Gpt NeoX / Pythia integration completed

This commit is contained in:
Concedo 2023-04-22 11:23:25 +08:00
parent 7b3d04e5d4
commit c454f8b848
5 changed files with 20 additions and 150 deletions

View file

@ -9,6 +9,7 @@ What does it mean? You get llama.cpp with a fancy UI, persistent stories, editin
# Highlights
- Now has experimental CLBlast support.
- Now supports RWKV models WITHOUT pytorch or tokenizers! Yep, just GGML!
- Now supports GPT-NeoX / Pythia models
## Usage
- [Download the latest release here](https://github.com/LostRuins/koboldcpp/releases/latest) or clone the repo.
@ -62,4 +63,5 @@ What does it mean? You get llama.cpp with a fancy UI, persistent stories, editin
- GPT-2 (All versions, including legacy f16, newer format + quanitzed, cerebras) Supports OpenBLAS acceleration only for newer format.
- GPT-J (All versions including legacy f16, newer format + quantized, pyg.cpp, new pygmalion, janeway etc.) Supports OpenBLAS acceleration only for newer format.
- RWKV (f16 GGMF format), unaccelerated due to RNN properties.
- GPT-NeoX / Pythia
- Basically every single current and historical GGML format that has ever existed should be supported, except for bloomz.cpp due to lack of demand.

View file

@ -335,7 +335,8 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
file_format == FileFormat::GGHF ||
file_format == FileFormat::GGJT ||
file_format == FileFormat::GPT2_2 ||
file_format == FileFormat::GPTJ_3);
file_format == FileFormat::GPTJ_3 ||
file_format == FileFormat::NEOX_1);
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas());
// bool blasmode = false;
int original_batch = params.n_batch;
@ -382,6 +383,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{
n_vocab = gpt2_ctx_v2.hparams.n_vocab;
}
else if(file_format == FileFormat::NEOX_1)
{
n_vocab = neox_ctx.hparams.n_vocab;
}
else if(file_format == FileFormat::RWKV_1)
{
n_vocab = vocab.id_to_token.size(); //handled seperately
@ -443,6 +448,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{
evalres = gpt2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
}
else if(file_format==FileFormat::NEOX_1)
{
evalres = stablelm_eval(neox_ctx, params.n_threads, n_past, embd, logits, mem_per_token);
}
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
{
evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
@ -495,7 +504,12 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
else
{
// set the logit of the eos token (2) to zero to avoid sampling it
if(logits.size()>50256)
if((file_format == FileFormat::GPT2_1 ||
file_format == FileFormat::GPT2_2 ||
file_format == FileFormat::GPTJ_1 ||
file_format == FileFormat::GPTJ_2 ||
file_format == FileFormat::GPTJ_3)
&& logits.size()>50256)
{
logits[50256] = (logits[50256] < 0 ? logits[50256] : 0);
}

View file

@ -139,7 +139,7 @@ maxctx = 2048
maxlen = 128
modelbusy = False
defaultport = 5001
KcppVersion = "1.10"
KcppVersion = "1.11"
class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
sys_version = ""

View file

@ -127,7 +127,7 @@ void print_tok_vec(std::vector<float> &embd)
fileformat = FileFormat::GPT2_2; //quantized format cannot be legacy type
}
}
else if(vocabsiz < 32000 || vocabsiz > 36000)
else if(vocabsiz < 31998 || vocabsiz > 33000)
{
//anything outside the llama v1 range is assumed to be NeoX
fileformat = FileFormat::NEOX_1;

View file

@ -596,149 +596,3 @@ bool stablelm_eval(
return true;
}
// int main(int argc, char ** argv) {
// ggml_time_init();
// const int64_t t_main_start_us = ggml_time_us();
// gpt_params params;
// params.model = "models/stablelm-base-alpha-3b/ggml-model-f16.bin";
// if (gpt_params_parse(argc, argv, params) == false) {
// return 1;
// }
// if (params.seed < 0) {
// params.seed = time(NULL);
// }
// printf("%s: seed = %d\n", __func__, params.seed);
// std::mt19937 rng(params.seed);
// if (params.prompt.empty()) {
// if( !isatty(STDIN_FILENO) ){
// std::string line;
// while( std::getline(std::cin, line) ){
// params.prompt = params.prompt + "\n" + line;
// }
// } else {
// params.prompt = gpt_random_prompt(rng);
// }
// }
// int64_t t_load_us = 0;
// gpt_vocab vocab;
// stablelm_model model;
// // load the model
// {
// const int64_t t_start_us = ggml_time_us();
// if (!stablelm_model_load(params.model, model, vocab)) {
// fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
// return 1;
// }
// t_load_us = ggml_time_us() - t_start_us;
// }
// int n_past = 0;
// int64_t t_sample_us = 0;
// int64_t t_predict_us = 0;
// std::vector<float> logits;
// // tokenize the prompt
// std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
// params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
// printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
// for (int i = 0; i < embd_inp.size(); i++) {
// printf("%s: token[%d] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
// }
// printf("\n");
// std::vector<gpt_vocab::id> embd;
// // determine the required inference memory per token:
// size_t mem_per_token = 0;
// stablelm_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
// for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
// // predict
// if (embd.size() > 0) {
// const int64_t t_start_us = ggml_time_us();
// if (!stablelm_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
// printf("Failed to predict\n");
// return 1;
// }
// t_predict_us += ggml_time_us() - t_start_us;
// }
// n_past += embd.size();
// embd.clear();
// if (i >= embd_inp.size()) {
// // sample next token
// const int top_k = params.top_k;
// const float top_p = params.top_p;
// const float temp = params.temp;
// const int n_vocab = model.hparams.n_vocab;
// gpt_vocab::id id = 0;
// {
// const int64_t t_start_sample_us = ggml_time_us();
// id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
// t_sample_us += ggml_time_us() - t_start_sample_us;
// }
// // add it to the context
// embd.push_back(id);
// } else {
// // if here, it means we are still processing the input prompt
// for (int k = i; k < embd_inp.size(); k++) {
// embd.push_back(embd_inp[k]);
// if (embd.size() > params.n_batch) {
// break;
// }
// }
// i += embd.size() - 1;
// }
// // display text
// for (auto id : embd) {
// printf("%s", vocab.id_to_token[id].c_str());
// }
// fflush(stdout);
// // end of text token
// if (embd.back() == 0) {
// break;
// }
// }
// // report timing
// {
// const int64_t t_main_end_us = ggml_time_us();
// printf("\n\n");
// printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
// printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
// printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
// printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
// printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
// }
// ggml_free(model.ctx);
// return 0;
// }