || b->grad)) {
|
||||
if (a->grad || b->grad) {
|
||||
// inplace is false and either one have a grad
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
|
@ -4345,14 +4345,7 @@ struct ggml_tensor * ggml_cpy(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_cpy_impl(ctx, a, b, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cpy_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_cpy_impl(ctx, a, b, true);
|
||||
return ggml_cpy_impl(ctx, a, b);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cast(
|
||||
|
@ -4376,15 +4369,14 @@ struct ggml_tensor * ggml_cast(
|
|||
|
||||
static struct ggml_tensor * ggml_cont_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * a) {
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && a->grad) {
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||||
ggml_format_name(result, "%s (cont)", a->name);
|
||||
|
||||
result->op = GGML_OP_CONT;
|
||||
|
@ -4397,13 +4389,7 @@ static struct ggml_tensor * ggml_cont_impl(
|
|||
struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_cont_impl(ctx, a, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cont_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_cont_impl(ctx, a, true);
|
||||
return ggml_cont_impl(ctx, a);
|
||||
}
|
||||
|
||||
// make contiguous, with new shape
|
||||
|
|
13
ggml.h
13
ggml.h
|
@ -218,7 +218,9 @@
|
|||
#define GGML_MAX_PARAMS 2048
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 10
|
||||
#ifndef GGML_MAX_NAME
|
||||
#define GGML_MAX_NAME 64
|
||||
#endif
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
||||
|
@ -1161,12 +1163,6 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// a -> b, in-place, return view(b)
|
||||
GGML_API struct ggml_tensor * ggml_cpy_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -1177,11 +1173,6 @@ extern "C" {
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// make contiguous, in-place
|
||||
GGML_API struct ggml_tensor * ggml_cont_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// make contiguous, with new shape
|
||||
GGML_API struct ggml_tensor * ggml_cont_1d(
|
||||
struct ggml_context * ctx,
|
||||
|
|
11
llama.cpp
11
llama.cpp
|
@ -2835,6 +2835,7 @@ static void llm_load_hparams(
|
|||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
|
@ -3151,7 +3152,15 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
|
||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||||
if (ml.n_elements >= 1e12) {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
|
||||
} else if (ml.n_elements >= 1e9) {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||||
} else if (ml.n_elements >= 1e6) {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
|
||||
} else {
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
|
||||
}
|
||||
if (ml.n_bytes < GiB) {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
} else {
|
||||
|
|
|
@ -1 +1 @@
|
|||
f96711108d55bdbbd277e6be07204dce6a94fb93
|
||||
979cc23b345006504cfc1f67c0fdf627805e3319
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue