CUDA: remove DMMV, consolidate F16 mult mat vec (#10318)

This commit is contained in:
Johannes Gäßler 2024-11-17 09:09:55 +01:00 committed by GitHub
parent 467576b6cc
commit c3ea58aca4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 246 additions and 1000 deletions

View file

@ -54,21 +54,12 @@ if (CUDAToolkit_FOUND)
target_link_libraries(ggml-cuda PRIVATE ggml-base)
target_include_directories(ggml-cuda PRIVATE . ..)
# TODO: change the definitions to this target only
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
if (GGML_CUDA_GRAPHS)
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
endif()
if (GGML_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
endif()
if (GGML_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()
@ -81,10 +72,6 @@ if (CUDAToolkit_FOUND)
add_compile_definitions(GGML_CUDA_NO_VMM)
endif()
if (DEFINED GGML_CUDA_DMMV_Y)
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
endif()
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
add_compile_definitions(GGML_CUDA_F16)
endif()

View file

@ -1,699 +0,0 @@
#include "dmmv.cuh"
#include "dequantize.cuh"
#include "convert.cuh"
#ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 2
#else
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
#endif
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q2_K * x = (const block_q2_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int s_offset = 8*im;
const int y_offset = 128*im + l0;
uint32_t aux[4];
const uint8_t * d = (const uint8_t *)aux;
const uint8_t * m = (const uint8_t *)(aux + 2);
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
aux[0] = a[0] & 0x0f0f0f0f;
aux[1] = a[1] & 0x0f0f0f0f;
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
}
tmp += dall * sum1 - dmin * sum2;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q3_K * x = (const block_q3_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0....15 or 0...7
const uint8_t m = 1 << (4*im);
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int y_offset = 128*im + l0;
uint16_t utmp[4];
const int8_t * s = (const int8_t *)utmp;
const uint16_t s_shift = 4*im;
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const uint8_t * h = x[i].hmask + l0;
const uint16_t * a = (const uint16_t *)x[i].scales;
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
const float d = x[i].d;
float sum = 0;
for (int l = 0; l < n; ++l) {
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
}
tmp += d * sum;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q4_K * x = (const block_q4_K *)vx + ib0;
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const int il = tid/step; // 0...3
const int ir = tid - step*il; // 0...7 or 0...3
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
#if K_QUANTS_PER_ITERATION == 2
uint32_t q32[4];
const uint8_t * q4 = (const uint8_t *)q32;
#else
uint16_t q16[4];
const uint8_t * q4 = (const uint8_t *)q16;
#endif
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
#if K_QUANTS_PER_ITERATION == 2
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
const uint32_t * q2 = q1 + 16;
q32[0] = q1[0] & 0x0f0f0f0f;
q32[1] = q1[0] & 0xf0f0f0f0;
q32[2] = q2[0] & 0x0f0f0f0f;
q32[3] = q2[0] & 0xf0f0f0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 4; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[0] & 0xf0f0;
q16[2] = q2[0] & 0x0f0f;
q16[3] = q2[0] & 0xf0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 2; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#endif
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
dst[row] = tmp;
}
}
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
const int row = blockIdx.x;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q5_K * x = (const block_q5_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/2; // 0...15
const int ix = threadIdx.x%2;
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 2;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
const uint8_t hm1 = 1 << (2*im);
const uint8_t hm2 = hm1 << 4;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
uint16_t q16[8];
const uint8_t * q4 = (const uint8_t *)q16;
for (int i = ix; i < num_blocks_per_row; i += 2) {
const uint8_t * ql1 = x[i].qs + q_offset;
const uint8_t * qh = x[i].qh + l0;
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
const uint16_t * q1 = (const uint16_t *)ql1;
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[8] & 0x0f0f;
q16[2] = (q1[0] >> 4) & 0x0f0f;
q16[3] = (q1[8] >> 4) & 0x0f0f;
q16[4] = q2[0] & 0x0f0f;
q16[5] = q2[8] & 0x0f0f;
q16[6] = (q2[0] >> 4) & 0x0f0f;
q16[7] = (q2[8] >> 4) & 0x0f0f;
for (int l = 0; l < n; ++l) {
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q6_K * x = (const block_q6_K *)vx + ib0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
#if K_QUANTS_PER_ITERATION == 1
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
const int is = 0;
#else
const int l0 = 4 * in; // 0, 4, 8, ..., 28
const int is = in / 4;
#endif
const int ql_offset = 64*im + l0;
const int qh_offset = 32*im + l0;
const int s_offset = 8*im + is;
const int y_offset = 128*im + l0;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * ql = x[i].ql + ql_offset;
const uint8_t * qh = x[i].qh + qh_offset;
const int8_t * s = x[i].scales + s_offset;
const float d = x[i].d;
#if K_QUANTS_PER_ITERATION == 1
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
tmp += sum;
#else
float sum = 0;
for (int l = 0; l < 4; ++l) {
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
}
tmp += sum;
#endif
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
dst[row] = tmp;
}
}
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const half * x = (const half *) vx;
// load 2 halfs into register in a single instruction
const half2 x_reg = *((half2 *) &(x[ib + iqs]));
// automatic half -> float type cast if dfloat == float
v.x = __low2float(x_reg);
v.y = __high2float(x_reg);
}
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
return type == GGML_TYPE_Q4_0 ? dequantize_q4_0 :
type == GGML_TYPE_Q4_1 ? dequantize_q4_1 :
type == GGML_TYPE_Q5_0 ? dequantize_q5_0 :
type == GGML_TYPE_Q5_1 ? dequantize_q5_1 :
type == GGML_TYPE_Q8_0 ? dequantize_q8_0 :
type == GGML_TYPE_F16 ? convert_f16 :
nullptr;
}
template <ggml_type type>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
constexpr int qk = ggml_cuda_type_traits<type>::qk; // quantized weights per x block
constexpr int qr = ggml_cuda_type_traits<type>::qr; // number of quantized weights per data value in x block
constexpr dequantize_kernel_t dequantize_kernel = get_dequantize_kernel(type);
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
}
const int tid = threadIdx.x;
const int iter_stride = 2*GGML_CUDA_DMMV_X;
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
const int iqs = (col%qk)/qr; // x quant index
const int iybs = col - col%qk; // y block start index
// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
for (int j = 0; j < vals_per_iter; j += 2) {
// process 2 vals per j iter
// dequantize
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_F16
if ( y_offset == 1 ) {
// load 2 dfloats into register in a single instruction
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
tmp += __hmul2(v, y_reg);
}
else {
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
}
#else
if ( y_offset == 1 ) {
// load 2 dfloats into register in a single instruction
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
tmp += v.x * y_reg.x;
tmp += v.y * y_reg.y;
}
else {
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
}
#endif // GGML_CUDA_F16
}
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_F16
}
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_Q4_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_Q4_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_Q5_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_Q5_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_Q8_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 1, 1);
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<GGML_TYPE_F16>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
void ggml_cuda_op_dequantize_mul_mat_vec(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
GGML_UNUSED(ctx);
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
half * src1_dfloat = nullptr; // dfloat == half
bool src1_convert_f16 =
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
src1_dfloat = src1_dfloat_a.alloc(ne00);
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
}
#else
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_F16
switch (src0->type) {
case GGML_TYPE_Q4_0:
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_1:
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_0:
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_1:
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q8_0:
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q2_K:
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q3_K:
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_K:
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_K:
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q6_K:
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
default:
GGML_ABORT("fatal error");
break;
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type) {
return src0_type == GGML_TYPE_Q4_0 || src0_type == GGML_TYPE_Q4_1 ||
src0_type == GGML_TYPE_Q5_0 || src0_type == GGML_TYPE_Q5_1 ||
src0_type == GGML_TYPE_Q8_0 || src0_type == GGML_TYPE_Q2_K ||
src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q4_K ||
src0_type == GGML_TYPE_Q5_K || src0_type == GGML_TYPE_Q6_K ||
src0_type == GGML_TYPE_F16;
}

View file

@ -16,11 +16,11 @@
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/dmmv.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmv.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/opt-step-adamw.cuh"
@ -1020,114 +1020,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)(
#define MUL_MAT_SRC1_COL_STRIDE 128
static __global__ void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / (nchannels_y / nchannels_x);
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
const int col_x = col_x0 + threadIdx.x;
if (col_x >= ncols_x) {
break;
}
// x is transposed and permuted
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
const float xi = __half2float(x[ix]);
const int row_y = col_x;
// y is not transposed but permuted
const int iy = channel*nrows_y + row_y;
tmp += xi * y[iy];
}
// dst is not transposed and not permuted
const int idst = channel*nrows_dst + row_dst;
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[idst] = tmp;
}
}
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
const int row_dst = row_x;
const int idst = channel*nrows_dst + row_dst;
float tmp = 0.0f;
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
const int col_x = col_x0 + threadIdx.x;
if (col_x >= ncols_x) {
break;
}
const int row_y = col_x;
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const int iy = channel*nrows_y + row_y;
const float xi = __half2float(x[ix]);
tmp += xi * y[iy];
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[idst] = tmp;
}
}
static void ggml_mul_mat_p021_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
}
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
}
static cudaError_t ggml_cuda_cpy_tensor_2d(
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
@ -1654,58 +1546,6 @@ static void ggml_cuda_op_mul_mat(
}
}
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne12 = src1->ne[2];
cudaStream_t main_stream = ctx.stream();
void * src0_ddq = src0->data;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
}
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
const int64_t ne12 = src1->ne[2];
cudaStream_t main_stream = ctx.stream();
void * src0_ddq = src0->data;
float * src1_ddf = (float *) src1->data;
float * dst_ddf = (float *) dst->data;
const int64_t row_stride_x = nb01 / sizeof(half);
const int64_t channel_stride_x = nb02 / sizeof(half);
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}
static __global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, char * dst,
const void ** ptrs_src, void ** ptrs_dst,
@ -1879,21 +1719,17 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
bool use_mul_mat_vec = src0->type == GGML_TYPE_F16
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_is_quantized(src0->type)
bool use_mul_mat_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// if mmvq is available it's a better choice than dmmv:
#ifndef GGML_CUDA_FORCE_DMMV
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
#endif // GGML_CUDA_FORCE_DMMV
bool any_gpus_with_slow_fp16 = false;
bool any_gpus_with_slow_fp16 = false;
bool any_gpus_without_fp16_mma = false;
if (split) {
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
@ -1904,14 +1740,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
continue;
}
const int cc = ggml_cuda_info().devices[id].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
const int cc = ggml_cuda_info().devices[id].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
}
} else {
const int cc = ggml_cuda_info().devices[ctx.device].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
const int cc = ggml_cuda_info().devices[ctx.device].cc;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
}
// debug helpers
@ -1922,18 +1760,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// FP32 precision KQ single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
} else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// FP32 precision KQV single-batch for batch size 1 without FlashAttention
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
if (!split && src0->type == GGML_TYPE_F16 && src1->ne[1] == 1 && dst->ne[3] == 1 && (src0->ne[1] < MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
ggml_cuda_mul_mat_vec(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
} else if (use_mul_mat_q) {

223
ggml/src/ggml-cuda/mmv.cu Normal file
View file

@ -0,0 +1,223 @@
#include "common.cuh"
#include "mmv.cuh"
template <typename type_acc, int block_size>
static __global__ void mul_mat_vec(
const half * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst) {
const int64_t row = blockIdx.x;
const int64_t channel = blockIdx.z;
const int tid = threadIdx.x;
x += (channel/channel_ratio)*stride_channel_x + row*stride_row;
y += channel *stride_channel_y;
dst += channel *stride_channel_dst;
const half2 * x2 = (const half2 *) x;
const float2 * y2 = (const float2 *) y;
extern __shared__ char data_mmv[];
float * buf_iw = (float *) data_mmv;
if (block_size > WARP_SIZE) {
if (tid < WARP_SIZE) {
buf_iw[tid] = 0.0f;
}
__syncthreads();
}
float sumf;
if (std::is_same<type_acc, float>::value) {
sumf = 0.0f;
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
const float2 tmpy = y2[col2];
sumf += tmpx.x * tmpy.x;
sumf += tmpx.y * tmpy.y;
}
} else {
#ifdef FP16_AVAILABLE
half2 sumh2 = make_half2(0.0f, 0.0f);
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmp = y2[col2];
sumh2 += x2[col2] * make_half2(tmp.x, tmp.y);
}
sumf = __low2float(sumh2) + __high2float(sumh2);
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
sumf = warp_reduce_sum(sumf);
if (block_size > WARP_SIZE) {
buf_iw[tid/WARP_SIZE] = sumf;
__syncthreads();
if (tid > WARP_SIZE) {
return;
}
sumf = buf_iw[tid];
sumf = warp_reduce_sum(sumf);
}
if (tid != 0) {
return;
}
dst[row] = sumf;
}
template <typename type_acc>
static void launch_mul_mat_vec_cuda(
const half * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0);
GGML_ASSERT(nchannels_y % nchannels_x == 0);
const int64_t channel_ratio = nchannels_y / nchannels_x;
int64_t block_size_best = WARP_SIZE;
int64_t niter_best = (ncols + 2*WARP_SIZE - 1) / (2*WARP_SIZE);
for (int64_t block_size = 2*WARP_SIZE; block_size <= 256; block_size += WARP_SIZE) {
const int64_t niter = (ncols + 2*block_size - 1) / (2*block_size);
if (niter < niter_best) {
niter_best = niter;
block_size_best = block_size;
}
}
const int smem = WARP_SIZE*sizeof(float);
const dim3 block_nums(nrows, 1, nchannels_y);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec<type_acc, 32><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 64: {
mul_mat_vec<type_acc, 64><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 96: {
mul_mat_vec<type_acc, 96><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 128: {
mul_mat_vec<type_acc, 128><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 160: {
mul_mat_vec<type_acc, 160><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 192: {
mul_mat_vec<type_acc, 192><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 224: {
mul_mat_vec<type_acc, 224><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
case 256: {
mul_mat_vec<type_acc, 256><<<block_nums, block_dims, smem, stream>>>
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
} break;
default: {
GGML_ABORT("fatal error");
} break;
}
}
static void mul_mat_vec_cuda(
const half * x, const float * y, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
enum ggml_prec prec, cudaStream_t stream) {
switch (prec) {
case GGML_PREC_DEFAULT: {
launch_mul_mat_vec_cuda<half>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
} break;
case GGML_PREC_F32: {
launch_mul_mat_vec_cuda<float>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
} break;
}
}
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
GGML_ASSERT(src1->ne[1] == 1);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
const half * src0_d = (const half *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
const int64_t ne02 = src0->ne[2];
const int64_t ne12 = src1->ne[2];
GGML_ASSERT(dst->ne[2] == ne12);
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT( dst->ne[3] == 1);
const int64_t stride_row = src0->nb[1] / ggml_type_size(src0->type);
const int64_t channel_stride_x = src0->nb[2] / ggml_type_size(src0->type);
const int64_t channel_stride_y = src1->nb[2] / ggml_type_size(src1->type);
const int64_t channel_stride_dst = dst->nb[2] / ggml_type_size( dst->type);
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
}
void ggml_cuda_op_mul_mat_vec(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
GGML_ASSERT(src1_ncols == 1);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
// ggml_cuda_op provides single, contiguous matrices
const int64_t stride_row = ne00;
const int64_t nchannels_x = 1;
const int64_t nchannels_y = 1;
const int64_t channel_stride_x = 0;
const int64_t channel_stride_y = 0;
const int64_t channel_stride_dst = 0;
mul_mat_vec_cuda((const half *) src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
GGML_UNUSED(ctx);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}

View file

@ -1,20 +1,12 @@
#include "common.cuh"
// dmmv = dequantize_mul_mat_vec
// maximum number of src0 rows with which to use mul_mat_vec over cuBLAS if FP16 tensor cores are available
#define MMV_MAX_ROWS 512
// TODO: remove this?
#ifndef GGML_CUDA_DMMV_X
#define GGML_CUDA_DMMV_X 32
#endif
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
#ifndef GGML_CUDA_MMV_Y
#define GGML_CUDA_MMV_Y 1
#endif
void ggml_cuda_op_dequantize_mul_mat_vec(
void ggml_cuda_op_mul_mat_vec(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type);