print data checksums before saving and after loading to verify correctness

This commit is contained in:
xaedes 2023-08-28 16:09:53 +02:00
parent f97f92bce5
commit c690c20362
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1

View file

@ -18,6 +18,53 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
uint32_t compute_data_checksum(struct ggml_tensor * tensor) {
const int n3 = (tensor->n_dims >= 3) ? tensor->ne[3] : 1;
const int n2 = (tensor->n_dims >= 2) ? tensor->ne[2] : 1;
const int n1 = (tensor->n_dims >= 1) ? tensor->ne[1] : 1;
const int n0 = (tensor->n_dims >= 0) ? tensor->ne[0] : 1;
const size_t nb0 = tensor->nb[0];
const size_t nb1 = tensor->nb[1];
const size_t nb2 = tensor->nb[2];
const size_t nb3 = tensor->nb[3];
const size_t nb = ggml_element_size(tensor);
uint32_t result = 0;
for (int i3 = 0; i3 < n3; ++i3) {
for (int i2 = 0; i2 < n2; ++i2) {
for (int i1 = 0; i1 < n1; ++i1) {
for (int i0 = 0; i0 < n0; ++i0) {
char * ptr = ((char *) tensor->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
uint32_t val;
memcpy(&val, ptr, nb);
result = result ^ val;
result = (((result << 1u) | ((result >> 31u) & 0x1u)) + 1u) & 0xffffffffu;
}
}
}
}
return result;
}
void print_data_checksum(struct ggml_tensor * tensor) {
uint32_t chk = compute_data_checksum(tensor);
printf("%s: chk=[%08x] data=[%p] name=%s\n", __func__, chk, tensor->data, ggml_get_name(tensor));
}
void print_data_checksums(struct ggml_cgraph * g) {
for (int i = 0; i < g->n_nodes; ++i) {
struct ggml_tensor * node = g->nodes[i];
for (int j = 0; j<GGML_MAX_SRC; ++j) {
if (node->src[j]) {
struct ggml_tensor * src = node->src[j];
uint32_t chk = compute_data_checksum(src);
printf("%s: node[%3d]->src[%d] chk=[%08x] data=[%p] op=%s name=%s\n", __func__, i, j, chk, src->data, ggml_op_name(src->op), ggml_get_name(src));
}
}
uint32_t chk = compute_data_checksum(node);
printf("%s: node[%3d] chk=[%08x] data=[%p] op=%s name=%s\n", __func__, i, chk, node->data, ggml_op_name(node->op), ggml_get_name(node));
}
}
struct random_normal_distribution { struct random_normal_distribution {
std::mt19937 gen; std::mt19937 gen;
std::normal_distribution<float> rd; std::normal_distribution<float> rd;
@ -1567,6 +1614,12 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
print_data_checksum(opt->adam.m);
print_data_checksum(opt->adam.v);
if (opt->adam.pf) {
print_data_checksum(opt->adam.pf);
}
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
opt->params.type = GGML_OPT_LBFGS; opt->params.type = GGML_OPT_LBFGS;
@ -1617,6 +1670,12 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} }
print_data_checksum(opt->adam.m);
print_data_checksum(opt->adam.v);
if (opt->adam.pf) {
print_data_checksum(opt->adam.pf);
}
gguf_add_tensor(fctx, opt->adam.m); gguf_add_tensor(fctx, opt->adam.m);
gguf_add_tensor(fctx, opt->adam.v); gguf_add_tensor(fctx, opt->adam.v);
if (opt->adam.pf) { if (opt->adam.pf) {
@ -1719,6 +1778,10 @@ void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_g
read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
print_data_checksum(model->tok_embeddings);
print_data_checksum(model->norm);
print_data_checksum(model->output);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i]; auto & layer = model->layers[i];
@ -1731,6 +1794,16 @@ void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_g
read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
print_data_checksum(layer.attention_norm);
print_data_checksum(layer.wq);
print_data_checksum(layer.wk);
print_data_checksum(layer.wv);
print_data_checksum(layer.wo);
print_data_checksum(layer.ffn_norm);
print_data_checksum(layer.w1);
print_data_checksum(layer.w2);
print_data_checksum(layer.w3);
} }
} }
@ -1857,6 +1930,10 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
gguf_free(vctx); gguf_free(vctx);
} }
print_data_checksum(model->tok_embeddings);
print_data_checksum(model->norm);
print_data_checksum(model->output);
// add tensors // add tensors
gguf_add_tensor(fctx, model->tok_embeddings); gguf_add_tensor(fctx, model->tok_embeddings);
gguf_add_tensor(fctx, model->norm); gguf_add_tensor(fctx, model->norm);
@ -1864,6 +1941,16 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i]; auto & layer = model->layers[i];
print_data_checksum(layer.attention_norm);
print_data_checksum(layer.wq);
print_data_checksum(layer.wk);
print_data_checksum(layer.wv);
print_data_checksum(layer.wo);
print_data_checksum(layer.ffn_norm);
print_data_checksum(layer.w1);
print_data_checksum(layer.w2);
print_data_checksum(layer.w3);
gguf_add_tensor(fctx, layer.attention_norm); gguf_add_tensor(fctx, layer.attention_norm);
gguf_add_tensor(fctx, layer.wq); gguf_add_tensor(fctx, layer.wq);
gguf_add_tensor(fctx, layer.wk); gguf_add_tensor(fctx, layer.wk);