diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 5af497a3c..bc295d52d 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -288,6 +288,7 @@ jobs: OPENBLAS_VERSION: 0.3.23 OPENCL_VERSION: 2023.04.17 CLBLAST_VERSION: 1.6.0 + SDE_VERSION: 9.21.1-2023-04-24 strategy: matrix: @@ -383,11 +384,23 @@ jobs: - name: Test id: cmake_test - if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible + if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512 run: | cd build ctest -C Release --verbose --timeout 900 + - name: Test (Intel SDE) + id: cmake_test_sde + if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation + run: | + curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/777395/sde-external-${env:SDE_VERSION}-win.tar.xz" + # for some weird reason windows tar doesn't like sde tar.xz + 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz + 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar + $sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe) + cd build + & $sde -future -- ctest -C Release --verbose --timeout 900 + - name: Determine tag name id: tag shell: bash diff --git a/CMakeLists.txt b/CMakeLists.txt index 5de1fcb43..fb4f5c01a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -10,7 +10,7 @@ endif() set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin) -if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR) +if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR) set(LLAMA_STANDALONE ON) # configure project version @@ -44,7 +44,7 @@ endif() # general option(LLAMA_STATIC "llama: static link libraries" OFF) -option(LLAMA_NATIVE "llama: enable -march=native flag" OFF) +option(LLAMA_NATIVE "llama: enable -march=native flag" ON) option(LLAMA_LTO "llama: enable link time optimization" OFF) # debug @@ -510,6 +510,10 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" ) message(STATUS "x86 detected") if (MSVC) + # instruction set detection for MSVC only + if (LLAMA_NATIVE) + include(cmake/FindSIMD.cmake) + endif () if (LLAMA_AVX512) add_compile_options($<$:/arch:AVX512>) add_compile_options($<$:/arch:AVX512>) diff --git a/README.md b/README.md index b56ecaec7..9c9e36ad0 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,6 @@ ![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png) -[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) @@ -11,8 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ ### Hot topics -- LLaVA support: https://github.com/ggerganov/llama.cpp/pull/3436 -- ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252) +- ⚠️ **Upcoming change that might break functionality. Help with testing is needed:** https://github.com/ggerganov/llama.cpp/pull/3912 ---- diff --git a/cmake/FindSIMD.cmake b/cmake/FindSIMD.cmake new file mode 100644 index 000000000..33377ec44 --- /dev/null +++ b/cmake/FindSIMD.cmake @@ -0,0 +1,100 @@ +include(CheckCSourceRuns) + +set(AVX_CODE " + #include + int main() + { + __m256 a; + a = _mm256_set1_ps(0); + return 0; + } +") + +set(AVX512_CODE " + #include + int main() + { + __m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0); + __m512i b = a; + __mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ); + return 0; + } +") + +set(AVX2_CODE " + #include + int main() + { + __m256i a = {0}; + a = _mm256_abs_epi16(a); + __m256i x; + _mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code + return 0; + } +") + +set(FMA_CODE " + #include + int main() + { + __m256 acc = _mm256_setzero_ps(); + const __m256 d = _mm256_setzero_ps(); + const __m256 p = _mm256_setzero_ps(); + acc = _mm256_fmadd_ps( d, p, acc ); + return 0; + } +") + +macro(check_sse type flags) + set(__FLAG_I 1) + set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS}) + foreach (__FLAG ${flags}) + if (NOT ${type}_FOUND) + set(CMAKE_REQUIRED_FLAGS ${__FLAG}) + check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I}) + if (HAS_${type}_${__FLAG_I}) + set(${type}_FOUND TRUE CACHE BOOL "${type} support") + set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags") + endif() + math(EXPR __FLAG_I "${__FLAG_I}+1") + endif() + endforeach() + set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE}) + + if (NOT ${type}_FOUND) + set(${type}_FOUND FALSE CACHE BOOL "${type} support") + set(${type}_FLAGS "" CACHE STRING "${type} flags") + endif() + + mark_as_advanced(${type}_FOUND ${type}_FLAGS) +endmacro() + +# flags are for MSVC only! +check_sse("AVX" " ;/arch:AVX") +if (NOT ${AVX_FOUND}) + set(LLAMA_AVX OFF) +else() + set(LLAMA_AVX ON) +endif() + +check_sse("AVX2" " ;/arch:AVX2") +check_sse("FMA" " ;/arch:AVX2") +if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND})) + set(LLAMA_AVX2 OFF) +else() + set(LLAMA_AVX2 ON) +endif() + +check_sse("AVX512" " ;/arch:AVX512") +if (NOT ${AVX512_FOUND}) + set(LLAMA_AVX512 OFF) +else() + set(LLAMA_AVX512 ON) +endif() diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index d38818982..f73b33341 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -11,7 +11,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git") if(NOT IS_DIRECTORY "${GIT_DIR}") file(READ ${GIT_DIR} REAL_GIT_DIR_LINK) string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK}) - set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/${REAL_GIT_DIR}") + set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}") endif() set(GIT_INDEX "${GIT_DIR}/index") diff --git a/common/common.cpp b/common/common.cpp index e938dee16..20cc4a081 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -403,6 +403,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } params.n_sequences = std::stoi(argv[i]); + } else if (arg == "--p-accept" || arg == "-pa") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.p_accept = std::stof(argv[i]); + } else if (arg == "--p-split" || arg == "-ps") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.p_split = std::stof(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; @@ -778,6 +790,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); + printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept); + printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n"); diff --git a/common/common.h b/common/common.h index 72a49b890..dd6b002eb 100644 --- a/common/common.h +++ b/common/common.h @@ -43,30 +43,34 @@ extern char const *LLAMA_BUILD_TARGET; int32_t get_num_physical_cores(); struct gpt_params { - uint32_t seed = -1; // RNG seed + uint32_t seed = -1; // RNG seed + int32_t n_threads = get_num_physical_cores(); - int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_draft = 16; // number of tokens to draft during speculative decoding - int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) - int32_t n_parallel = 1; // number of parallel sequences to decode - int32_t n_sequences = 1; // number of sequences to decode - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs - int32_t n_beams = 0; // if non-zero then use beam search of given width. - float rope_freq_base = 0.0f; // RoPE base frequency - float rope_freq_scale = 0.0f; // RoPE frequency scaling factor - float yarn_ext_factor = NAN; // YaRN extrapolation mix factor - float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor - float yarn_beta_fast = 32.0f;// YaRN low correction dim - float yarn_beta_slow = 1.0f; // YaRN high correction dim - int32_t yarn_orig_ctx = 0; // YaRN original context length - int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 512; // context size + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_draft = 16; // number of tokens to draft during speculative decoding + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_parallel = 1; // number of parallel sequences to decode + int32_t n_sequences = 1; // number of sequences to decode + float p_accept = 0.5f; // speculative decoding accept probability + float p_split = 0.1f; // speculative decoding split probability + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs + int32_t n_beams = 0; // if non-zero then use beam search of given width. + float rope_freq_base = 0.0f; // RoPE base frequency + float rope_freq_scale = 0.0f; // RoPE frequency scaling factor + float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor + float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor + float yarn_beta_fast = 32.0f; // YaRN low correction dim + float yarn_beta_slow = 1.0f; // YaRN high correction dim + int32_t yarn_orig_ctx = 0; // YaRN original context length + int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment + // pinging @cebtenzzre // // sampling parameters struct llama_sampling_params sparams; @@ -90,7 +94,7 @@ struct gpt_params { int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line // (which is more convenient to use for plotting) // - bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt + bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 798684f66..3a8e27811 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -37,9 +37,11 @@ int main(int argc, char ** argv) { // max number of parallel drafting sequences (i.e. tree branches) const int n_seq_dft = params.n_parallel; - // TODO: make this configurable - const float p_accept = 0.80f; - const float p_split = 0.10f; + // probability threshold for accepting a token from the draft model + const float p_accept = params.p_accept; + + // probability threshold for splitting a draft branch (only for n_seq_dft > 1) + const float p_split = params.p_split; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("speculative", "log")); diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 58b58f331..dc14f2f5d 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -181,11 +181,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cudaError_t err_ = (err); \ if (err_ != cudaSuccess) { \ - int dev_id; \ - cudaGetDevice(&dev_id); \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ cudaGetErrorString(err_)); \ - fprintf(stderr, "current device: %d\n", dev_id); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -195,11 +195,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ - int dev_id; \ - cudaGetDevice(&dev_id); \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ - fprintf(stderr, "current device: %d\n", dev_id); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -465,7 +465,6 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA #define MAX_STREAMS 8 static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr }; -static cudaMemPool_t g_cudaMemPools[GGML_CUDA_MAX_DEVICES] = { nullptr }; struct ggml_tensor_extra_gpu { void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors @@ -983,7 +982,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; @@ -1087,7 +1086,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; @@ -1191,7 +1190,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; const int ib0 = row*num_blocks_per_row; @@ -1445,7 +1444,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row > nrows) return; const int num_blocks_per_row = ncols / QK_K; @@ -4255,7 +4254,7 @@ template static __global__ void template static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) { - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row >= nrows) { return; @@ -4295,7 +4294,7 @@ template static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) { // qk = quantized weights per x block // qr = number of quantized weights per data value in x block - const int row = blockIdx.y*blockDim.y + threadIdx.y; + const int row = blockIdx.x*blockDim.y + threadIdx.y; if (row >= nrows) { return; @@ -4868,7 +4867,8 @@ static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cu static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); @@ -4877,7 +4877,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); @@ -4886,7 +4886,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); @@ -4895,7 +4895,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); @@ -4904,7 +4904,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec <<>>(vx, y, dst, ncols, nrows); @@ -4914,7 +4914,7 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f GGML_ASSERT(ncols % QK_K == 0); const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(32, ny, 1); dequantize_mul_mat_vec_q2_k<<>>(vx, y, dst, ncols, nrows); } @@ -4923,7 +4923,7 @@ static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, f GGML_ASSERT(ncols % QK_K == 0); const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(32, ny, 1); dequantize_mul_mat_vec_q3_k<<>>(vx, y, dst, ncols, nrows); } @@ -4932,7 +4932,7 @@ static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, f GGML_ASSERT(ncols % QK_K == 0); const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(32, ny, 1); dequantize_mul_mat_vec_q4_k<<>>(vx, y, dst, ncols, nrows); } @@ -4947,7 +4947,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f GGML_ASSERT(ncols % QK_K == 0); const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(32, ny, 1); dequantize_mul_mat_vec_q6_k<<>>(vx, y, dst, ncols, nrows); } @@ -4955,7 +4955,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK4_0 == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -4964,7 +4964,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK4_1 == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -4973,7 +4973,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK5_0 == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -4982,7 +4982,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK5_1 == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -4991,7 +4991,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK8_0 == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5000,7 +5000,7 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5009,7 +5009,7 @@ static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5018,7 +5018,7 @@ static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5027,7 +5027,7 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5036,7 +5036,7 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); mul_mat_vec_q <<>>(vx, vy, dst, ncols, nrows); @@ -5055,7 +5055,7 @@ static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cu static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; - const dim3 block_nums(1, block_num_y, 1); + const dim3 block_nums(block_num_y, 1, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); dequantize_mul_mat_vec<1, 1, convert_f16> <<>>(vx, y, dst, ncols, nrows); @@ -5773,16 +5773,6 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { return ptr; } -static void * ggml_cuda_pool_malloc_async(size_t size, size_t * actual_size, int id, cudaStream_t stream) { - if (g_cudaMemPools[id] == nullptr) { - return ggml_cuda_pool_malloc(size, actual_size); - } - void *ptr; - CUDA_CHECK(cudaMallocFromPoolAsync(&ptr, size, g_cudaMemPools[id], stream)); - *actual_size = size; - return ptr; -} - static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); int id; @@ -5801,13 +5791,6 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) { } -static void ggml_cuda_pool_free_async(void * ptr, size_t actual_size, int id, cudaStream_t stream) { - if (g_cudaMemPools[id] == nullptr) { - return ggml_cuda_pool_free(ptr, actual_size); - } - CUDA_CHECK(cudaFreeAsync(ptr, stream)); -} - void ggml_init_cublas() { static bool initialized = false; @@ -5862,13 +5845,6 @@ void ggml_init_cublas() { // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH)); - - // configure memory pool - cudaError_t err = cudaDeviceGetMemPool(&g_cudaMemPools[id], id); - if (err == cudaSuccess) { - size_t treshold = UINT64_MAX; - CUDA_CHECK(cudaMemPoolSetAttribute(g_cudaMemPools[id], cudaMemPoolAttrReleaseThreshold, &treshold)); - } } // configure logging to stdout @@ -6462,7 +6438,7 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = row_diff*ne00; - src0_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src0_as, id, stream); + src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as); to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream); } const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16; @@ -6473,12 +6449,13 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); GGML_ASSERT(to_fp16_cuda != nullptr); size_t ne = src1_ncols*ne10; - src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream); + src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); } const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; - size_t dst_f16_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream); + + size_t dst_as = 0; + half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); const half alpha_f16 = 1.0f; const half beta_f16 = 0.0f; @@ -6496,15 +6473,14 @@ inline void ggml_cuda_op_mul_mat_cublas( const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); - if (dst_f16_as != 0) { - ggml_cuda_pool_free_async(dst_f16, dst_f16_as, id, stream); - } + ggml_cuda_pool_free(dst_f16, dst_as); if (src0_as != 0) { - ggml_cuda_pool_free_async(src0_as_f16, src0_as, id, stream); + ggml_cuda_pool_free(src0_as_f16, src0_as); } + if (src1_as != 0) { - ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, stream); + ggml_cuda_pool_free(src1_as_f16, src1_as); } } else { @@ -6514,7 +6490,7 @@ inline void ggml_cuda_op_mul_mat_cublas( if (src0->type != GGML_TYPE_F32) { const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); GGML_ASSERT(to_fp32_cuda != nullptr); - src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc_async(row_diff*ne00 * sizeof(float), &src0_as, id, stream); // NOLINT + src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream); } const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32; @@ -6531,7 +6507,7 @@ inline void ggml_cuda_op_mul_mat_cublas( &beta, dst_dd_i, ldc)); if (src0_as != 0) { - ggml_cuda_pool_free_async(src0_ddq_as_f32, src0_as, id, stream); + ggml_cuda_pool_free(src0_ddq_as_f32, src0_as); } } @@ -6954,22 +6930,21 @@ static void ggml_cuda_op_mul_mat( src0_dd[id] = (char *) src0_extra->data_device[id]; } else { const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); - src0_dd[id] = (char *) ggml_cuda_pool_malloc_async(ggml_nbytes(src0), &src0_as[id], id, stream); + src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]); } if (src1_on_device && src1_is_contiguous) { src1_ddf[id] = (float *) src1_extra->data_device[id]; } else { - src1_ddf[id] = (float *) ggml_cuda_pool_malloc_async(ggml_nbytes(src1), &src1_asf[id], id, stream); + src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]); } if (convert_src1_to_q8_1) { - const size_t size_dst_ddq = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs; - src1_ddq[id] = (char *) ggml_cuda_pool_malloc_async(size_dst_ddq, &src1_asq[id], id, stream); + src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); if (src1_on_device && src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); - // CUDA_CHECK(cudaGetLastError()); + CUDA_CHECK(cudaGetLastError()); } } @@ -6977,7 +6952,7 @@ static void ggml_cuda_op_mul_mat( dst_dd[id] = (float *) dst_extra->data_device[id]; } else { const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); - dst_dd[id] = (float *) ggml_cuda_pool_malloc_async(size_dst_ddf, &dst_as[id], id, stream); + dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]); } } @@ -7103,6 +7078,24 @@ static void ggml_cuda_op_mul_mat( } } + for (int64_t id = 0; id < g_device_count; ++id) { + CUDA_CHECK(ggml_cuda_set_device(id)); + + // free buffers again when done + if (src0_as[id] > 0) { + ggml_cuda_pool_free(src0_dd[id], src0_as[id]); + } + if (src1_asf[id] > 0) { + ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); + } + if (src1_asq[id] > 0) { + ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]); + } + if (dst_as[id] > 0) { + ggml_cuda_pool_free(dst_dd[id], dst_as[id]); + } + } + // main device waits for all other devices to be finished if (split && g_device_count > 1) { int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; @@ -7120,21 +7113,6 @@ static void ggml_cuda_op_mul_mat( CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(cudaDeviceSynchronize()); } - - for (int64_t id = 0; id < g_device_count; ++id) { - if (src0_as[id] > 0) { - ggml_cuda_pool_free_async(src0_dd[id], src0_as[id], id, g_cudaStreams[id][0]); - } - if (src1_asf[id] > 0) { - ggml_cuda_pool_free_async(src1_ddf[id], src1_asf[id], id, g_cudaStreams[id][0]); - } - if (src1_asq[id] > 0) { - ggml_cuda_pool_free_async(src1_ddq[id], src1_asq[id], id, g_cudaStreams[id][0]); - } - if (dst_as[id] > 0) { - ggml_cuda_pool_free_async(dst_dd[id], dst_as[id], id, g_cudaStreams[id][0]); - } - } } static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -7248,7 +7226,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor __global__ void k_compute_batched_ptrs( const half * src0_as_f16, const half * src1_as_f16, half * dst_f16, - void ** ptrs, + const void ** ptrs_src, void ** ptrs_dst, int ne12, int ne13, int ne23, int nb02, int nb03, @@ -7265,9 +7243,9 @@ __global__ void k_compute_batched_ptrs( int i03 = i13 / r3; int i02 = i12 / r2; - ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*nb02 + i03*nb03; - ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; - ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* nb2/2 + i13* nb3/2; + ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; + ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2; } static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -7321,11 +7299,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const GGML_ASSERT(to_fp16_cuda != nullptr); size_t src1_as = 0; - half * src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne1 * sizeof(half), &src1_as, id, main_stream); + half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as); to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); size_t dst_as = 0; - half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &dst_as, id, main_stream); + half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -7372,14 +7350,20 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const } else { // use cublasGemmBatchedEx const int ne23 = ne12*ne13; - // allocate device memory for pointers - size_t ptrs_s = 0; - void ** ptrs_as = (void **)ggml_cuda_pool_malloc_async(3*ne23*sizeof(void *), &ptrs_s, id, main_stream); + + const void ** ptrs_src = nullptr; + void ** ptrs_dst = nullptr; + + size_t ptrs_src_s = 0; + size_t ptrs_dst_s = 0; + + ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s); + ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s); dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( src0_as_f16, src1_as_f16, dst_f16, - ptrs_as, + ptrs_src, ptrs_dst, ne12, ne13, ne23, nb02, nb03, @@ -7387,30 +7371,31 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const dst->nb[2], dst->nb[3], r2, r3); CUDA_CHECK(cudaGetLastError()); + CUBLAS_CHECK( cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - &alpha_f16, (const void * const *) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half), - (const void * const *) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float), - &beta_f16, ( void ** ) (ptrs_as + 2*ne23), CUDA_R_16F, ne01, + &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half), + (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float), + &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01, ne23, CUBLAS_COMPUTE_16F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - // free device memory for pointers - if (ptrs_s != 0) { - ggml_cuda_pool_free_async(ptrs_as, ptrs_s, id, main_stream); + + if (ptrs_src_s != 0) { + ggml_cuda_pool_free(ptrs_src, ptrs_src_s); + } + if (ptrs_dst_s != 0) { + ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s); } } #endif const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); - if (src1_as != 0) { - ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, main_stream); - } - if (dst_as != 0) { - ggml_cuda_pool_free_async(dst_f16, dst_as, id, main_stream); - } + + ggml_cuda_pool_free(src1_as_f16, src1_as); + ggml_cuda_pool_free(dst_f16, dst_as); } static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { diff --git a/ggml-metal.m b/ggml-metal.m index b33a3cb8f..78ae4485d 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1017,7 +1017,7 @@ void ggml_metal_graph_compute( [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0]; + [encoder setThreadgroupMemoryLength:MAX(16, nth/32*sizeof(float)) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; @@ -1348,7 +1348,7 @@ void ggml_metal_graph_compute( [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; - [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; + [encoder setThreadgroupMemoryLength:MAX(16, nth*sizeof(float)) atIndex:0]; const int64_t nrows = ggml_nrows(src0); @@ -1403,7 +1403,8 @@ void ggml_metal_graph_compute( const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; - const int n_orig_ctx = ((int32_t *) dst->op_params)[3]; + // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index 727b4e554..a2271d225 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -393,6 +393,7 @@ class TensorNameMap: "layers.{bid}.attention_norm", # llama-pth "encoder.layer.{bid}.attention.output.LayerNorm", # bert "language_model.encoder.layers.{bid}.input_layernorm", # persimmon + "model.layers.{bid}.ln1", # yi ), # Attention norm 2 @@ -464,6 +465,7 @@ class TensorNameMap: "layers.{bid}.ffn_norm", # llama-pth "encoder.layer.{bid}.output.LayerNorm", # bert "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon + "model.layers.{bid}.ln2", # yi ), # Feed-forward up diff --git a/llama.cpp b/llama.cpp index bb60044b4..cc0211ceb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7982,7 +7982,7 @@ struct llama_context_params llama_context_default_params() { /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, - /*.yarn_ext_factor =*/ NAN, + /*.yarn_ext_factor =*/ -1.0f, /*.yarn_attn_factor =*/ 1.0f, /*.yarn_beta_fast =*/ 32.0f, /*.yarn_beta_slow =*/ 1.0f, @@ -8125,7 +8125,7 @@ struct llama_context * llama_new_context_with_model( cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none } - if (std::isnan(cparams.yarn_ext_factor)) { // NaN indicates 'not set' + if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f; } diff --git a/llama.h b/llama.h index 3f1becd76..e8dc04bb5 100644 --- a/llama.h +++ b/llama.h @@ -175,11 +175,11 @@ extern "C" { }; struct llama_context_params { - uint32_t seed; // RNG seed, -1 for random - uint32_t n_ctx; // text context, 0 = from model - uint32_t n_batch; // prompt processing maximum batch size - uint32_t n_threads; // number of threads to use for generation - uint32_t n_threads_batch; // number of threads to use for batch processing + uint32_t seed; // RNG seed, -1 for random + uint32_t n_ctx; // text context, 0 = from model + uint32_t n_batch; // prompt processing maximum batch size + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` // ref: https://github.com/ggerganov/llama.cpp/pull/2054