Merge branch 'master' into HEAD

This commit is contained in:
Georgi Gerganov 2023-10-04 16:20:43 +03:00
commit c736c875a2
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
50 changed files with 4233 additions and 1127 deletions

View file

@ -1,6 +1,9 @@
*.o
*.a
.cache/
.git/
.github/
.gitignore
.vs/
.vscode/
.DS_Store

View file

@ -188,7 +188,7 @@ jobs:
sysctl -a
mkdir build
cd build
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
cmake ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@ -265,17 +265,17 @@ jobs:
matrix:
include:
- build: 'noavx'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
- build: 'avx2'
defines: '-DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'avx'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
- build: 'avx512'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
- build: 'clblast'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
- build: 'openblas'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
steps:
- name: Clone
@ -414,7 +414,7 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Determine tag name

4
.gitignore vendored
View file

@ -40,6 +40,7 @@ models-mnt
/embedding
/gguf
/gguf-llama-simple
/infill
/libllama.so
/llama-bench
/main
@ -90,4 +91,5 @@ tests/test-quantize-perf
tests/test-sampling
tests/test-tokenizer-0-llama
tests/test-tokenizer-0-falcon
tests/test-tokenizer-1
tests/test-tokenizer-1-llama
tests/test-tokenizer-1-bpe

View file

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
cmake_minimum_required(VERSION 3.13) # for add_link_options
project("llama.cpp" C CXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -44,7 +44,7 @@ endif()
# general
option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
option(LLAMA_LTO "llama: enable link time optimization" OFF)
# debug
@ -58,15 +58,21 @@ option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer"
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
# instruction set specific
option(LLAMA_AVX "llama: enable AVX" ON)
option(LLAMA_AVX2 "llama: enable AVX2" ON)
if (LLAMA_NATIVE)
set(INS_ENB OFF)
else()
set(INS_ENB ON)
endif()
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
option(LLAMA_FMA "llama: enable FMA" ON)
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
# in MSVC F16C is implied with AVX2/AVX512
if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" ON)
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
endif()
# 3rd party libs
@ -343,8 +349,9 @@ if (LLAMA_MPI)
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
add_compile_definitions(GGML_USE_MPI)
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
set(cxx_flags ${cxx_flags} -Wno-cast-qual)
set(c_flags ${c_flags} -Wno-cast-qual)
if (NOT MSVC)
add_compile_options(-Wno-cast-qual)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
# Even if you're only using the C header, C++ programs may bring in MPI
@ -418,10 +425,11 @@ if (LLAMA_ALL_WARNINGS)
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
-Werror=implicit-function-declaration)
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
set(host_cxx_flags "")
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
set(cxx_flags ${cxx_flags} -Wmissing-prototypes -Wextra-semi)
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
if (
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
@ -431,27 +439,38 @@ if (LLAMA_ALL_WARNINGS)
endif()
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
set(c_flags ${c_flags} -Wdouble-promotion)
set(cxx_flags ${cxx_flags} -Wno-array-bounds)
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
endif()
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
set(cxx_flags ${cxx_flags} -Wextra-semi)
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
endif()
endif()
else()
# todo : msvc
endif()
add_compile_options(
${warning_flags}
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
)
set(c_flags ${c_flags} ${warning_flags})
set(cxx_flags ${cxx_flags} ${warning_flags})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
endif()
if (NOT MSVC)
set(cuda_flags -Wno-pedantic)
endif()
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
if (NOT cuda_host_flags STREQUAL "")
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
endif()
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
@ -491,9 +510,6 @@ if (NOT MSVC)
if (LLAMA_GPROF)
add_compile_options(-pg)
endif()
if (LLAMA_NATIVE)
add_compile_options(-march=native)
endif()
endif()
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
@ -548,6 +564,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
endif()
else()
if (LLAMA_NATIVE)
add_compile_options(-march=native)
endif()
if (LLAMA_F16C)
add_compile_options(-mf16c)
endif()
@ -705,6 +724,7 @@ set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR}
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
configure_package_config_file(
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in

View file

@ -1,8 +1,8 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -62,9 +62,11 @@ test: $(TEST_TARGETS)
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
continue; \
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
continue; \
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
continue; \
else \
echo "Running test $$test_target..."; \
./$$test_target; \
@ -543,6 +545,9 @@ main: examples/main/main.cpp build-info.h ggml.
@echo '==== Run ./main -h for help. ===='
@echo
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@ -667,6 +672,9 @@ tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h gg
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View file

@ -11,7 +11,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- Parallel decoding + continuous batching support incoming: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
**Devs should become familiar with the new API**
- Local Falcon 180B inference on Mac Studio
@ -92,7 +93,8 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [X] Mistral AI v0.1
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
**Bindings:**
@ -662,6 +664,8 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
### Instruction mode with Alpaca
1. First, download the `ggml` Alpaca model into the `./models` folder

View file

@ -389,6 +389,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "--infill") {
params.infill = true;
} else if (arg == "--multiline-input") {
params.multiline_input = true;
} else if (arg == "--simple-io") {
@ -921,6 +923,7 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
result += piece;
}
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
return result;
}

View file

@ -120,6 +120,7 @@ struct gpt_params {
bool use_mlock = false; // use mlock to keep model in memory
bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);

View file

@ -20,28 +20,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
import gguf
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
@ -133,50 +111,32 @@ gguf_writer.add_file_type(ftype)
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
sys.exit(1)
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
print("gguf: get gpt2 tokenizer vocab")
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
tokens.append(reverse_vocab[i])
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)

View file

@ -19,29 +19,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
@ -130,48 +107,32 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
sys.exit(1)
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)

View file

@ -20,28 +20,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
import gguf
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
return dict(zip(bs, (chr(n) for n in cs)))
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
@ -117,50 +95,32 @@ gguf_writer.add_file_type(ftype)
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
tokenizer_json_file = dir_model / 'tokenizer.json'
if not tokenizer_json_file.is_file():
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
sys.exit(1)
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
print("gguf: get gpt2 tokenizer vocab")
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)

View file

@ -42,7 +42,6 @@ if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
ARCH = gguf.MODEL_ARCH.LLAMA
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
DEFAULT_CONCURRENCY = 8
#
@ -339,29 +338,15 @@ class BpeVocab:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
score = 0.0
for i, item in enumerate(tokenizer):
text: bytes = item.encode("utf-8")
# FIXME: These shouldn't be hardcoded, but it's probably better than the current behavior?
if i <= 258 and text.startswith(b'<') and text.endswith(b'>'):
if i == 0 and text == b'<unk>':
toktype = gguf.TokenType.UNKNOWN
elif i == 1 or i == 2:
toktype = gguf.TokenType.CONTROL
elif i >= 3 and text.startswith(b'<0x'):
toktype = gguf.TokenType.BYTE
else:
toktype = gguf.TokenType.NORMAL
else:
toktype = gguf.TokenType.NORMAL
yield text, score, toktype
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
for i, _ in enumerate(tokenizer):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
@ -953,7 +938,7 @@ class OutputFile:
of.close()
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32

View file

@ -9,7 +9,7 @@ if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
exit 1
fi
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
USER_NAME="${USER_NAME:-User}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
@ -61,9 +61,9 @@ fi
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
echo 'Prompt cache does not exist, building...'
# Default batch_size to 8 here for better user feedback during initial prompt processing
# Default batch_size to 64 here for better user feedback during initial prompt processing
./main 2>>"$LOG" \
--batch_size 8 \
--batch_size 64 \
"${OPTS[@]}" \
--prompt-cache "$PROMPT_CACHE_FILE" \
--file "$CUR_PROMPT_FILE" \

View file

@ -61,7 +61,7 @@ For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' L
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
```
The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.

View file

@ -313,7 +313,7 @@ class ModelParams:
gguf_writer.add_feed_forward_length(self.get_n_ff())
def tensor_name(key, bid=None, suffix=".weight"):
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + suffix
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
class Layer:
def __init__(self, params, lora_params, bid):

View file

@ -332,8 +332,8 @@ static void init_model(struct llama_model * input, struct my_llama_model * model
assert_shape_1d(layer.attention_norm, hparams.n_embd);
assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd);
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd);
assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa());
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
assert_shape_1d(layer.ffn_norm, hparams.n_embd);
assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
@ -626,7 +626,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
{
ggml_allocr_alloc(alloc, KQ_pos);
if (!ggml_allocr_is_measure(alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
@ -786,6 +787,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
// make sure base model tensors data cannot be used in viewable operations
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));

View file

@ -0,0 +1,8 @@
set(TARGET infill)
add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

41
examples/infill/README.md Normal file
View file

@ -0,0 +1,41 @@
# llama.cpp/example/infill
This example shows how to use the infill mode with Code Llama models supporting infill mode.
Currently the 7B and 13B models support infill mode.
Infill supports most of the options available in the main example.
For further information have a look at the main README.md in llama.cpp/example/main/README.md
## Common Options
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
## Input Prompts
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
### Interaction Options
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
### Example
```bash
./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
```

769
examples/infill/infill.cpp Normal file
View file

@ -0,0 +1,769 @@
#include "common.h"
#include "console.h"
#include "llama.h"
#include "build-info.h"
#include "grammar-parser.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static void write_logfile(
const llama_context * ctx, const gpt_params & params, const llama_model * model,
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
const std::string timestamp = get_sortable_timestamp();
const bool success = create_directory_with_parents(params.logdir);
if (!success) {
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: infill\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Generation Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
dump_string_yaml_multiline(logfile, "output", output.c_str());
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
fclose(logfile);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting = true;
} else {
console::cleanup();
printf("\n");
llama_print_timings(*g_ctx);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
gpt_params params;
g_params = &params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("infill", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
printf("\n************\n");
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.embedding) {
printf("\n************\n");
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (params.instruct) {
printf("\n************\n");
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.antiprompt.empty()) {
printf("\n************\n");
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
printf("\n************\n");
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
printf("************\n\n");
return 0;
}
if (params.random_prompt) {
printf("\n************\n");
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.path_prompt_cache.empty()) {
printf("\n************\n");
printf("%s: infill does not support prompt caching\n", __func__);
printf("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) {
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_context * ctx_guidance = NULL;
g_model = &model;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (params.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
}
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG("n_ctx: %d\n", n_ctx);
if (n_ctx > n_ctx_train) {
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);
}
// print system information
{
LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
LOG("add_bos: %d\n", add_bos);
std::vector<llama_token> embd_inp;
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
embd_inp = inp_pfx;
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(ctx));
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(ctx));
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
}
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
LOG("guidance_offset: %s", log_tostr(guidance_offset));
}
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
}
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_TEE("\n");
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (ctx_guidance) {
LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > 0) {
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_TEE("'\n");
}
LOG_TEE("\n");
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
LOG_TEE("%s: interactive mode on.\n", __func__);
if (params.input_prefix_bos) {
LOG_TEE("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
}
if (!params.input_suffix.empty()) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n");
struct llama_grammar * grammar = NULL;
grammar_parser::parse_state parsed_grammar;
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}
LOG_TEE("%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, parsed_grammar);
LOG_TEE("\n");
{
auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) {
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
}
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
}
// TODO: replace with ring-buffer
std::vector<llama_token> last_tokens(n_ctx);
std::fill(last_tokens.begin(), last_tokens.end(), 0);
LOG_TEE("\n##### Infill mode #####\n\n");
if (params.infill) {
printf("\n************\n");
printf("no need to specify '--infill', always running infill\n");
printf("************\n\n");
}
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMa.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_TEE("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_TEE( "%s\n", control_message);
is_interacting = params.interactive_first;
}
bool input_echo = true;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_past_guidance = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
const int n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
fflush(stdout);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
if (ctx_guidance) {
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) {
int input_size = 0;
llama_token * input_buf = NULL;
if (n_past_guidance < (int) guidance_inp.size()) {
// Guidance context should have the same data with these modifications:
//
// * Replace the initial prompt
// * Shift everything by guidance_offset
embd_guidance = guidance_inp;
if (embd.begin() + original_prompt_len < embd.end()) {
embd_guidance.insert(
embd_guidance.end(),
embd.begin() + original_prompt_len,
embd.end()
);
}
input_buf = embd_guidance.data();
input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
} else {
input_buf = embd.data();
input_size = embd.size();
}
for (int i = 0; i < input_size; i += params.n_batch) {
int n_eval = std::min(input_size - i, params.n_batch);
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past_guidance += n_eval;
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG("n_past = %d\n", n_past);
}
}
embd.clear();
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo) {
for (auto id : embd) {
const std::string token_str = llama_token_to_piece(ctx, id);
printf("%s", token_str.c_str());
if (embd.size() > 1) {
input_tokens.push_back(id);
} else {
output_tokens.push_back(id);
output_ss << token_str;
}
}
fflush(stdout);
}
// reset color to default if we there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
if(is_interacting && !params.interactive_first) {
// print an eot token
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
}
fflush(stdout);
printf("\n");
console::set_display(console::user_input);
std::string buffer;
std::string line;
bool another_line=true;
// set a new prefix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line, if so we use the old input
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_prefix = buffer;
}
buffer.clear();
// set a new suffix via stdin
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// check if we got an empty line
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_suffix = buffer;
}
buffer.clear();
// done taking input, reset color
console::set_display(console::reset);
// tokenize new prefix and suffix
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
embd_inp = inp_pfx;
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(ctx));
embd.clear();
embd_guidance.clear();
n_remain = params.n_predict;
n_past = 0;
n_consumed = 0;
// LOG_TEE("took new input\n");
is_interacting = false;
}
// deal with end of text token in interactive mode
else if (last_tokens.back() == llama_token_eos(ctx)) {
LOG("found EOS token\n");
if (params.interactive) {
is_interacting = true;
printf("\n");
console::set_display(console::user_input);
fflush(stdout);
}
}
if (n_past > 0 && is_interacting && !params.interactive) {
LOG("waiting for user input\n");
if (params.input_prefix_bos) {
LOG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(ctx));
}
std::string buffer;
if (!params.input_prefix.empty()) {
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
buffer += params.input_prefix;
printf("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// append input suffix if any
if (!params.input_suffix.empty()) {
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
buffer += params.input_suffix;
printf("%s", params.input_suffix.c_str());
}
LOG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << llama_token_to_piece(ctx, token);
}
n_remain -= line_inp.size();
LOG("n_remain: %d\n", n_remain);
} else {
LOG("empty line, passing control back\n");
}
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (is_interacting) {
// reset grammar state if we're restarting generation
if (grammar != NULL) {
llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root"));
}
}
is_interacting = false;
}
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) {
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!params.interactive && n_remain <= 0) {
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
fflush(stdout);
}
llama_print_timings(ctx);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
if (ctx_guidance) { llama_free(ctx_guidance); }
llama_free(ctx);
llama_free_model(model);
if (grammar != NULL) {
llama_grammar_free(grammar);
}
llama_backend_free();
#ifndef LOG_DISABLE_LOGS
LOG_TEE("Log end\n");
#endif // LOG_DISABLE_LOGS
return 0;
}

View file

@ -28,6 +28,16 @@ configure_file(${_common_path}/../build-info.h
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
${CMAKE_CURRENT_BINARY_DIR})
# If the common project was part of "main-cmake-pkg" the transient
# defines would automatically be attached. Because the common func-
# tionality is separate, but dependent upon the defines, it must be
# explicitly extracted from the "llama" target.
#
get_target_property(_llama_transient_defines llama
INTERFACE_COMPILE_DEFINITIONS)
target_compile_definitions(common PRIVATE "${_llama_transient_defines}")
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
target_include_directories(${TARGET} PRIVATE ${_common_path})
install(TARGETS ${TARGET} RUNTIME)

View file

@ -543,6 +543,9 @@ int main(int argc, char ** argv) {
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
// remove any "future" tokens that we might have inherited from the session from the KV cache
llama_kv_cache_tokens_rm(ctx, n_past, -1);
}
// evaluate tokens in batches
@ -667,7 +670,7 @@ int main(int argc, char ** argv) {
}
fflush(stdout);
}
// reset color to default if we there is no pending user input
// reset color to default if there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
}
@ -694,10 +697,8 @@ int main(int argc, char ** argv) {
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
if (params.interactive) {
is_interacting = true;
console::set_display(console::user_input);
}
is_antiprompt = true;
fflush(stdout);
break;
}
}
@ -721,8 +722,6 @@ int main(int argc, char ** argv) {
is_interacting = true;
printf("\n");
console::set_display(console::user_input);
fflush(stdout);
} else if (params.instruct) {
is_interacting = true;
}
@ -747,6 +746,9 @@ int main(int argc, char ** argv) {
printf("%s", buffer.c_str());
}
// color user input only
console::set_display(console::user_input);
std::string line;
bool another_line = true;
do {

View file

@ -332,7 +332,7 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, n_ctx);
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, -1);
const auto t_main_end = ggml_time_us();

View file

@ -176,6 +176,16 @@ node index.js
`content`: Set the text to process.
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
*Options:*
`input_prefix`: Set the prefix of the code to infill.
`input_suffix`: Set the suffix of the code to infill.
It also accepts all the options of `/completion` except `stream` and `prompt`.
## More examples
### Interactive mode

View file

@ -342,6 +342,70 @@ struct llama_server_context
return true;
}
void loadInfill()
{
auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.push_back(llama_token_middle(ctx));
auto prompt_tokens = prefix_tokens;
num_prompt_tokens = prompt_tokens.size();
if (params.n_keep < 0)
{
params.n_keep = (int)num_prompt_tokens;
}
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
// if input prompt is too big, truncate like normal
if (num_prompt_tokens >= (size_t)params.n_ctx)
{
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
// todo we probably want to cut from both sides
const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
LOG_VERBOSE("input truncated", {
{"n_ctx", params.n_ctx},
{"n_keep", params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
truncated = true;
prompt_tokens = new_tokens;
}
else
{
const size_t ps = num_prompt_tokens;
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
}
// compare the evaluated prompt with the new prompt
n_past = common_part(embd, prompt_tokens);
embd = prompt_tokens;
if (n_past == num_prompt_tokens)
{
// we have to evaluate at least 1 token to generate logits.
printf("we have to evaluate at least 1 token to generate logits\n");
n_past--;
}
LOG_VERBOSE("prompt ingested", {
{"n_past", n_past},
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
});
has_next_token = true;
}
void loadPrompt()
{
auto prompt_tokens = tokenize(prompt, true); // always add BOS
@ -384,7 +448,7 @@ struct llama_server_context
n_past = common_part(embd, prompt_tokens);
// since #3228 we now have to manually manage the KV cache
llama_kv_cache_seq_rm(ctx, 0, n_past, params.n_ctx);
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
embd = prompt_tokens;
if (n_past == num_prompt_tokens)
@ -1219,6 +1283,27 @@ static void parse_options_completion(const json &body, llama_server_context &lla
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
}
static void parse_options_infill(const json &body, llama_server_context &llama)
{
if (body.count("input_prefix") != 0)
{
llama.params.input_prefix = body["input_prefix"];
}
else
{
llama.params.input_prefix = "";
}
if (body.count("input_suffix") != 0)
{
llama.params.input_suffix = body["input_suffix"];
}
else
{
llama.params.input_suffix = "";
}
parse_options_completion(body, llama);
}
static void log_server_request(const Request &req, const Response &res)
{
LOG_INFO("request", {
@ -1519,6 +1604,127 @@ int main(int argc, char **argv)
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
} });
svr.Post("/infill", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
llama.rewind();
llama_reset_timings(llama.ctx);
parse_options_infill(json::parse(req.body), llama);
if (!llama.loadGrammar())
{
res.status = 400;
return;
}
llama.loadInfill();
llama.beginCompletion();
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
size_t sent_count = 0;
size_t sent_token_probs_index = 0;
while (llama.has_next_token) {
const completion_token_output token_with_probs = llama.doCompletion();
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
continue;
}
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
size_t pos = std::min(sent_count, llama.generated_text.size());
const std::string str_test = llama.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos =
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
if (stop_pos != std::string::npos) {
is_stop_full = true;
llama.generated_text.erase(
llama.generated_text.begin() + pos + stop_pos,
llama.generated_text.end());
pos = std::min(sent_count, llama.generated_text.size());
} else {
is_stop_full = false;
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
STOP_PARTIAL);
}
if (
stop_pos == std::string::npos ||
// Send rest of the text if we are at the end of the generation
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
) {
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
sent_count += to_send.size();
std::vector<completion_token_output> probs_output = {};
if (llama.params.n_probs > 0) {
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
if (probs_pos < probs_stop_pos) {
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
}
sent_token_probs_index = probs_stop_pos;
}
const json data = format_partial_response(llama, to_send, probs_output);
const std::string str =
"data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx);
return false;
}
}
if (!llama.has_next_token) {
// Generation is done, send extra information.
const json data = format_final_response(
llama,
"",
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
);
const std::string str =
"data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx);
return false;
}
}
}
llama_print_timings(llama.ctx);
sink.done();
return true;
};
const auto on_complete = [&](bool) {
llama.mutex.unlock();
};
lock.release();
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
});
svr.Get("/model.json", [&llama](const Request &, Response &res)
{
const json data = format_generation_settings(llama);

View file

@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
LOG("out of drafted tokens\n");
}
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
++n_past_dft;
@ -257,7 +257,7 @@ int main(int argc, char ** argv) {
}
// evaluate the drafted token on the draft model
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
++n_past_cur;
@ -267,7 +267,7 @@ int main(int argc, char ** argv) {
}
// evaluate the target model on the drafted tokens
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx);
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
++n_past_tgt;

View file

@ -364,7 +364,7 @@ class ModelParams:
gguf_writer.add_feed_forward_length(self.get_n_ff())
def tensor_name(key, bid=None):
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight"
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
class Layer:
def __init__(self, params, bid):

View file

@ -334,7 +334,8 @@ static struct ggml_tensor * llama_build_train_graphs(
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
{
ggml_allocr_alloc(alloc, KQ_pos);
if (!ggml_allocr_is_measure(alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;

View file

@ -62,7 +62,7 @@
mkdir -p $out/include
cp ${src}/llama.h $out/include/
'';
cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
cmakeFlags = [ "-DLLAMA_NATIVE=OFF" "-DLLAMA_BUILD_SERVER=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
in
{
packages.default = pkgs.stdenv.mkDerivation {

View file

@ -80,9 +80,9 @@
#include "ggml.h"
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_TURING 700
#define CC_VOLTA 700
#define CC_OFFSET_AMD 1000000
#define CC_RDNA2 CC_OFFSET_AMD + 1030
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300
@ -715,7 +715,8 @@ static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const in
//================================== k-quants
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
template<typename dst_t>
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x;
const block_q2_K * x = (const block_q2_K *) vx;
@ -727,7 +728,7 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const int is = 8*n + l/16;
const uint8_t q = x[i].qs[32*n + l];
float * y = yy + i*QK_K + 128*n;
dst_t * y = yy + i*QK_K + 128*n;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
@ -739,7 +740,7 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
float * y = yy + i*QK_K + 16*is + il;
dst_t * y = yy + i*QK_K + 16*is + il;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
@ -748,7 +749,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
}
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
template<typename dst_t>
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int i = blockIdx.x;
const block_q3_K * x = (const block_q3_K *) vx;
@ -772,7 +774,7 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float
float d_all = x[i].d;
float dl = d_all * (us - 32);
float * y = yy + i*QK_K + 128*n + 32*j;
dst_t * y = yy + i*QK_K + 128*n + 32*j;
const uint8_t * q = x[i].qs + 32*n;
const uint8_t * hm = x[i].hmask;
@ -784,7 +786,7 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float
const int im = il/8; // 0...1
const int in = il%8; // 0...7
float * y = yy + i*QK_K + 16*is + il;
dst_t * y = yy + i*QK_K + 16*is + il;
const uint8_t q = x[i].qs[il] >> (2*is);
const uint8_t h = x[i].hmask[in] >> (2*is + im);
@ -812,7 +814,8 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t
}
#endif
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
template<typename dst_t>
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const block_q4_K * x = (const block_q4_K *) vx;
const int i = blockIdx.x;
@ -825,7 +828,7 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
const int is = 2*il;
const int n = 4;
float * y = yy + i*QK_K + 64*il + n*ir;
dst_t * y = yy + i*QK_K + 64*il + n*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
@ -844,7 +847,7 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
#else
const int tid = threadIdx.x;
const uint8_t * q = x[i].qs;
float * y = yy + i*QK_K;
dst_t * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
@ -852,7 +855,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
#endif
}
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
template<typename dst_t>
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const block_q5_K * x = (const block_q5_K *) vx;
const int i = blockIdx.x;
@ -864,7 +868,7 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float
const int ir = tid%16; // ir is in 0...15
const int is = 2*il; // is is in 0...6
float * y = yy + i*QK_K + 64*il + 2*ir;
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
@ -892,13 +896,14 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float
const int is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
float * y = yy + i*QK_K + tid;
dst_t * y = yy + i*QK_K + tid;
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
template<typename dst_t>
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const block_q6_K * x = (const block_q6_K *) vx;
const int i = blockIdx.x;
@ -910,7 +915,7 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float
const int il = tid - 32*ip; // 0...32
const int is = 8*ip + il/16;
float * y = yy + i*QK_K + 128*ip + il;
dst_t * y = yy + i*QK_K + 128*ip + il;
const float d = x[i].d;
@ -929,7 +934,7 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float
const int ip = tid/16; // 0 or 1
const int il = tid - 16*ip; // 0...15
float * y = yy + i*QK_K + 16*ip + il;
dst_t * y = yy + i*QK_K + 16*ip + il;
const float d = x[i].d;
@ -3548,7 +3553,7 @@ template <bool need_check> static __global__ void
load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q4_0_AMPERE;
const int mmq_y = MMQ_Y_Q4_0_AMPERE;
const int nwarps = NWARPS_Q4_0_AMPERE;
@ -3568,7 +3573,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q4_0_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q4_1_RDNA2 64
@ -3589,9 +3594,9 @@ template <bool need_check> static __global__ void
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_TURING
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3611,7 +3616,7 @@ template <bool need_check> static __global__ void
load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q4_1_AMPERE;
const int mmq_y = MMQ_Y_Q4_1_AMPERE;
const int nwarps = NWARPS_Q4_1_AMPERE;
@ -3631,7 +3636,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q4_1_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q5_0_RDNA2 64
@ -3672,7 +3677,7 @@ template <bool need_check> static __global__ void
load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q5_0_AMPERE;
const int mmq_y = MMQ_Y_Q5_0_AMPERE;
const int nwarps = NWARPS_Q5_0_AMPERE;
@ -3692,7 +3697,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q5_0_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q5_1_RDNA2 64
@ -3733,7 +3738,7 @@ mul_mat_q5_1(
load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q5_1_AMPERE;
const int mmq_y = MMQ_Y_Q5_1_AMPERE;
const int nwarps = NWARPS_Q5_1_AMPERE;
@ -3753,7 +3758,7 @@ mul_mat_q5_1(
#else
(void) vec_dot_q5_1_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q8_0_RDNA2 64
@ -3794,7 +3799,7 @@ template <bool need_check> static __global__ void
load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q8_0_AMPERE;
const int mmq_y = MMQ_Y_Q8_0_AMPERE;
const int nwarps = NWARPS_Q8_0_AMPERE;
@ -3814,7 +3819,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q8_0_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q2_K_RDNA2 64
@ -3855,7 +3860,7 @@ mul_mat_q2_K(
load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q2_K_AMPERE;
const int mmq_y = MMQ_Y_Q2_K_AMPERE;
const int nwarps = NWARPS_Q2_K_AMPERE;
@ -3875,7 +3880,7 @@ mul_mat_q2_K(
#else
(void) vec_dot_q2_K_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q3_K_RDNA2 128
@ -3896,9 +3901,9 @@ template <bool need_check> static __global__ void
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_TURING
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3918,7 +3923,7 @@ template <bool need_check> static __global__ void
load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q3_K_AMPERE;
const int mmq_y = MMQ_Y_Q3_K_AMPERE;
const int nwarps = NWARPS_Q3_K_AMPERE;
@ -3938,7 +3943,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q3_K_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q4_K_RDNA2 64
@ -3959,9 +3964,9 @@ template <bool need_check> static __global__ void
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_TURING
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3981,7 +3986,7 @@ template <bool need_check> static __global__ void
load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q4_K_AMPERE;
const int mmq_y = MMQ_Y_Q4_K_AMPERE;
const int nwarps = NWARPS_Q4_K_AMPERE;
@ -4001,7 +4006,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q4_K_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q5_K_RDNA2 64
@ -4042,7 +4047,7 @@ mul_mat_q5_K(
load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q5_K_AMPERE;
const int mmq_y = MMQ_Y_Q5_K_AMPERE;
const int nwarps = NWARPS_Q5_K_AMPERE;
@ -4062,7 +4067,7 @@ mul_mat_q5_K(
#else
(void) vec_dot_q5_K_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
#define MMQ_X_Q6_K_RDNA2 64
@ -4083,9 +4088,9 @@ template <bool need_check> static __global__ void
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_TURING
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -4105,7 +4110,7 @@ template <bool need_check> static __global__ void
load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#elif __CUDA_ARCH__ >= CC_TURING
#elif __CUDA_ARCH__ >= CC_VOLTA
const int mmq_x = MMQ_X_Q6_K_AMPERE;
const int mmq_y = MMQ_Y_Q6_K_AMPERE;
const int nwarps = NWARPS_Q6_K_AMPERE;
@ -4125,7 +4130,7 @@ template <bool need_check> static __global__ void
#else
(void) vec_dot_q6_K_q8_1_mul_mat;
assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
@ -4604,32 +4609,38 @@ static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, con
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
}
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q5_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q5_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q8_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
@ -4638,7 +4649,8 @@ static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cu
#endif
}
static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
@ -4647,12 +4659,14 @@ static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cu
#endif
}
static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
}
static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
@ -4661,7 +4675,8 @@ static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cu
#endif
}
static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
template<typename dst_t>
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
@ -4868,6 +4883,26 @@ static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, floa
static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda;
case GGML_TYPE_Q4_1:
return dequantize_row_q4_1_cuda;
case GGML_TYPE_Q5_0:
return dequantize_row_q5_0_cuda;
case GGML_TYPE_Q5_1:
return dequantize_row_q5_1_cuda;
case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda;
case GGML_TYPE_Q2_K:
return dequantize_row_q2_K_cuda;
case GGML_TYPE_Q3_K:
return dequantize_row_q3_K_cuda;
case GGML_TYPE_Q4_K:
return dequantize_row_q4_K_cuda;
case GGML_TYPE_Q5_K:
return dequantize_row_q5_K_cuda;
case GGML_TYPE_Q6_K:
return dequantize_row_q6_K_cuda;
case GGML_TYPE_F32:
return convert_fp32_to_fp16_cuda;
default:
@ -4921,7 +4956,7 @@ static void ggml_mul_mat_q4_0_q8_1_cuda(
mmq_x = MMQ_X_Q4_0_RDNA1;
mmq_y = MMQ_Y_Q4_0_RDNA1;
nwarps = NWARPS_Q4_0_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q4_0_AMPERE;
mmq_y = MMQ_Y_Q4_0_AMPERE;
nwarps = NWARPS_Q4_0_AMPERE;
@ -4966,7 +5001,7 @@ static void ggml_mul_mat_q4_1_q8_1_cuda(
mmq_x = MMQ_X_Q4_1_RDNA1;
mmq_y = MMQ_Y_Q4_1_RDNA1;
nwarps = NWARPS_Q4_1_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q4_1_AMPERE;
mmq_y = MMQ_Y_Q4_1_AMPERE;
nwarps = NWARPS_Q4_1_AMPERE;
@ -5011,7 +5046,7 @@ static void ggml_mul_mat_q5_0_q8_1_cuda(
mmq_x = MMQ_X_Q5_0_RDNA1;
mmq_y = MMQ_Y_Q5_0_RDNA1;
nwarps = NWARPS_Q5_0_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q5_0_AMPERE;
mmq_y = MMQ_Y_Q5_0_AMPERE;
nwarps = NWARPS_Q5_0_AMPERE;
@ -5056,7 +5091,7 @@ static void ggml_mul_mat_q5_1_q8_1_cuda(
mmq_x = MMQ_X_Q5_1_RDNA1;
mmq_y = MMQ_Y_Q5_1_RDNA1;
nwarps = NWARPS_Q5_1_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q5_1_AMPERE;
mmq_y = MMQ_Y_Q5_1_AMPERE;
nwarps = NWARPS_Q5_1_AMPERE;
@ -5101,7 +5136,7 @@ static void ggml_mul_mat_q8_0_q8_1_cuda(
mmq_x = MMQ_X_Q8_0_RDNA1;
mmq_y = MMQ_Y_Q8_0_RDNA1;
nwarps = NWARPS_Q8_0_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q8_0_AMPERE;
mmq_y = MMQ_Y_Q8_0_AMPERE;
nwarps = NWARPS_Q8_0_AMPERE;
@ -5146,7 +5181,7 @@ static void ggml_mul_mat_q2_K_q8_1_cuda(
mmq_x = MMQ_X_Q2_K_RDNA1;
mmq_y = MMQ_Y_Q2_K_RDNA1;
nwarps = NWARPS_Q2_K_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q2_K_AMPERE;
mmq_y = MMQ_Y_Q2_K_AMPERE;
nwarps = NWARPS_Q2_K_AMPERE;
@ -5193,7 +5228,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
mmq_x = MMQ_X_Q3_K_RDNA1;
mmq_y = MMQ_Y_Q3_K_RDNA1;
nwarps = NWARPS_Q3_K_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q3_K_AMPERE;
mmq_y = MMQ_Y_Q3_K_AMPERE;
nwarps = NWARPS_Q3_K_AMPERE;
@ -5239,7 +5274,7 @@ static void ggml_mul_mat_q4_K_q8_1_cuda(
mmq_x = MMQ_X_Q4_K_RDNA1;
mmq_y = MMQ_Y_Q4_K_RDNA1;
nwarps = NWARPS_Q4_K_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q4_K_AMPERE;
mmq_y = MMQ_Y_Q4_K_AMPERE;
nwarps = NWARPS_Q4_K_AMPERE;
@ -5284,7 +5319,7 @@ static void ggml_mul_mat_q5_K_q8_1_cuda(
mmq_x = MMQ_X_Q5_K_RDNA1;
mmq_y = MMQ_Y_Q5_K_RDNA1;
nwarps = NWARPS_Q5_K_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q5_K_AMPERE;
mmq_y = MMQ_Y_Q5_K_AMPERE;
nwarps = NWARPS_Q5_K_AMPERE;
@ -5329,7 +5364,7 @@ static void ggml_mul_mat_q6_K_q8_1_cuda(
mmq_x = MMQ_X_Q6_K_RDNA1;
mmq_y = MMQ_Y_Q6_K_RDNA1;
nwarps = NWARPS_Q6_K_RDNA1;
} else if (compute_capability >= CC_TURING) {
} else if (compute_capability >= CC_VOLTA) {
mmq_x = MMQ_X_Q6_K_AMPERE;
mmq_y = MMQ_Y_Q6_K_AMPERE;
nwarps = NWARPS_Q6_K_AMPERE;
@ -5907,7 +5942,7 @@ static int64_t get_row_rounding(ggml_type type) {
switch(type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return max_compute_capability >= CC_TURING ? 128 : 64;
return max_compute_capability >= CC_VOLTA ? 128 : 64;
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
@ -5918,7 +5953,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
return max_compute_capability >= CC_TURING ? 128 : 64;
return max_compute_capability >= CC_VOLTA ? 128 : 64;
case GGML_TYPE_Q6_K:
return 64;
default:
@ -6083,8 +6118,19 @@ inline void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = g_compute_capabilities[id];
if (compute_capability >= CC_TURING && src0->type == GGML_TYPE_F16 && ggml_is_contiguous(src0) && ldc == row_diff) {
// convert src1 to fp16, multiply as fp16, convert dst to fp32
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
half * src0_as_f16 = nullptr;
size_t src0_as = 0;
if (src0->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = row_diff*ne00;
src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
}
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
half * src1_as_f16 = nullptr;
size_t src1_as = 0;
if (src1->type != GGML_TYPE_F16) {
@ -6106,7 +6152,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_dd_i, CUDA_R_16F, ne00,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16, CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
@ -6117,6 +6163,10 @@ inline void ggml_cuda_op_mul_mat_cublas(
ggml_cuda_pool_free(dst_f16, dst_as);
if (src0_as != 0) {
ggml_cuda_pool_free(src0_as_f16, src0_as);
}
if (src1_as != 0) {
ggml_cuda_pool_free(src1_as_f16, src1_as);
}

View file

@ -1213,12 +1213,9 @@ void ggml_metal_graph_compute(
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
if (__builtin_popcount(n_head) != 1) {
GGML_ASSERT(false && "only power-of-two n_head implemented");
}
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1240,6 +1237,8 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;

View file

@ -831,6 +831,8 @@ kernel void kernel_alibi_f32(
constant uint64_t & nb2,
constant uint64_t & nb3,
constant float & m0,
constant float & m1,
constant int & n_heads_log2_floor,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
@ -846,7 +848,12 @@ kernel void kernel_alibi_f32(
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
float m_k = pow(m0, i2 + 1);
float m_k;
if (i2 < n_heads_log2_floor) {
m_k = pow(m0, i2 + 1);
} else {
m_k = pow(m1, 2 * (i2 - n_heads_log2_floor) + 1);
}
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);

View file

@ -1476,10 +1476,15 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
@ -1498,13 +1503,22 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int64_t pi02 = -1;
int64_t pi03 = -1;
for (int64_t i13 = 0; i13 < ne13; i13++) {
int64_t i03 = i13 / r3;
for (int64_t i12 = 0; i12 < ne12; i12++) {
int64_t i02 = i12 / r2;
// copy data to device
if (src0->backend != GGML_BACKEND_GPU) {
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
pi02 = i02;
pi03 = i03;
}
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
CL_CHECK(clFinish(queue));
@ -1525,7 +1539,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
}
}
@ -1547,6 +1561,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
@ -1556,6 +1572,9 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
const int x_ne = ne01 * ne00;
@ -1577,32 +1596,41 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int64_t pi02 = -1;
int64_t pi03 = -1;
for (int64_t i13 = 0; i13 < ne13; i13++) {
int64_t i03 = i13 / r3;
for (int64_t i12 = 0; i12 < ne12; i12++) {
int64_t i02 = i12 / r2;
// copy src0 to device
if (src0->backend != GGML_BACKEND_GPU) {
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
pi02 = i02;
pi03 = i03;
}
// convert src1 to fp16
// TODO: use multiple threads
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
for (int64_t i11 = 0; i11 < ne11; i11++) {
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
}
}
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) {
for (int64_t i11 = 0; i11 < ne11; i11++) {
for (int64_t i10 = 0; i10 < ne10; i10++) {
// very slow due to no inlining
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
}
}
}
@ -1631,7 +1659,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
// copy dst to host, then convert to float
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne);
}
@ -1652,12 +1680,17 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_type type = src0->type;
const bool mul_mat_vec = ne11 == 1;
const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
@ -1690,12 +1723,23 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
size_t ev_idx = 0;
std::vector<cl_event> events;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int64_t pi02 = -1;
int64_t pi03 = -1;
for (int64_t i13 = 0; i13 < ne13; i13++) {
int64_t i03 = i13 / r3;
for (int64_t i12 = 0; i12 < ne12; i12++) {
int64_t i02 = i12 / r2;
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
if (i02 != pi02 || i03 != pi03) {
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
pi02 = i02;
pi03 = i03;
}
} else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (cl_mem) src0->extra;
} else {
@ -1704,7 +1748,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
// compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
@ -1725,7 +1769,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
events.emplace_back();
@ -1749,7 +1793,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
for (auto *event : events) {
clReleaseEvent(event);

1214
ggml.c

File diff suppressed because it is too large Load diff

13
ggml.h
View file

@ -401,10 +401,14 @@ extern "C" {
GGML_OP_CLAMP,
GGML_OP_CONV_1D,
GGML_OP_CONV_2D,
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_CONV_1D_STAGE_0, // internal
GGML_OP_CONV_1D_STAGE_1, // internal
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_FLASH_ATTN,
@ -1386,6 +1390,14 @@ extern "C" {
int s,
int d);
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0);
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1759,6 +1771,7 @@ extern "C" {
GGML_OPT_NO_CONTEXT,
GGML_OPT_INVALID_WOLFE,
GGML_OPT_FAIL,
GGML_OPT_CANCEL,
GGML_LINESEARCH_FAIL = -128,
GGML_LINESEARCH_MINIMUM_STEP,

View file

@ -86,10 +86,12 @@ class MODEL_ARCH(IntEnum):
MPT : int = auto()
STARCODER : int = auto()
REFACT : int = auto()
BERT : int = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD : int = auto()
TOKEN_TYPES : int = auto()
POS_EMBD : int = auto()
OUTPUT : int = auto()
OUTPUT_NORM : int = auto()
@ -118,92 +120,152 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.MPT: "mpt",
MODEL_ARCH.STARCODER: "starcoder",
MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert",
}
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPTNEOX: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.BAICHUAN: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.STARCODER: {
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.REFACT: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: {
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPTNEOX: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.STARCODER: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BERT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPTJ: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.REFACT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [
# TODO
},
],
# TODO
}
@ -225,30 +287,39 @@ class TensorNameMap:
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 mpt refact
"transformer.wte", # gpt2 gpt-j mpt refact
"transformer.word_embeddings", # falcon
"model.embed_tokens", # llama-hf
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert
),
# Token type embeddings
MODEL_TENSOR.TOKEN_TYPES: (
"embeddings.token_type_embeddings", # bert
),
# Position embeddings
MODEL_TENSOR.POS_EMBD: (
"transformer.wpe", # gpt2
"embeddings.position_embeddings", # bert
),
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan
"lm_head", # gpt2 gpt-j mpt falcon llama-hf baichuan
"output", # llama-pth
),
# Output norm
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 falcon
"transformer.ln_f", # gpt2 gpt-j falcon
"model.norm", # llama-hf baichuan
"norm", # llama-pth
"embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt
"ln_f", # refact
),
@ -262,12 +333,13 @@ class TensorNameMap:
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 refact
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
"transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf
"layers.{bid}.attention_norm", # llama-pth
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
),
# Attention norm 2
@ -287,18 +359,24 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
),
# Attention key
MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
),
# Attention value
MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
),
# Attention output
@ -309,6 +387,8 @@ class TensorNameMap:
"transformer.h.{bid}.self_attention.dense", # falcon
"model.layers.{bid}.self_attn.o_proj", # llama-hf
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j
),
# Rotary embeddings
@ -324,6 +404,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
"layers.{bid}.ffn_norm", # llama-pth
"encoder.layer.{bid}.output.LayerNorm", # bert
),
# Feed-forward up
@ -334,6 +415,8 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
"layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
),
# Feed-forward gate
@ -350,33 +433,31 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"model.layers.{bid}.mlp.down_proj", # llama-hf
"layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
),
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]
tensor_names: dict[MODEL_TENSOR, str]
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
mapping = self.mapping = {}
tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
self.mapping = {}
for tensor, keys in self.mappings_cfg.items():
tensor_name = tensor_names.get(tensor)
if tensor_name is None:
if tensor not in MODEL_TENSORS[arch]:
continue
mapping[tensor_name] = (tensor, tensor_name)
tensor_name = TENSOR_NAMES[tensor]
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
mapping[key] = (tensor, tensor_name)
self.mapping[key] = (tensor, tensor_name)
for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items():
tensor_name = tensor_names.get(tensor)
if tensor_name is None:
if tensor not in MODEL_TENSORS[arch]:
continue
tensor_name = tensor_name.format(bid = bid)
mapping[tensor_name] = (tensor, tensor_name)
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
key = key.format(bid = bid)
mapping[key] = (tensor, tensor_name)
self.mapping[key] = (tensor, tensor_name)
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
result = self.mapping.get(key)
@ -817,22 +898,25 @@ class SpecialVocab:
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
special_token_ids: dict[str, int] = {}
def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False,
special_token_types: tuple[str, ...] | None = None,
):
self.special_token_ids = {}
self.load_merges = load_merges
if special_token_types is not None:
self.special_token_types = special_token_types
self.load(path)
self._load(Path(path))
def load(self, path: Path):
if not self.try_load_from_tokenizer_json(path):
self.try_load_from_config_json(path)
def _load(self, path: Path) -> None:
if not self._try_load_from_tokenizer_json(path):
self._try_load_from_config_json(path)
def try_load_from_tokenizer_json(self, path: Path) -> bool:
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file():
return False
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
@ -842,7 +926,7 @@ class SpecialVocab:
added_tokens = tokenizer.get('added_tokens')
if added_tokens is None or not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
for typ in self.special_token_types:
entry = tokenizer_config.get(f'{typ}_token')
@ -861,11 +945,11 @@ class SpecialVocab:
break
return True
def try_load_from_config_json(self, path: Path) -> bool:
def _try_load_from_config_json(self, path: Path) -> bool:
config_file = path / 'config.json'
if not config_file.is_file():
return False
with open(config_file, 'r', encoding = 'utf-8') as f:
with open(config_file, encoding = 'utf-8') as f:
config = json.load(f)
for typ in self.special_token_types:
maybe_token_id = config.get(f'{typ}_token_id')
@ -873,7 +957,7 @@ class SpecialVocab:
self.special_token_ids[typ] = maybe_token_id
return True
def add_to_gguf(self, gw: GGUFWriter):
def add_to_gguf(self, gw: GGUFWriter) -> None:
if len(self.merges) > 0:
print(f'gguf: Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
@ -885,8 +969,8 @@ class SpecialVocab:
print(f'gguf: Setting special token type {typ} to {tokid}')
handler(tokid)
def __repr__(self):
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
def __repr__(self) -> str:
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>'
# Example usage:

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.3.3"
version = "0.4.0"
description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

View file

@ -54,6 +54,10 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -65,7 +69,6 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
// 2-6 bit quantization in super-blocks
//
//
// ===================== Helper functions
//
@ -344,7 +347,6 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
const float q4scale = 15.f;
for (int i = 0; i < nb; i++) {
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/16; ++j) {
@ -1582,6 +1584,90 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
float sumf = 0;
uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
size_t vl = 16;
vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
vl = 32;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
uint8_t is=0;
int isum=0;
for (int j = 0; j < QK_K/128; ++j) {
// load Q2
vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
// duplicate scale elements for product
vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
// load Q8
vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
isum += __riscv_vmv_x_s_i32m1_i32(isum1);
q2+=32; q8+=128; is=8;
}
sumf += dall * isum;
}
*s = sumf;
#else
float sumf = 0;
@ -1807,6 +1893,64 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) + summs;
#elif defined __riscv_v_intrinsic
uint32_t aux32[2];
const uint8_t * scales = (const uint8_t *)aux32;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * (float)x[i].d;
const float dmin = -y[i].d * (float)x[i].dmin;
const uint8_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
aux32[0] = sc[0] & 0x0f0f0f0f;
aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
int isum1 = 0;
int isum2 = 0;
size_t vl = 16;
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
// load Q2
vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
// load Q8, and take product with Q2
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
sumf += d * (isum1 + isum2);
}
*s = sumf;
#else
float sumf = 0;
@ -2220,6 +2364,106 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
uint32_t aux[3];
uint32_t utmp[4];
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q3 = x[i].qs;
const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs;
memcpy(aux, x[i].scales, 12);
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
int8_t * scale = (int8_t *)utmp;
for (int j = 0; j < 16; ++j) scale[j] -= 32;
size_t vl = 32;
uint8_t m = 1;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
int sum_t = 0;
for (int j = 0; j < QK_K; j += 128) {
vl = 32;
// load Q3
vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
// compute mask for subtraction
vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
m <<= 1;
vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
m <<= 1;
vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
m <<= 1;
vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
m <<= 1;
// load Q8 and take product with Q3
vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
vl = 16;
// retreive lane to multiply with scale
vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
q3 += 32; q8 += 128; scale += 8;
}
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
sumf += d*sum_t;
}
*s = sumf;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it
@ -2523,6 +2767,79 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
uint16_t aux16[2];
int8_t * scales = (int8_t *)aux16;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q3 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f;
aux16[1] = (a >> 4) & 0x0f0f;
for (int j = 0; j < 4; ++j) scales[j] -= 8;
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
const float d = y[i].d * (float)x[i].d;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
// load qh
vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
size_t vl = 16;
// extend and combine both qh_x1 and qh_x2
vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
// load Q3
vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
// load Q8 and take product with Q3
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
sumf += d * isum;
}
*s = sumf;
#else
int8_t aux8[QK_K];
@ -2823,6 +3140,78 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
#elif defined __riscv_v_intrinsic
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
float sumf = 0;
for (int i = 0; i < nb; ++i) {
size_t vl = 8;
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
vl = 32;
int32_t sum_1 = 0;
int32_t sum_2 = 0;
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
for (int j = 0; j < QK_K/64; ++j) {
// load Q4
vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
// load Q8 and multiply it with lower Q4 nibble
vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
// load Q8 and multiply it with upper Q4 nibble
vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
q4 += 32; q8 += 64;
}
sumf += d*(sum_1 + sum_2);
}
*s = sumf;
#else
@ -3064,6 +3453,50 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) - summs;
#elif defined __riscv_v_intrinsic
uint16_t s16[2];
const uint8_t * restrict scales = (const uint8_t *)s16;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint16_t * restrict b = (const uint16_t *)x[i].scales;
s16[0] = b[0] & 0x0f0f;
s16[1] = (b[0] >> 4) & 0x0f0f;
sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
size_t vl = 32;
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
// load Q4
vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
// load Q8 and multiply it with lower Q4 nibble
vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
// load Q8 and multiply it with upper Q4 nibble
vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
}
*s = sumf;
#else
uint8_t aux8[QK_K];
@ -3394,6 +3827,93 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) + summs;
#elif defined __riscv_v_intrinsic
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
float sumf = 0;
float sums = 0.0;
size_t vl;
for (int i = 0; i < nb; ++i) {
vl = 8;
const uint8_t * restrict q5 = x[i].qs;
const uint8_t * restrict hm = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
vl = 32;
int32_t aux32 = 0;
int is = 0;
uint8_t m = 1;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
for (int j = 0; j < QK_K/64; ++j) {
// load Q5 and Q8
vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
// compute mask for addition
vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
m <<= 1;
vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
m <<= 1;
vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
q5 += 32; q8 += 64;
}
vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
}
*s = sumf+sums;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
@ -3639,6 +4159,76 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * (float)x[i].d;
const int8_t * sc = x[i].scales;
const uint8_t * restrict q5 = x[i].qs;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
// load qh
vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
size_t vl = 16;
// combine both qh_1 and qh_2
vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
// load q5
vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
// load Q8 and multiply it with Q5
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
}
*s = sumf;
#else
int8_t aux8[QK_K];
@ -4023,6 +4613,91 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const int8_t * restrict scale = x[i].scales;
size_t vl;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
int sum_t = 0;
int is = 0;
for (int j = 0; j < QK_K/128; ++j) {
vl = 32;
// load qh
vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
// load Q6
vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
// load Q8 and take product
vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
vl = 16;
vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
q6 += 64; qh += 32; q8 += 128; is=8;
}
sumf += d * sum_t;
}
*s = sumf;
#else
int8_t aux8[QK_K];
@ -4276,6 +4951,73 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __riscv_v_intrinsic
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d_all = (float)x[i].d;
const uint8_t * restrict q6 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const int8_t * restrict scale = x[i].scales;
int32_t isum = 0;
size_t vl = 16;
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
// load Q6
vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
// load qh
vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
// load Q8 and take product
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
sumf += isum * d_all * y[i].d;
}
*s = sumf;
#else
int8_t aux8[QK_K];

368
llama.cpp
View file

@ -1,6 +1,8 @@
#define LLAMA_API_INTERNAL
#include "llama.h"
#include "unicode.h"
#include "ggml.h"
#include "ggml-alloc.h"
@ -1095,6 +1097,10 @@ struct llama_vocab {
id special_pad_id = -1;
id linefeed_id = 13;
id special_prefix_id = 32007;
id special_middle_id = 32009;
id special_suffix_id = 32008;
id special_eot_id = 32010;
int find_bpe_rank(std::string token_left, std::string token_right) const {
replace_all(token_left, " ", "\u0120");
@ -1369,6 +1375,9 @@ static void llama_kv_cache_seq_rm(
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.erase(seq_id);
@ -1385,6 +1394,9 @@ static void llama_kv_cache_seq_cp(
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.insert(seq_id_dst);
@ -1407,6 +1419,9 @@ static void llama_kv_cache_seq_shift(
llama_pos p0,
llama_pos p1,
llama_pos delta) {
if (p0 < 0) p0 = 0;
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].pos += delta;
@ -2003,6 +2018,7 @@ static void llm_load_vocab(
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
std::string first;
std::string second;
@ -2037,6 +2053,7 @@ static void llm_load_vocab(
for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i);
GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
vocab.token_to_id[word] = i;
@ -2045,12 +2062,13 @@ static void llm_load_vocab(
token_data.score = scores ? scores[i] : 0.0f;
token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
}
GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
} else {
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0];
}
// special tokens
@ -4612,19 +4630,42 @@ static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
}
static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
}
static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
GGML_ASSERT(llama_is_byte_token(vocab, id));
const auto& token_data = vocab.id_to_token.at(id);
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM: {
auto buf = token_data.text.substr(3, 2);
return strtol(buf.c_str(), NULL, 16);
}
case LLAMA_VOCAB_TYPE_BPE: {
GGML_ASSERT(false);
return unicode_to_bytes_bpe(token_data.text);
}
default:
GGML_ASSERT(false);
}
}
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM: {
char buf[7];
int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
GGML_ASSERT(0 <= result && result < 7);
return vocab.token_to_id.at(buf);
}
case LLAMA_VOCAB_TYPE_BPE: {
return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
}
default:
GGML_ASSERT(false);
}
}
static void llama_escape_whitespace(std::string & text) {
replace_all(text, " ", "\xe2\x96\x81");
@ -4903,16 +4944,10 @@ struct llm_tokenizer_bpe {
std::string byte_str(1, *j);
auto token_multibyte = vocab.token_to_id.find(byte_str);
if (token_multibyte == vocab.token_to_id.end()) {
try {
llama_token token_byte = llama_byte_to_token(vocab, *j);
output.push_back(token_byte);
} catch (const std::out_of_range & err) {
fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
throw std::runtime_error("ERROR: byte not found in vocab");
}
} else {
output.push_back((*token_multibyte).second);
}
}
} else {
output.push_back((*token).second);
}
@ -4948,23 +4983,144 @@ private:
work_queue.push(bigram);
}
// probably not 100% correct
static std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
std::vector<std::string> words;
std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
std::vector<std::string> bpe_words;
std::vector<std::string> bpe_encoded_words;
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::string token = "";
// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
bool collecting_numeric = false;
bool collecting_letter = false;
bool collecting_special = false;
bool collecting_whitespace_lookahead = false;
bool collecting = false;
auto words_begin = std::sregex_iterator(text.begin(), text.end(), re);
auto words_end = std::sregex_iterator();
auto n_words = std::distance(words_begin, words_end);
words.reserve(n_words);
for (auto it = words_begin; it != words_end; ++it) {
words.push_back(it->str());
std::vector<std::string> text_utf;
text_utf.reserve(text.size());
bpe_words.reserve(text.size());
bpe_encoded_words.reserve(text.size());
auto cps = codepoints_from_utf8(text);
for (size_t i = 0; i < cps.size(); ++i)
text_utf.emplace_back(codepoint_to_utf8(cps[i]));
for (int i = 0; i < (int)text_utf.size(); i++) {
const std::string & utf_char = text_utf[i];
bool split_condition = false;
// const char* text_pos = raw_text_p + utf_char.seq_offset_bytes;
int bytes_remain = text_utf.size() - i;
// forward backward lookups
const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
// handling contractions
if (!split_condition && bytes_remain >= 2) {
// 's|'t|'m|'d
if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
split_condition = true;
}
if (split_condition) {
if (token.size()) {
bpe_words.emplace_back(token); // push previous content as token
}
token = utf_char + utf_char_next;
bpe_words.emplace_back(token);
token = "";
i++;
continue;
}
}
if (!split_condition && bytes_remain >= 3) {
// 're|'ve|'ll
if (utf_char == "\'" && (
(utf_char_next == "r" || utf_char_next_next == "e") ||
(utf_char_next == "v" || utf_char_next_next == "e") ||
(utf_char_next == "l" || utf_char_next_next == "l"))
) {
split_condition = true;
}
if (split_condition) {
// current token + next token can be defined
if (token.size()) {
bpe_words.emplace_back(token); // push previous content as token
}
token = utf_char + utf_char_next + utf_char_next_next;
bpe_words.emplace_back(token); // the contraction
token = "";
i += 2;
continue;
}
}
return words;
if (!split_condition && !collecting) {
if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
collecting_letter = true;
collecting = true;
}
else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
collecting_numeric = true;
collecting = true;
}
else if (
((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
(!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
) {
collecting_special = true;
collecting = true;
}
else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
collecting_whitespace_lookahead = true;
collecting = true;
}
else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
split_condition = true;
}
}
else if (!split_condition && collecting) {
if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
split_condition = true;
}
else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
split_condition = true;
}
else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
split_condition = true;
}
else if (collecting_whitespace_lookahead && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) {
split_condition = true;
}
}
if (utf_char_next == "") {
split_condition = true; // final
token += utf_char;
}
if (split_condition) {
if (token.size()) {
bpe_words.emplace_back(token);
}
token = utf_char;
collecting = false;
collecting_letter = false;
collecting_numeric = false;
collecting_special = false;
collecting_whitespace_lookahead = false;
}
else {
token += utf_char;
}
}
for (std::string & word : bpe_words) {
std::string encoded_token = "";
for (char & c : word) {
encoded_token += bytes_to_unicode_bpe(c);
}
bpe_encoded_words.emplace_back(encoded_token);
}
return bpe_encoded_words;
}
const llama_vocab & vocab;
@ -6407,7 +6563,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
nthread = std::thread::hardware_concurrency();
}
llama_model_loader ml(fname_inp, /*use_mmap*/ false);
// mmap consistently increases speed Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
#else
constexpr bool use_mmap = false;
#endif
llama_model_loader ml(fname_inp, use_mmap);
if (ml.use_mmap) {
ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
}
llama_model model;
llm_load_arch(ml, model);
@ -6485,10 +6652,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const std::string name = ggml_get_name(tensor);
if (!ml.use_mmap) {
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
}
ml.load_data_for(tensor);
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
@ -7123,13 +7292,14 @@ struct llama_context * llama_new_context_with_model(
#ifdef GGML_USE_METAL
if (model->n_gpu_layers > 0) {
ggml_metal_log_set_callback(llama_log_callback_default, NULL);
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
ggml_metal_log_set_callback(llama_log_callback_default, NULL);
//ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
@ -7257,6 +7427,10 @@ int llama_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s",
llama_model_arch_name(model->arch).c_str(),
@ -7424,16 +7598,6 @@ struct llama_data_file_context : llama_data_context {
*
*/
static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
// TODO: does not support multi-sequence states
{
const auto & kv_self = ctx->kv_self;
for (uint32_t i = 0; i < kv_self.head; ++i) {
GGML_ASSERT(kv_self.cells[i].pos == (int32_t) i);
GGML_ASSERT(kv_self.cells[i].seq_id.size() == 1);
GGML_ASSERT(kv_self.cells[i].has_seq_id(0));
}
}
// copy rng
{
std::stringstream rng_ss;
@ -7486,36 +7650,38 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
const auto & hparams = ctx->model.hparams;
const auto & cparams = ctx->cparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = cparams.n_ctx;
const auto n_layer = hparams.n_layer;
const auto n_embd = hparams.n_embd_gqa();
const auto n_ctx = cparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = kv_self.head;
const size_t kv_buf_size = kv_self.buf.size;
const uint32_t kv_head = kv_self.head;
const uint32_t kv_size = kv_self.size;
data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
data_ctx->write(&kv_head, sizeof(kv_head));
data_ctx->write(&kv_size, sizeof(kv_size));
data_ctx->write(&kv_ntok, sizeof(kv_ntok));
if (kv_size) {
if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
kout3d->data = kout3d_data.data();
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
vout3d->data = vout3d_data.data();
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
n_embd, kv_head, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
@ -7529,6 +7695,20 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
data_ctx->write(kout3d_data.data(), kout3d_data.size());
data_ctx->write(vout3d_data.data(), vout3d_data.size());
}
for (uint32_t i = 0; i < kv_size; ++i) {
const auto & cell = kv_self.cells[i];
const llama_pos pos = cell.pos;
const size_t seq_id_size = cell.seq_id.size();
data_ctx->write(&pos, sizeof(pos));
data_ctx->write(&seq_id_size, sizeof(seq_id_size));
for (auto seq_id : cell.seq_id) {
data_ctx->write(&seq_id, sizeof(seq_id));
}
}
}
}
@ -7600,34 +7780,36 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = cparams.n_ctx;
size_t kv_size;
int kv_ntok;
size_t kv_buf_size;
uint32_t kv_head;
uint32_t kv_size;
memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
if (kv_size) {
GGML_ASSERT(kv_self.buf.size == kv_size);
if (kv_buf_size) {
GGML_ASSERT(kv_self.buf.size == kv_buf_size);
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
kin3d->data = (void *) inp;
inp += ggml_nbytes(kin3d);
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
vin3d->data = (void *) inp;
inp += ggml_nbytes(vin3d);
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
n_embd, kv_head, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
@ -7637,8 +7819,27 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ggml_free(cpy_ctx);
}
ctx->kv_self.head = kv_ntok;
ctx->kv_self.head = kv_head;
ctx->kv_self.size = kv_size;
ctx->kv_self.cells.resize(kv_size);
for (uint32_t i = 0; i < kv_size; ++i) {
llama_pos pos;
size_t seq_id_size;
memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
ctx->kv_self.cells[i].pos = pos;
llama_seq_id seq_id;
for (size_t j = 0; j < seq_id_size; ++j) {
memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
ctx->kv_self.cells[i].seq_id.insert(seq_id);
}
}
}
const size_t nread = inp - src;
@ -7856,6 +8057,22 @@ llama_token llama_token_eos(const struct llama_context * ctx) {
llama_token llama_token_nl(const struct llama_context * ctx) {
return ctx->model.vocab.linefeed_id;
}
llama_token llama_token_prefix(const struct llama_context * ctx) {
return ctx->model.vocab.special_prefix_id;
}
llama_token llama_token_middle(const struct llama_context * ctx) {
return ctx->model.vocab.special_middle_id;
}
llama_token llama_token_suffix(const struct llama_context * ctx) {
return ctx->model.vocab.special_suffix_id;
}
llama_token llama_token_eot(const struct llama_context * ctx) {
return ctx->model.vocab.special_eot_id;
}
int llama_tokenize(
const struct llama_model * model,
@ -7878,14 +8095,24 @@ int llama_tokenize(
return res.size();
}
static std::string llama_decode_text(const std::string & text) {
std::string decoded_text;
auto unicode_sequences = codepoints_from_utf8(text);
for (auto& unicode_sequence : unicode_sequences) {
decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
}
return decoded_text;
}
// does not write null-terminator to buf
int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
if (0 <= token && token < llama_n_vocab(model)) {
switch (llama_vocab_get_type(model->vocab)) {
case LLAMA_VOCAB_TYPE_SPM: {
if (llama_is_normal_token(model->vocab, token)) {
std::string result = model->vocab.id_to_token[token].text;
if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) {
llama_unescape_whitespace(result);
}
if (length < (int) result.length()) {
return -result.length();
}
@ -7895,18 +8122,39 @@ int llama_token_to_piece(const struct llama_model * model, llama_token token, ch
if (length < 3) {
return -3;
}
buf[0] = '\xe2';
buf[1] = '\x96';
buf[2] = '\x85';
memcpy(buf, "\xe2\x96\x85", 3);
return 3;
} else if (llama_is_control_token(model->vocab, token)) {
// do nothing
;
} else if (llama_is_byte_token(model->vocab, token)) {
if (length < 1) {
return -1;
}
buf[0] = llama_token_to_byte(model->vocab, token);
return 1;
} else {
GGML_ASSERT(false);
}
break;
}
case LLAMA_VOCAB_TYPE_BPE: {
if (llama_is_normal_token(model->vocab, token)) {
std::string result = model->vocab.id_to_token[token].text;
result = llama_decode_text(result);
if (length < (int) result.length()) {
return -result.length();
}
memcpy(buf, result.c_str(), result.length());
return result.length();
} else if (llama_is_control_token(model->vocab, token)) {
;
} else {
GGML_ASSERT(false);
}
break;
}
default:
GGML_ASSERT(false);
}
}
return 0;

28
llama.h
View file

@ -42,7 +42,7 @@
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_SESSION_VERSION 2
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
@ -167,18 +167,18 @@ extern "C" {
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context
uint32_t n_batch; // prompt processing batch size
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency
float rope_freq_scale; // RoPE frequency scaling factor
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
bool f16_kv; // use fp16 for KV cache
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool embedding; // embedding mode only
};
@ -282,6 +282,9 @@ extern "C" {
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int llama_n_embd (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
@ -330,12 +333,16 @@ extern "C" {
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
// Remove all tokens data of cells in [c0, c1)
// c0 < 0 : [0, c1]
// c1 < 0 : [c0, inf)
LLAMA_API void llama_kv_cache_tokens_rm(
struct llama_context * ctx,
int32_t c0,
int32_t c1);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
@ -344,6 +351,8 @@ extern "C" {
// Copy all tokens that belong to the specified sequence to another sequence
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_cp(
struct llama_context * ctx,
llama_seq_id seq_id_src,
@ -358,6 +367,8 @@ extern "C" {
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_shift(
struct llama_context * ctx,
llama_seq_id seq_id,
@ -490,6 +501,11 @@ extern "C" {
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
// codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle
LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix
LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle
//
// Tokenization

Binary file not shown.

Binary file not shown.

View file

@ -56,11 +56,13 @@ find_library(llama_LIBRARY llama
HINTS ${LLAMA_LIB_DIR})
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11

View file

@ -7,9 +7,6 @@ endfunction()
function(llama_test_executable name source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
# add_executable(${TEST_TARGET} ${source})
# install(TARGETS ${TEST_TARGET} RUNTIME)
# target_link_libraries(${TEST_TARGET} PRIVATE llama)
add_test(NAME ${name} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
@ -28,10 +25,12 @@ llama_build_and_test_executable(test-sampling.cpp)
llama_build_executable(test-tokenizer-0-llama.cpp)
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_build_executable(test-tokenizer-0-falcon.cpp)
#llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_build_executable(test-tokenizer-1-llama.cpp)
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_executable(test-tokenizer-1-bpe.cpp)
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW

View file

@ -208,26 +208,6 @@ static struct ggml_tensor * get_random_tensor_i32(
return result;
}
static void print_elements(const char* label, const struct ggml_tensor * t) {
if (!t) {
printf("%s: %s = null\n", __func__, label);
return;
}
const int nelements = ggml_nelements(t);
printf("%s: %s = [", __func__, label);
for (int k = 0; k < nelements; ++k) {
if (k > 0) { printf(", "); }
printf("%.5f", ggml_get_f32_1d(t, k));
}
printf("] shape: [");
for (int k = 0; k < t->n_dims; ++k) {
if (k > 0) { printf(", "); }
printf("%d", (int)t->ne[k]);
}
printf("]\n");
}
static bool check_gradient(
const char * op_name,
struct ggml_context * ctx0,

View file

@ -40,27 +40,6 @@ static float frand(void) {
return (float)rand()/(float)RAND_MAX;
}
static int irand(int n) {
return rand()%n;
}
static void get_random_dims(int64_t * dims, int ndims) {
dims[0] = dims[1] = dims[2] = dims[3] = 1;
for (int i = 0; i < ndims; i++) {
dims[i] = 1 + irand(4);
}
}
static void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
dims[0] = dims[1] = dims[2] = dims[3] = 1;
for (int i = 0; i < ndims; i++) {
dims[i] = min + irand(max-min);
}
}
static struct ggml_tensor * get_random_tensor(
struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
) {
@ -106,14 +85,6 @@ static struct ggml_tensor * get_random_tensor(
return result;
}
static float get_element(const struct ggml_tensor * t, int idx) {
return ((float *)t->data)[idx];
}
static void set_element(struct ggml_tensor * t, int idx, float value) {
((float *)t->data)[idx] = value;
}
int main(void) {
struct ggml_init_params params = {
/* .mem_size = */ 1024*1024*1024,

View file

@ -76,22 +76,21 @@ static void * align_with_offset(void * ptr, int offset) {
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
}
static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<size_t(void)> & function) {
static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<float(void)> & func) {
int64_t min_time_us = INT64_MAX;
int64_t total_time_us = 0;
int64_t min_time_cycles = INT64_MAX;
int64_t total_time_cycles = 0;
for (int i = 0; i < WARMUP; i++) {
function();
func();
}
for (int i = 0; i < iterations; i++) {
const int64_t start_time = ggml_time_us();
const int64_t start_cycles = cpu_cycles();
function();
func();
const int64_t end_cycles = cpu_cycles();
const int64_t end_time = ggml_time_us();
@ -283,7 +282,7 @@ int main(int argc, char * argv[]) {
printf(" quantize_row_q_reference\n");
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
auto quantize_fn = [&](void) -> float {
qfns.from_float_reference(test_data1, test_q1, size);
return test_q1[0];
};
@ -297,7 +296,7 @@ int main(int argc, char * argv[]) {
printf(" quantize_row_q\n");
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
auto quantize_fn = [&](void) -> float {
qfns.from_float(test_data1, test_q1, size);
return test_q1[0];
};
@ -312,7 +311,7 @@ int main(int argc, char * argv[]) {
qfns.from_float(test_data1, test_q1, largest);
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
auto quantize_fn = [&](void) -> float {
qfns.to_float(test_q1, test_out, size);
return test_out[0];
};
@ -326,7 +325,7 @@ int main(int argc, char * argv[]) {
printf(" quantize_row_q_dot\n");
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
auto quantize_fn = [&](void) -> float {
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
vdot.from_float(test_data1, test_q1, size);
return test_q1[0];
@ -343,7 +342,7 @@ int main(int argc, char * argv[]) {
qfns.from_float(test_data2, test_q2, largest);
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
auto quantize_fn = [&](void) -> float {
float result;
qfns.vec_dot(size, &result, test_q1, test_q2);
return result;

View file

@ -1,5 +1,6 @@
#include "llama.h"
#include "common.h"
#include "console.h"
#include <cstdio>
#include <string>
@ -85,12 +86,18 @@ int main(int argc, char **argv) {
}
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
fprintf(stderr, "%s : error: vocab type is not BPE\n", __func__);
llama_free_model(model);
llama_free(ctx);
return 2;
}
#ifdef _WIN32
// We need this for unicode console support
console::init(false, false);
atexit([]() { console::cleanup(); });
#endif
bool success = true;
for (const auto & test_kv : k_tests()) {

View file

@ -0,0 +1,113 @@
#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <string>
#include <codecvt>
#include <map>
#include <vector>
#include <locale>
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto mparams = llama_model_default_params();
mparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
auto cparams = llama_context_default_params();
ctx = llama_new_context_with_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
#ifdef _WIN32
// We need this for unicode console support
console::init(false, false);
atexit([]() { console::cleanup(); });
#endif
const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) {
std::string str = llama_detokenize_bpe(ctx, std::vector<int>(1, i));
try {
auto cps = codepoints_from_utf8(str);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
std::string check = llama_detokenize_bpe(ctx, tokens);
if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
return 2;
}
}
catch (const std::invalid_argument &) {
fprintf(stderr, "%s : info: utf8 conversion %d '%s'\n", __func__, i, str.c_str());
}
}
for (uint32_t cp = 0x0000; cp < 0xffff; ++cp) {
// NOTE: these exceptions seem to be necessary, because the GPT2 tokenizer doesn't want to interfere with some ASCII control characters
if ((cp < 0x03 || cp > 0x05) && cp != 0x0b && cp != 0x11 && (cp < 0x13 || cp > 0x17) && cp != 0x19 && (cp < 0x1c || cp > 0x1e) && (cp < 0xd800 || cp > 0xdfff)) {
std::string str = " " + codepoint_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
std::string check = llama_detokenize_bpe(ctx, tokens);
if (str != check) {
fprintf(stderr, "%s : error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
return 3;
}
}
}
// TODO: why doesn't this work for the full range of Unicodes?
// for (uint32_t cp = 0x10000; cp < 0x0010ffff; ++cp) {
for (uint32_t cp = 0x10000; cp < 0x00080000; ++cp) {
std::string str = codepoint_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
std::string check = llama_detokenize_bpe(ctx, tokens);
if (str != check) {
fprintf(stderr, "%s : error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
return 4;
}
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return 0;
}

View file

@ -1,5 +1,6 @@
#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include <cassert>
@ -11,30 +12,6 @@
#include <vector>
#include <locale>
typedef int codepoint;
static std::string codepoint_to_utf8(codepoint cp) {
std::string result;
if (0x00 <= cp && cp <= 0x7f) {
result.push_back(cp);
} else if (0x80 <= cp && cp <= 0x7ff) {
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
result.push_back(0x80 | (cp & 0x3f));
} else if (0x800 <= cp && cp <= 0xffff) {
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
} else if (0x10000 <= cp && cp <= 0x10ffff) {
result.push_back(0xf0 | ((cp >> 18) & 0x07));
result.push_back(0x80 | ((cp >> 12) & 0x3f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
} else {
throw std::invalid_argument("invalid codepoint");
}
return result;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
@ -95,7 +72,7 @@ int main(int argc, char **argv) {
}
}
for (codepoint cp = 0x0000; cp < 0xffff; ++cp) {
for (uint32_t cp = 0x0000; cp < 0xffff; ++cp) {
if (cp < 0xd800 || cp > 0xdfff) {
std::string str = codepoint_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
@ -107,7 +84,7 @@ int main(int argc, char **argv) {
}
}
}
for (codepoint cp = 0x10000; cp < 0x0010ffff; ++cp) {
for (uint32_t cp = 0x10000; cp < 0x0010ffff; ++cp) {
std::string str = codepoint_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
std::string check = llama_detokenize_spm(ctx, tokens);

462
unicode.h Normal file
View file

@ -0,0 +1,462 @@
#pragma once
#include <cassert>
#include <stdexcept>
#include <vector>
#include <unordered_map>
static const std::vector<std::pair<uint32_t, uint32_t>> digit_ranges = {
{0x30, 0x39}, {0xB2, 0xB3}, {0xB9, 0xB9}, {0x660, 0x669}, {0x6F0, 0x6F9}, {0x7C0, 0x7C9}, {0x966, 0x96F}, {0x9E6, 0x9EF}, {0xA66, 0xA6F}, {0xAE6, 0xAEF}, {0xB66, 0xB6F}, {0xBE6, 0xBEF}, {0xC66, 0xC6F},
{0xCE6, 0xCEF}, {0xD66, 0xD6F}, {0xDE6, 0xDEF}, {0xE50, 0xE59}, {0xED0, 0xED9}, {0xF20, 0xF29}, {0x1040, 0x1049}, {0x1090, 0x1099}, {0x1369, 0x1371}, {0x17E0, 0x17E9}, {0x1810, 0x1819}, {0x1946, 0x194F},
{0x19D0, 0x19DA}, {0x1A80, 0x1A89}, {0x1A90, 0x1A99}, {0x1B50, 0x1B59}, {0x1BB0, 0x1BB9}, {0x1C40, 0x1C49}, {0x1C50, 0x1C59}, {0x2070, 0x2070}, {0x2074, 0x2079}, {0x2080, 0x2089}, {0x2460, 0x2468},
{0x2474, 0x247C}, {0x2488, 0x2490}, {0x24EA, 0x24EA}, {0x24F5, 0x24FD}, {0x24FF, 0x24FF}, {0x2776, 0x277E}, {0x2780, 0x2788}, {0x278A, 0x2792}, {0xA620, 0xA629}, {0xA8D0, 0xA8D9}, {0xA900, 0xA909},
{0xA9D0, 0xA9D9}, {0xA9F0, 0xA9F9}, {0xAA50, 0xAA59}, {0xABF0, 0xABF9}, {0xFF10, 0xFF19}, {0x104A0, 0x104A9}, {0x10A40, 0x10A43}, {0x10D30, 0x10D39}, {0x10E60, 0x10E68}, {0x11052, 0x1105A},
{0x11066, 0x1106F}, {0x110F0, 0x110F9}, {0x11136, 0x1113F}, {0x111D0, 0x111D9}, {0x112F0, 0x112F9}, {0x11450, 0x11459}, {0x114D0, 0x114D9}, {0x11650, 0x11659}, {0x116C0, 0x116C9}, {0x11730, 0x11739},
{0x118E0, 0x118E9}, {0x11950, 0x11959}, {0x11C50, 0x11C59}, {0x11D50, 0x11D59}, {0x11DA0, 0x11DA9}, {0x16A60, 0x16A69}, {0x16B50, 0x16B59}, {0x1D7CE, 0x1D7FF}, {0x1E140, 0x1E149}, {0x1E2F0, 0x1E2F9},
{0x1E950, 0x1E959}, {0x1F100, 0x1F10A}, {0x1FBF0, 0x1FBF9},
};
static const std::vector<std::pair<uint32_t, uint32_t>> letter_ranges = {
{0x41, 0x5A}, {0x61, 0x7A}, {0xAA, 0xAA}, {0xB5, 0xB5}, {0xBA, 0xBA}, {0xC0, 0xD6}, {0xD8, 0xF6}, {0xF8, 0x2C1}, {0x2C6, 0x2D1}, {0x2E0, 0x2E4}, {0x2EC, 0x2EC}, {0x2EE, 0x2EE}, {0x370, 0x374},
{0x376, 0x377}, {0x37A, 0x37D}, {0x37F, 0x37F}, {0x386, 0x386}, {0x388, 0x38A}, {0x38C, 0x38C}, {0x38E, 0x3A1}, {0x3A3, 0x3F5}, {0x3F7, 0x481}, {0x48A, 0x52F}, {0x531, 0x556}, {0x559, 0x559},
{0x560, 0x588}, {0x5D0, 0x5EA}, {0x5EF, 0x5F2}, {0x620, 0x64A}, {0x66E, 0x66F}, {0x671, 0x6D3}, {0x6D5, 0x6D5}, {0x6E5, 0x6E6}, {0x6EE, 0x6EF}, {0x6FA, 0x6FC}, {0x6FF, 0x6FF}, {0x710, 0x710},
{0x712, 0x72F}, {0x74D, 0x7A5}, {0x7B1, 0x7B1}, {0x7CA, 0x7EA}, {0x7F4, 0x7F5}, {0x7FA, 0x7FA}, {0x800, 0x815}, {0x81A, 0x81A}, {0x824, 0x824}, {0x828, 0x828}, {0x840, 0x858}, {0x860, 0x86A},
{0x8A0, 0x8B4}, {0x8B6, 0x8C7}, {0x904, 0x939}, {0x93D, 0x93D}, {0x950, 0x950}, {0x958, 0x961}, {0x971, 0x980}, {0x985, 0x98C}, {0x98F, 0x990}, {0x993, 0x9A8}, {0x9AA, 0x9B0}, {0x9B2, 0x9B2},
{0x9B6, 0x9B9}, {0x9BD, 0x9BD}, {0x9CE, 0x9CE}, {0x9DC, 0x9DD}, {0x9DF, 0x9E1}, {0x9F0, 0x9F1}, {0x9FC, 0x9FC}, {0xA05, 0xA0A}, {0xA0F, 0xA10}, {0xA13, 0xA28}, {0xA2A, 0xA30}, {0xA32, 0xA33},
{0xA35, 0xA36}, {0xA38, 0xA39}, {0xA59, 0xA5C}, {0xA5E, 0xA5E}, {0xA72, 0xA74}, {0xA85, 0xA8D}, {0xA8F, 0xA91}, {0xA93, 0xAA8}, {0xAAA, 0xAB0}, {0xAB2, 0xAB3}, {0xAB5, 0xAB9}, {0xABD, 0xABD},
{0xAD0, 0xAD0}, {0xAE0, 0xAE1}, {0xAF9, 0xAF9}, {0xB05, 0xB0C}, {0xB0F, 0xB10}, {0xB13, 0xB28}, {0xB2A, 0xB30}, {0xB32, 0xB33}, {0xB35, 0xB39}, {0xB3D, 0xB3D}, {0xB5C, 0xB5D}, {0xB5F, 0xB61},
{0xB71, 0xB71}, {0xB83, 0xB83}, {0xB85, 0xB8A}, {0xB8E, 0xB90}, {0xB92, 0xB95}, {0xB99, 0xB9A}, {0xB9C, 0xB9C}, {0xB9E, 0xB9F}, {0xBA3, 0xBA4}, {0xBA8, 0xBAA}, {0xBAE, 0xBB9}, {0xBD0, 0xBD0},
{0xC05, 0xC0C}, {0xC0E, 0xC10}, {0xC12, 0xC28}, {0xC2A, 0xC39}, {0xC3D, 0xC3D}, {0xC58, 0xC5A}, {0xC60, 0xC61}, {0xC80, 0xC80}, {0xC85, 0xC8C}, {0xC8E, 0xC90}, {0xC92, 0xCA8}, {0xCAA, 0xCB3},
{0xCB5, 0xCB9}, {0xCBD, 0xCBD}, {0xCDE, 0xCDE}, {0xCE0, 0xCE1}, {0xCF1, 0xCF2}, {0xD04, 0xD0C}, {0xD0E, 0xD10}, {0xD12, 0xD3A}, {0xD3D, 0xD3D}, {0xD4E, 0xD4E}, {0xD54, 0xD56}, {0xD5F, 0xD61},
{0xD7A, 0xD7F}, {0xD85, 0xD96}, {0xD9A, 0xDB1}, {0xDB3, 0xDBB}, {0xDBD, 0xDBD}, {0xDC0, 0xDC6}, {0xE01, 0xE30}, {0xE32, 0xE33}, {0xE40, 0xE46}, {0xE81, 0xE82}, {0xE84, 0xE84}, {0xE86, 0xE8A},
{0xE8C, 0xEA3}, {0xEA5, 0xEA5}, {0xEA7, 0xEB0}, {0xEB2, 0xEB3}, {0xEBD, 0xEBD}, {0xEC0, 0xEC4}, {0xEC6, 0xEC6}, {0xEDC, 0xEDF}, {0xF00, 0xF00}, {0xF40, 0xF47}, {0xF49, 0xF6C}, {0xF88, 0xF8C},
{0x1000, 0x102A}, {0x103F, 0x103F}, {0x1050, 0x1055}, {0x105A, 0x105D}, {0x1061, 0x1061}, {0x1065, 0x1066}, {0x106E, 0x1070}, {0x1075, 0x1081}, {0x108E, 0x108E}, {0x10A0, 0x10C5}, {0x10C7, 0x10C7},
{0x10CD, 0x10CD}, {0x10D0, 0x10FA}, {0x10FC, 0x1248}, {0x124A, 0x124D}, {0x1250, 0x1256}, {0x1258, 0x1258}, {0x125A, 0x125D}, {0x1260, 0x1288}, {0x128A, 0x128D}, {0x1290, 0x12B0}, {0x12B2, 0x12B5},
{0x12B8, 0x12BE}, {0x12C0, 0x12C0}, {0x12C2, 0x12C5}, {0x12C8, 0x12D6}, {0x12D8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135A}, {0x1380, 0x138F}, {0x13A0, 0x13F5}, {0x13F8, 0x13FD}, {0x1401, 0x166C},
{0x166F, 0x167F}, {0x1681, 0x169A}, {0x16A0, 0x16EA}, {0x16F1, 0x16F8}, {0x1700, 0x170C}, {0x170E, 0x1711}, {0x1720, 0x1731}, {0x1740, 0x1751}, {0x1760, 0x176C}, {0x176E, 0x1770}, {0x1780, 0x17B3},
{0x17D7, 0x17D7}, {0x17DC, 0x17DC}, {0x1820, 0x1878}, {0x1880, 0x1884}, {0x1887, 0x18A8}, {0x18AA, 0x18AA}, {0x18B0, 0x18F5}, {0x1900, 0x191E}, {0x1950, 0x196D}, {0x1970, 0x1974}, {0x1980, 0x19AB},
{0x19B0, 0x19C9}, {0x1A00, 0x1A16}, {0x1A20, 0x1A54}, {0x1AA7, 0x1AA7}, {0x1B05, 0x1B33}, {0x1B45, 0x1B4B}, {0x1B83, 0x1BA0}, {0x1BAE, 0x1BAF}, {0x1BBA, 0x1BE5}, {0x1C00, 0x1C23}, {0x1C4D, 0x1C4F},
{0x1C5A, 0x1C7D}, {0x1C80, 0x1C88}, {0x1C90, 0x1CBA}, {0x1CBD, 0x1CBF}, {0x1CE9, 0x1CEC}, {0x1CEE, 0x1CF3}, {0x1CF5, 0x1CF6}, {0x1CFA, 0x1CFA}, {0x1D00, 0x1DBF}, {0x1E00, 0x1F15}, {0x1F18, 0x1F1D},
{0x1F20, 0x1F45}, {0x1F48, 0x1F4D}, {0x1F50, 0x1F57}, {0x1F59, 0x1F59}, {0x1F5B, 0x1F5B}, {0x1F5D, 0x1F5D}, {0x1F5F, 0x1F7D}, {0x1F80, 0x1FB4}, {0x1FB6, 0x1FBC}, {0x1FBE, 0x1FBE}, {0x1FC2, 0x1FC4},
{0x1FC6, 0x1FCC}, {0x1FD0, 0x1FD3}, {0x1FD6, 0x1FDB}, {0x1FE0, 0x1FEC}, {0x1FF2, 0x1FF4}, {0x1FF6, 0x1FFC}, {0x2071, 0x2071}, {0x207F, 0x207F}, {0x2090, 0x209C}, {0x2102, 0x2102}, {0x2107, 0x2107},
{0x210A, 0x2113}, {0x2115, 0x2115}, {0x2119, 0x211D}, {0x2124, 0x2124}, {0x2126, 0x2126}, {0x2128, 0x2128}, {0x212A, 0x212D}, {0x212F, 0x2139}, {0x213C, 0x213F}, {0x2145, 0x2149}, {0x214E, 0x214E},
{0x2183, 0x2184}, {0x2C00, 0x2C2E}, {0x2C30, 0x2C5E}, {0x2C60, 0x2CE4}, {0x2CEB, 0x2CEE}, {0x2CF2, 0x2CF3}, {0x2D00, 0x2D25}, {0x2D27, 0x2D27}, {0x2D2D, 0x2D2D}, {0x2D30, 0x2D67}, {0x2D6F, 0x2D6F},
{0x2D80, 0x2D96}, {0x2DA0, 0x2DA6}, {0x2DA8, 0x2DAE}, {0x2DB0, 0x2DB6}, {0x2DB8, 0x2DBE}, {0x2DC0, 0x2DC6}, {0x2DC8, 0x2DCE}, {0x2DD0, 0x2DD6}, {0x2DD8, 0x2DDE}, {0x2E2F, 0x2E2F}, {0x3005, 0x3006},
{0x3031, 0x3035}, {0x303B, 0x303C}, {0x3041, 0x3096}, {0x309D, 0x309F}, {0x30A1, 0x30FA}, {0x30FC, 0x30FF}, {0x3105, 0x312F}, {0x3131, 0x318E}, {0x31A0, 0x31BF}, {0x31F0, 0x31FF}, {0x3400, 0x4DBF},
{0x4E00, 0x9FFC}, {0xA000, 0xA48C}, {0xA4D0, 0xA4FD}, {0xA500, 0xA60C}, {0xA610, 0xA61F}, {0xA62A, 0xA62B}, {0xA640, 0xA66E}, {0xA67F, 0xA69D}, {0xA6A0, 0xA6E5}, {0xA717, 0xA71F}, {0xA722, 0xA788},
{0xA78B, 0xA7BF}, {0xA7C2, 0xA7CA}, {0xA7F5, 0xA801}, {0xA803, 0xA805}, {0xA807, 0xA80A}, {0xA80C, 0xA822}, {0xA840, 0xA873}, {0xA882, 0xA8B3}, {0xA8F2, 0xA8F7}, {0xA8FB, 0xA8FB}, {0xA8FD, 0xA8FE},
{0xA90A, 0xA925}, {0xA930, 0xA946}, {0xA960, 0xA97C}, {0xA984, 0xA9B2}, {0xA9CF, 0xA9CF}, {0xA9E0, 0xA9E4}, {0xA9E6, 0xA9EF}, {0xA9FA, 0xA9FE}, {0xAA00, 0xAA28}, {0xAA40, 0xAA42}, {0xAA44, 0xAA4B},
{0xAA60, 0xAA76}, {0xAA7A, 0xAA7A}, {0xAA7E, 0xAAAF}, {0xAAB1, 0xAAB1}, {0xAAB5, 0xAAB6}, {0xAAB9, 0xAABD}, {0xAAC0, 0xAAC0}, {0xAAC2, 0xAAC2}, {0xAADB, 0xAADD}, {0xAAE0, 0xAAEA}, {0xAAF2, 0xAAF4},
{0xAB01, 0xAB06}, {0xAB09, 0xAB0E}, {0xAB11, 0xAB16}, {0xAB20, 0xAB26}, {0xAB28, 0xAB2E}, {0xAB30, 0xAB5A}, {0xAB5C, 0xAB69}, {0xAB70, 0xABE2}, {0xAC00, 0xD7A3}, {0xD7B0, 0xD7C6}, {0xD7CB, 0xD7FB},
{0xF900, 0xFA6D}, {0xFA70, 0xFAD9}, {0xFB00, 0xFB06}, {0xFB13, 0xFB17}, {0xFB1D, 0xFB1D}, {0xFB1F, 0xFB28}, {0xFB2A, 0xFB36}, {0xFB38, 0xFB3C}, {0xFB3E, 0xFB3E}, {0xFB40, 0xFB41}, {0xFB43, 0xFB44},
{0xFB46, 0xFBB1}, {0xFBD3, 0xFD3D}, {0xFD50, 0xFD8F}, {0xFD92, 0xFDC7}, {0xFDF0, 0xFDFB}, {0xFE70, 0xFE74}, {0xFE76, 0xFEFC}, {0xFF21, 0xFF3A}, {0xFF41, 0xFF5A}, {0xFF66, 0xFFBE}, {0xFFC2, 0xFFC7},
{0xFFCA, 0xFFCF}, {0xFFD2, 0xFFD7}, {0xFFDA, 0xFFDC}, {0x10000, 0x1000B}, {0x1000D, 0x10026}, {0x10028, 0x1003A}, {0x1003C, 0x1003D}, {0x1003F, 0x1004D}, {0x10050, 0x1005D}, {0x10080, 0x100FA},
{0x10280, 0x1029C}, {0x102A0, 0x102D0}, {0x10300, 0x1031F}, {0x1032D, 0x10340}, {0x10342, 0x10349}, {0x10350, 0x10375}, {0x10380, 0x1039D}, {0x103A0, 0x103C3}, {0x103C8, 0x103CF}, {0x10400, 0x1049D},
{0x104B0, 0x104D3}, {0x104D8, 0x104FB}, {0x10500, 0x10527}, {0x10530, 0x10563}, {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805}, {0x10808, 0x10808}, {0x1080A, 0x10835},
{0x10837, 0x10838}, {0x1083C, 0x1083C}, {0x1083F, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089E}, {0x108E0, 0x108F2}, {0x108F4, 0x108F5}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109B7},
{0x109BE, 0x109BF}, {0x10A00, 0x10A00}, {0x10A10, 0x10A13}, {0x10A15, 0x10A17}, {0x10A19, 0x10A35}, {0x10A60, 0x10A7C}, {0x10A80, 0x10A9C}, {0x10AC0, 0x10AC7}, {0x10AC9, 0x10AE4}, {0x10B00, 0x10B35},
{0x10B40, 0x10B55}, {0x10B60, 0x10B72}, {0x10B80, 0x10B91}, {0x10C00, 0x10C48}, {0x10C80, 0x10CB2}, {0x10CC0, 0x10CF2}, {0x10D00, 0x10D23}, {0x10E80, 0x10EA9}, {0x10EB0, 0x10EB1}, {0x10F00, 0x10F1C},
{0x10F27, 0x10F27}, {0x10F30, 0x10F45}, {0x10FB0, 0x10FC4}, {0x10FE0, 0x10FF6}, {0x11003, 0x11037}, {0x11083, 0x110AF}, {0x110D0, 0x110E8}, {0x11103, 0x11126}, {0x11144, 0x11144}, {0x11147, 0x11147},
{0x11150, 0x11172}, {0x11176, 0x11176}, {0x11183, 0x111B2}, {0x111C1, 0x111C4}, {0x111DA, 0x111DA}, {0x111DC, 0x111DC}, {0x11200, 0x11211}, {0x11213, 0x1122B}, {0x11280, 0x11286}, {0x11288, 0x11288},
{0x1128A, 0x1128D}, {0x1128F, 0x1129D}, {0x1129F, 0x112A8}, {0x112B0, 0x112DE}, {0x11305, 0x1130C}, {0x1130F, 0x11310}, {0x11313, 0x11328}, {0x1132A, 0x11330}, {0x11332, 0x11333}, {0x11335, 0x11339},
{0x1133D, 0x1133D}, {0x11350, 0x11350}, {0x1135D, 0x11361}, {0x11400, 0x11434}, {0x11447, 0x1144A}, {0x1145F, 0x11461}, {0x11480, 0x114AF}, {0x114C4, 0x114C5}, {0x114C7, 0x114C7}, {0x11580, 0x115AE},
{0x115D8, 0x115DB}, {0x11600, 0x1162F}, {0x11644, 0x11644}, {0x11680, 0x116AA}, {0x116B8, 0x116B8}, {0x11700, 0x1171A}, {0x11800, 0x1182B}, {0x118A0, 0x118DF}, {0x118FF, 0x11906}, {0x11909, 0x11909},
{0x1190C, 0x11913}, {0x11915, 0x11916}, {0x11918, 0x1192F}, {0x1193F, 0x1193F}, {0x11941, 0x11941}, {0x119A0, 0x119A7}, {0x119AA, 0x119D0}, {0x119E1, 0x119E1}, {0x119E3, 0x119E3}, {0x11A00, 0x11A00},
{0x11A0B, 0x11A32}, {0x11A3A, 0x11A3A}, {0x11A50, 0x11A50}, {0x11A5C, 0x11A89}, {0x11A9D, 0x11A9D}, {0x11AC0, 0x11AF8}, {0x11C00, 0x11C08}, {0x11C0A, 0x11C2E}, {0x11C40, 0x11C40}, {0x11C72, 0x11C8F},
{0x11D00, 0x11D06}, {0x11D08, 0x11D09}, {0x11D0B, 0x11D30}, {0x11D46, 0x11D46}, {0x11D60, 0x11D65}, {0x11D67, 0x11D68}, {0x11D6A, 0x11D89}, {0x11D98, 0x11D98}, {0x11EE0, 0x11EF2}, {0x11FB0, 0x11FB0},
{0x12000, 0x12399}, {0x12480, 0x12543}, {0x13000, 0x1342E}, {0x14400, 0x14646}, {0x16800, 0x16A38}, {0x16A40, 0x16A5E}, {0x16AD0, 0x16AED}, {0x16B00, 0x16B2F}, {0x16B40, 0x16B43}, {0x16B63, 0x16B77},
{0x16B7D, 0x16B8F}, {0x16E40, 0x16E7F}, {0x16F00, 0x16F4A}, {0x16F50, 0x16F50}, {0x16F93, 0x16F9F}, {0x16FE0, 0x16FE1}, {0x16FE3, 0x16FE3}, {0x17000, 0x187F7}, {0x18800, 0x18CD5}, {0x18D00, 0x18D08},
{0x1B000, 0x1B11E}, {0x1B150, 0x1B152}, {0x1B164, 0x1B167}, {0x1B170, 0x1B2FB}, {0x1BC00, 0x1BC6A}, {0x1BC70, 0x1BC7C}, {0x1BC80, 0x1BC88}, {0x1BC90, 0x1BC99}, {0x1D400, 0x1D454}, {0x1D456, 0x1D49C},
{0x1D49E, 0x1D49F}, {0x1D4A2, 0x1D4A2}, {0x1D4A5, 0x1D4A6}, {0x1D4A9, 0x1D4AC}, {0x1D4AE, 0x1D4B9}, {0x1D4BB, 0x1D4BB}, {0x1D4BD, 0x1D4C3}, {0x1D4C5, 0x1D505}, {0x1D507, 0x1D50A}, {0x1D50D, 0x1D514},
{0x1D516, 0x1D51C}, {0x1D51E, 0x1D539}, {0x1D53B, 0x1D53E}, {0x1D540, 0x1D544}, {0x1D546, 0x1D546}, {0x1D54A, 0x1D550}, {0x1D552, 0x1D6A5}, {0x1D6A8, 0x1D6C0}, {0x1D6C2, 0x1D6DA}, {0x1D6DC, 0x1D6FA},
{0x1D6FC, 0x1D714}, {0x1D716, 0x1D734}, {0x1D736, 0x1D74E}, {0x1D750, 0x1D76E}, {0x1D770, 0x1D788}, {0x1D78A, 0x1D7A8}, {0x1D7AA, 0x1D7C2}, {0x1D7C4, 0x1D7CB}, {0x1E100, 0x1E12C}, {0x1E137, 0x1E13D},
{0x1E14E, 0x1E14E}, {0x1E2C0, 0x1E2EB}, {0x1E800, 0x1E8C4}, {0x1E900, 0x1E943}, {0x1E94B, 0x1E94B}, {0x1EE00, 0x1EE03}, {0x1EE05, 0x1EE1F}, {0x1EE21, 0x1EE22}, {0x1EE24, 0x1EE24}, {0x1EE27, 0x1EE27},
{0x1EE29, 0x1EE32}, {0x1EE34, 0x1EE37}, {0x1EE39, 0x1EE39}, {0x1EE3B, 0x1EE3B}, {0x1EE42, 0x1EE42}, {0x1EE47, 0x1EE47}, {0x1EE49, 0x1EE49}, {0x1EE4B, 0x1EE4B}, {0x1EE4D, 0x1EE4F}, {0x1EE51, 0x1EE52},
{0x1EE54, 0x1EE54}, {0x1EE57, 0x1EE57}, {0x1EE59, 0x1EE59}, {0x1EE5B, 0x1EE5B}, {0x1EE5D, 0x1EE5D}, {0x1EE5F, 0x1EE5F}, {0x1EE61, 0x1EE62}, {0x1EE64, 0x1EE64}, {0x1EE67, 0x1EE6A}, {0x1EE6C, 0x1EE72},
{0x1EE74, 0x1EE77}, {0x1EE79, 0x1EE7C}, {0x1EE7E, 0x1EE7E}, {0x1EE80, 0x1EE89}, {0x1EE8B, 0x1EE9B}, {0x1EEA1, 0x1EEA3}, {0x1EEA5, 0x1EEA9}, {0x1EEAB, 0x1EEBB}, {0x20000, 0x2A6DD}, {0x2A700, 0x2B734},
{0x2B740, 0x2B81D}, {0x2B820, 0x2CEA1}, {0x2CEB0, 0x2EBE0}, {0x2F800, 0x2FA1D}, {0x30000, 0x3134A},
};
static const std::vector<std::pair<uint32_t, uint32_t>> whitespace_ranges = {
{0x9, 0xD}, {0x1C, 0x20}, {0x85, 0x85}, {0xA0, 0xA0}, {0x1680, 0x1680}, {0x2000, 0x200A}, {0x2028, 0x2029}, {0x202F, 0x202F}, {0x205F, 0x205F}, {0x3000, 0x3000},
};
static const std::vector<std::pair<uint32_t, uint32_t>> accent_mark_ranges = {
{0x300, 0x36F}, {0x483, 0x489}, {0x591, 0x5BD}, {0x5BF, 0x5BF}, {0x5C1, 0x5C2}, {0x5C4, 0x5C5}, {0x5C7, 0x5C7}, {0x610, 0x61A}, {0x64B, 0x65F}, {0x670, 0x670}, {0x6D6, 0x6DC}, {0x6DF, 0x6E4},
{0x6E7, 0x6E8}, {0x6EA, 0x6ED}, {0x711, 0x711}, {0x730, 0x74A}, {0x7A6, 0x7B0}, {0x7EB, 0x7F3}, {0x7FD, 0x7FD}, {0x816, 0x819}, {0x81B, 0x823}, {0x825, 0x827}, {0x829, 0x82D}, {0x859, 0x85B},
{0x8D3, 0x8E1}, {0x8E3, 0x903}, {0x93A, 0x93C}, {0x93E, 0x94F}, {0x951, 0x957}, {0x962, 0x963}, {0x981, 0x983}, {0x9BC, 0x9BC}, {0x9BE, 0x9C4}, {0x9C7, 0x9C8}, {0x9CB, 0x9CD}, {0x9D7, 0x9D7},
{0x9E2, 0x9E3}, {0x9FE, 0x9FE}, {0xA01, 0xA03}, {0xA3C, 0xA3C}, {0xA3E, 0xA42}, {0xA47, 0xA48}, {0xA4B, 0xA4D}, {0xA51, 0xA51}, {0xA70, 0xA71}, {0xA75, 0xA75}, {0xA81, 0xA83}, {0xABC, 0xABC},
{0xABE, 0xAC5}, {0xAC7, 0xAC9}, {0xACB, 0xACD}, {0xAE2, 0xAE3}, {0xAFA, 0xAFF}, {0xB01, 0xB03}, {0xB3C, 0xB3C}, {0xB3E, 0xB44}, {0xB47, 0xB48}, {0xB4B, 0xB4D}, {0xB55, 0xB57}, {0xB62, 0xB63},
{0xB82, 0xB82}, {0xBBE, 0xBC2}, {0xBC6, 0xBC8}, {0xBCA, 0xBCD}, {0xBD7, 0xBD7}, {0xC00, 0xC04}, {0xC3E, 0xC44}, {0xC46, 0xC48}, {0xC4A, 0xC4D}, {0xC55, 0xC56}, {0xC62, 0xC63}, {0xC81, 0xC83},
{0xCBC, 0xCBC}, {0xCBE, 0xCC4}, {0xCC6, 0xCC8}, {0xCCA, 0xCCD}, {0xCD5, 0xCD6}, {0xCE2, 0xCE3}, {0xD00, 0xD03}, {0xD3B, 0xD3C}, {0xD3E, 0xD44}, {0xD46, 0xD48}, {0xD4A, 0xD4D}, {0xD57, 0xD57},
{0xD62, 0xD63}, {0xD81, 0xD83}, {0xDCA, 0xDCA}, {0xDCF, 0xDD4}, {0xDD6, 0xDD6}, {0xDD8, 0xDDF}, {0xDF2, 0xDF3}, {0xE31, 0xE31}, {0xE34, 0xE3A}, {0xE47, 0xE4E}, {0xEB1, 0xEB1}, {0xEB4, 0xEBC},
{0xEC8, 0xECD}, {0xF18, 0xF19}, {0xF35, 0xF35}, {0xF37, 0xF37}, {0xF39, 0xF39}, {0xF3E, 0xF3F}, {0xF71, 0xF84}, {0xF86, 0xF87}, {0xF8D, 0xF97}, {0xF99, 0xFBC}, {0xFC6, 0xFC6}, {0x102B, 0x103E},
{0x1056, 0x1059}, {0x105E, 0x1060}, {0x1062, 0x1064}, {0x1067, 0x106D}, {0x1071, 0x1074}, {0x1082, 0x108D}, {0x108F, 0x108F}, {0x109A, 0x109D}, {0x135D, 0x135F}, {0x1712, 0x1714}, {0x1732, 0x1734},
{0x1752, 0x1753}, {0x1772, 0x1773}, {0x17B4, 0x17D3}, {0x17DD, 0x17DD}, {0x180B, 0x180D}, {0x1885, 0x1886}, {0x18A9, 0x18A9}, {0x1920, 0x192B}, {0x1930, 0x193B}, {0x1A17, 0x1A1B}, {0x1A55, 0x1A5E},
{0x1A60, 0x1A7C}, {0x1A7F, 0x1A7F}, {0x1AB0, 0x1AC0}, {0x1B00, 0x1B04}, {0x1B34, 0x1B44}, {0x1B6B, 0x1B73}, {0x1B80, 0x1B82}, {0x1BA1, 0x1BAD}, {0x1BE6, 0x1BF3}, {0x1C24, 0x1C37}, {0x1CD0, 0x1CD2},
{0x1CD4, 0x1CE8}, {0x1CED, 0x1CED}, {0x1CF4, 0x1CF4}, {0x1CF7, 0x1CF9}, {0x1DC0, 0x1DF9}, {0x1DFB, 0x1DFF}, {0x20D0, 0x20F0}, {0x2CEF, 0x2CF1}, {0x2D7F, 0x2D7F}, {0x2DE0, 0x2DFF}, {0x302A, 0x302F},
{0x3099, 0x309A}, {0xA66F, 0xA672}, {0xA674, 0xA67D}, {0xA69E, 0xA69F}, {0xA6F0, 0xA6F1}, {0xA802, 0xA802}, {0xA806, 0xA806}, {0xA80B, 0xA80B}, {0xA823, 0xA827}, {0xA82C, 0xA82C}, {0xA880, 0xA881},
{0xA8B4, 0xA8C5}, {0xA8E0, 0xA8F1}, {0xA8FF, 0xA8FF}, {0xA926, 0xA92D}, {0xA947, 0xA953}, {0xA980, 0xA983}, {0xA9B3, 0xA9C0}, {0xA9E5, 0xA9E5}, {0xAA29, 0xAA36}, {0xAA43, 0xAA43}, {0xAA4C, 0xAA4D},
{0xAA7B, 0xAA7D}, {0xAAB0, 0xAAB0}, {0xAAB2, 0xAAB4}, {0xAAB7, 0xAAB8}, {0xAABE, 0xAABF}, {0xAAC1, 0xAAC1}, {0xAAEB, 0xAAEF}, {0xAAF5, 0xAAF6}, {0xABE3, 0xABEA}, {0xABEC, 0xABED}, {0xFB1E, 0xFB1E},
{0xFE00, 0xFE0F}, {0xFE20, 0xFE2F}, {0x101FD, 0x101FD}, {0x102E0, 0x102E0}, {0x10376, 0x1037A}, {0x10A01, 0x10A03}, {0x10A05, 0x10A06}, {0x10A0C, 0x10A0F}, {0x10A38, 0x10A3A}, {0x10A3F, 0x10A3F},
{0x10AE5, 0x10AE6}, {0x10D24, 0x10D27}, {0x10EAB, 0x10EAC}, {0x10F46, 0x10F50}, {0x11000, 0x11002}, {0x11038, 0x11046}, {0x1107F, 0x11082}, {0x110B0, 0x110BA}, {0x11100, 0x11102}, {0x11127, 0x11134},
{0x11145, 0x11146}, {0x11173, 0x11173}, {0x11180, 0x11182}, {0x111B3, 0x111C0}, {0x111C9, 0x111CC}, {0x111CE, 0x111CF}, {0x1122C, 0x11237}, {0x1123E, 0x1123E}, {0x112DF, 0x112EA}, {0x11300, 0x11303},
{0x1133B, 0x1133C}, {0x1133E, 0x11344}, {0x11347, 0x11348}, {0x1134B, 0x1134D}, {0x11357, 0x11357}, {0x11362, 0x11363}, {0x11366, 0x1136C}, {0x11370, 0x11374}, {0x11435, 0x11446}, {0x1145E, 0x1145E},
{0x114B0, 0x114C3}, {0x115AF, 0x115B5}, {0x115B8, 0x115C0}, {0x115DC, 0x115DD}, {0x11630, 0x11640}, {0x116AB, 0x116B7}, {0x1171D, 0x1172B}, {0x1182C, 0x1183A}, {0x11930, 0x11935}, {0x11937, 0x11938},
{0x1193B, 0x1193E}, {0x11940, 0x11940}, {0x11942, 0x11943}, {0x119D1, 0x119D7}, {0x119DA, 0x119E0}, {0x119E4, 0x119E4}, {0x11A01, 0x11A0A}, {0x11A33, 0x11A39}, {0x11A3B, 0x11A3E}, {0x11A47, 0x11A47},
{0x11A51, 0x11A5B}, {0x11A8A, 0x11A99}, {0x11C2F, 0x11C36}, {0x11C38, 0x11C3F}, {0x11C92, 0x11CA7}, {0x11CA9, 0x11CB6}, {0x11D31, 0x11D36}, {0x11D3A, 0x11D3A}, {0x11D3C, 0x11D3D}, {0x11D3F, 0x11D45},
{0x11D47, 0x11D47}, {0x11D8A, 0x11D8E}, {0x11D90, 0x11D91}, {0x11D93, 0x11D97}, {0x11EF3, 0x11EF6}, {0x16AF0, 0x16AF4}, {0x16B30, 0x16B36}, {0x16F4F, 0x16F4F}, {0x16F51, 0x16F87}, {0x16F8F, 0x16F92},
{0x16FE4, 0x16FE4}, {0x16FF0, 0x16FF1}, {0x1BC9D, 0x1BC9E}, {0x1D165, 0x1D169}, {0x1D16D, 0x1D172}, {0x1D17B, 0x1D182}, {0x1D185, 0x1D18B}, {0x1D1AA, 0x1D1AD}, {0x1D242, 0x1D244}, {0x1DA00, 0x1DA36},
{0x1DA3B, 0x1DA6C}, {0x1DA75, 0x1DA75}, {0x1DA84, 0x1DA84}, {0x1DA9B, 0x1DA9F}, {0x1DAA1, 0x1DAAF}, {0x1E000, 0x1E006}, {0x1E008, 0x1E018}, {0x1E01B, 0x1E021}, {0x1E023, 0x1E024}, {0x1E026, 0x1E02A},
{0x1E130, 0x1E136}, {0x1E2EC, 0x1E2EF}, {0x1E8D0, 0x1E8D6}, {0x1E944, 0x1E94A}, {0xE0100, 0xE01EF},
};
static const std::vector<std::pair<uint32_t, uint32_t>> punctuation_ranges = {
{0x21, 0x23}, {0x25, 0x2A}, {0x2C, 0x2F}, {0x3A, 0x3B}, {0x3F, 0x40}, {0x5B, 0x5D}, {0x5F, 0x5F}, {0x7B, 0x7B}, {0x7D, 0x7D}, {0xA1, 0xA1}, {0xA7, 0xA7}, {0xAB, 0xAB}, {0xB6, 0xB7}, {0xBB, 0xBB},
{0xBF, 0xBF}, {0x37E, 0x37E}, {0x387, 0x387}, {0x55A, 0x55F}, {0x589, 0x58A}, {0x5BE, 0x5BE}, {0x5C0, 0x5C0}, {0x5C3, 0x5C3}, {0x5C6, 0x5C6}, {0x5F3, 0x5F4}, {0x609, 0x60A}, {0x60C, 0x60D},
{0x61B, 0x61B}, {0x61E, 0x61F}, {0x66A, 0x66D}, {0x6D4, 0x6D4}, {0x700, 0x70D}, {0x7F7, 0x7F9}, {0x830, 0x83E}, {0x85E, 0x85E}, {0x964, 0x965}, {0x970, 0x970}, {0x9FD, 0x9FD}, {0xA76, 0xA76},
{0xAF0, 0xAF0}, {0xC77, 0xC77}, {0xC84, 0xC84}, {0xDF4, 0xDF4}, {0xE4F, 0xE4F}, {0xE5A, 0xE5B}, {0xF04, 0xF12}, {0xF14, 0xF14}, {0xF3A, 0xF3D}, {0xF85, 0xF85}, {0xFD0, 0xFD4}, {0xFD9, 0xFDA},
{0x104A, 0x104F}, {0x10FB, 0x10FB}, {0x1360, 0x1368}, {0x1400, 0x1400}, {0x166E, 0x166E}, {0x169B, 0x169C}, {0x16EB, 0x16ED}, {0x1735, 0x1736}, {0x17D4, 0x17D6}, {0x17D8, 0x17DA}, {0x1800, 0x180A},
{0x1944, 0x1945}, {0x1A1E, 0x1A1F}, {0x1AA0, 0x1AA6}, {0x1AA8, 0x1AAD}, {0x1B5A, 0x1B60}, {0x1BFC, 0x1BFF}, {0x1C3B, 0x1C3F}, {0x1C7E, 0x1C7F}, {0x1CC0, 0x1CC7}, {0x1CD3, 0x1CD3}, {0x2010, 0x2027},
{0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205E}, {0x207D, 0x207E}, {0x208D, 0x208E}, {0x2308, 0x230B}, {0x2329, 0x232A}, {0x2768, 0x2775}, {0x27C5, 0x27C6}, {0x27E6, 0x27EF}, {0x2983, 0x2998},
{0x29D8, 0x29DB}, {0x29FC, 0x29FD}, {0x2CF9, 0x2CFC}, {0x2CFE, 0x2CFF}, {0x2D70, 0x2D70}, {0x2E00, 0x2E2E}, {0x2E30, 0x2E4F}, {0x2E52, 0x2E52}, {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301F},
{0x3030, 0x3030}, {0x303D, 0x303D}, {0x30A0, 0x30A0}, {0x30FB, 0x30FB}, {0xA4FE, 0xA4FF}, {0xA60D, 0xA60F}, {0xA673, 0xA673}, {0xA67E, 0xA67E}, {0xA6F2, 0xA6F7}, {0xA874, 0xA877}, {0xA8CE, 0xA8CF},
{0xA8F8, 0xA8FA}, {0xA8FC, 0xA8FC}, {0xA92E, 0xA92F}, {0xA95F, 0xA95F}, {0xA9C1, 0xA9CD}, {0xA9DE, 0xA9DF}, {0xAA5C, 0xAA5F}, {0xAADE, 0xAADF}, {0xAAF0, 0xAAF1}, {0xABEB, 0xABEB}, {0xFD3E, 0xFD3F},
{0xFE10, 0xFE19}, {0xFE30, 0xFE52}, {0xFE54, 0xFE61}, {0xFE63, 0xFE63}, {0xFE68, 0xFE68}, {0xFE6A, 0xFE6B}, {0xFF01, 0xFF03}, {0xFF05, 0xFF0A}, {0xFF0C, 0xFF0F}, {0xFF1A, 0xFF1B}, {0xFF1F, 0xFF20},
{0xFF3B, 0xFF3D}, {0xFF3F, 0xFF3F}, {0xFF5B, 0xFF5B}, {0xFF5D, 0xFF5D}, {0xFF5F, 0xFF65}, {0x10100, 0x10102}, {0x1039F, 0x1039F}, {0x103D0, 0x103D0}, {0x1056F, 0x1056F}, {0x10857, 0x10857},
{0x1091F, 0x1091F}, {0x1093F, 0x1093F}, {0x10A50, 0x10A58}, {0x10A7F, 0x10A7F}, {0x10AF0, 0x10AF6}, {0x10B39, 0x10B3F}, {0x10B99, 0x10B9C}, {0x10EAD, 0x10EAD}, {0x10F55, 0x10F59}, {0x11047, 0x1104D},
{0x110BB, 0x110BC}, {0x110BE, 0x110C1}, {0x11140, 0x11143}, {0x11174, 0x11175}, {0x111C5, 0x111C8}, {0x111CD, 0x111CD}, {0x111DB, 0x111DB}, {0x111DD, 0x111DF}, {0x11238, 0x1123D}, {0x112A9, 0x112A9},
{0x1144B, 0x1144F}, {0x1145A, 0x1145B}, {0x1145D, 0x1145D}, {0x114C6, 0x114C6}, {0x115C1, 0x115D7}, {0x11641, 0x11643}, {0x11660, 0x1166C}, {0x1173C, 0x1173E}, {0x1183B, 0x1183B}, {0x11944, 0x11946},
{0x119E2, 0x119E2}, {0x11A3F, 0x11A46}, {0x11A9A, 0x11A9C}, {0x11A9E, 0x11AA2}, {0x11C41, 0x11C45}, {0x11C70, 0x11C71}, {0x11EF7, 0x11EF8}, {0x11FFF, 0x11FFF}, {0x12470, 0x12474}, {0x16A6E, 0x16A6F},
{0x16AF5, 0x16AF5}, {0x16B37, 0x16B3B}, {0x16B44, 0x16B44}, {0x16E97, 0x16E9A}, {0x16FE2, 0x16FE2}, {0x1BC9F, 0x1BC9F}, {0x1DA87, 0x1DA8B}, {0x1E95E, 0x1E95F},
};
static const std::vector<std::pair<uint32_t, uint32_t>> symbol_ranges = {
{0x24, 0x24}, {0x2B, 0x2B}, {0x3C, 0x3E}, {0x5E, 0x5E}, {0x60, 0x60}, {0x7C, 0x7C}, {0x7E, 0x7E}, {0xA2, 0xA6}, {0xA8, 0xA9}, {0xAC, 0xAC}, {0xAE, 0xB1}, {0xB4, 0xB4}, {0xB8, 0xB8}, {0xD7, 0xD7},
{0xF7, 0xF7}, {0x2C2, 0x2C5}, {0x2D2, 0x2DF}, {0x2E5, 0x2EB}, {0x2ED, 0x2ED}, {0x2EF, 0x2FF}, {0x375, 0x375}, {0x384, 0x385}, {0x3F6, 0x3F6}, {0x482, 0x482}, {0x58D, 0x58F}, {0x606, 0x608},
{0x60B, 0x60B}, {0x60E, 0x60F}, {0x6DE, 0x6DE}, {0x6E9, 0x6E9}, {0x6FD, 0x6FE}, {0x7F6, 0x7F6}, {0x7FE, 0x7FF}, {0x9F2, 0x9F3}, {0x9FA, 0x9FB}, {0xAF1, 0xAF1}, {0xB70, 0xB70}, {0xBF3, 0xBFA},
{0xC7F, 0xC7F}, {0xD4F, 0xD4F}, {0xD79, 0xD79}, {0xE3F, 0xE3F}, {0xF01, 0xF03}, {0xF13, 0xF13}, {0xF15, 0xF17}, {0xF1A, 0xF1F}, {0xF34, 0xF34}, {0xF36, 0xF36}, {0xF38, 0xF38}, {0xFBE, 0xFC5},
{0xFC7, 0xFCC}, {0xFCE, 0xFCF}, {0xFD5, 0xFD8}, {0x109E, 0x109F}, {0x1390, 0x1399}, {0x166D, 0x166D}, {0x17DB, 0x17DB}, {0x1940, 0x1940}, {0x19DE, 0x19FF}, {0x1B61, 0x1B6A}, {0x1B74, 0x1B7C},
{0x1FBD, 0x1FBD}, {0x1FBF, 0x1FC1}, {0x1FCD, 0x1FCF}, {0x1FDD, 0x1FDF}, {0x1FED, 0x1FEF}, {0x1FFD, 0x1FFE}, {0x2044, 0x2044}, {0x2052, 0x2052}, {0x207A, 0x207C}, {0x208A, 0x208C}, {0x20A0, 0x20BF},
{0x2100, 0x2101}, {0x2103, 0x2106}, {0x2108, 0x2109}, {0x2114, 0x2114}, {0x2116, 0x2118}, {0x211E, 0x2123}, {0x2125, 0x2125}, {0x2127, 0x2127}, {0x2129, 0x2129}, {0x212E, 0x212E}, {0x213A, 0x213B},
{0x2140, 0x2144}, {0x214A, 0x214D}, {0x214F, 0x214F}, {0x218A, 0x218B}, {0x2190, 0x2307}, {0x230C, 0x2328}, {0x232B, 0x2426}, {0x2440, 0x244A}, {0x249C, 0x24E9}, {0x2500, 0x2767}, {0x2794, 0x27C4},
{0x27C7, 0x27E5}, {0x27F0, 0x2982}, {0x2999, 0x29D7}, {0x29DC, 0x29FB}, {0x29FE, 0x2B73}, {0x2B76, 0x2B95}, {0x2B97, 0x2BFF}, {0x2CE5, 0x2CEA}, {0x2E50, 0x2E51}, {0x2E80, 0x2E99}, {0x2E9B, 0x2EF3},
{0x2F00, 0x2FD5}, {0x2FF0, 0x2FFB}, {0x3004, 0x3004}, {0x3012, 0x3013}, {0x3020, 0x3020}, {0x3036, 0x3037}, {0x303E, 0x303F}, {0x309B, 0x309C}, {0x3190, 0x3191}, {0x3196, 0x319F}, {0x31C0, 0x31E3},
{0x3200, 0x321E}, {0x322A, 0x3247}, {0x3250, 0x3250}, {0x3260, 0x327F}, {0x328A, 0x32B0}, {0x32C0, 0x33FF}, {0x4DC0, 0x4DFF}, {0xA490, 0xA4C6}, {0xA700, 0xA716}, {0xA720, 0xA721}, {0xA789, 0xA78A},
{0xA828, 0xA82B}, {0xA836, 0xA839}, {0xAA77, 0xAA79}, {0xAB5B, 0xAB5B}, {0xAB6A, 0xAB6B}, {0xFB29, 0xFB29}, {0xFBB2, 0xFBC1}, {0xFDFC, 0xFDFD}, {0xFE62, 0xFE62}, {0xFE64, 0xFE66}, {0xFE69, 0xFE69},
{0xFF04, 0xFF04}, {0xFF0B, 0xFF0B}, {0xFF1C, 0xFF1E}, {0xFF3E, 0xFF3E}, {0xFF40, 0xFF40}, {0xFF5C, 0xFF5C}, {0xFF5E, 0xFF5E}, {0xFFE0, 0xFFE6}, {0xFFE8, 0xFFEE}, {0xFFFC, 0xFFFD}, {0x10137, 0x1013F},
{0x10179, 0x10189}, {0x1018C, 0x1018E}, {0x10190, 0x1019C}, {0x101A0, 0x101A0}, {0x101D0, 0x101FC}, {0x10877, 0x10878}, {0x10AC8, 0x10AC8}, {0x1173F, 0x1173F}, {0x11FD5, 0x11FF1}, {0x16B3C, 0x16B3F},
{0x16B45, 0x16B45}, {0x1BC9C, 0x1BC9C}, {0x1D000, 0x1D0F5}, {0x1D100, 0x1D126}, {0x1D129, 0x1D164}, {0x1D16A, 0x1D16C}, {0x1D183, 0x1D184}, {0x1D18C, 0x1D1A9}, {0x1D1AE, 0x1D1E8}, {0x1D200, 0x1D241},
{0x1D245, 0x1D245}, {0x1D300, 0x1D356}, {0x1D6C1, 0x1D6C1}, {0x1D6DB, 0x1D6DB}, {0x1D6FB, 0x1D6FB}, {0x1D715, 0x1D715}, {0x1D735, 0x1D735}, {0x1D74F, 0x1D74F}, {0x1D76F, 0x1D76F}, {0x1D789, 0x1D789},
{0x1D7A9, 0x1D7A9}, {0x1D7C3, 0x1D7C3}, {0x1D800, 0x1D9FF}, {0x1DA37, 0x1DA3A}, {0x1DA6D, 0x1DA74}, {0x1DA76, 0x1DA83}, {0x1DA85, 0x1DA86}, {0x1E14F, 0x1E14F}, {0x1E2FF, 0x1E2FF}, {0x1ECAC, 0x1ECAC},
{0x1ECB0, 0x1ECB0}, {0x1ED2E, 0x1ED2E}, {0x1EEF0, 0x1EEF1}, {0x1F000, 0x1F02B}, {0x1F030, 0x1F093}, {0x1F0A0, 0x1F0AE}, {0x1F0B1, 0x1F0BF}, {0x1F0C1, 0x1F0CF}, {0x1F0D1, 0x1F0F5}, {0x1F10D, 0x1F1AD},
{0x1F1E6, 0x1F202}, {0x1F210, 0x1F23B}, {0x1F240, 0x1F248}, {0x1F250, 0x1F251}, {0x1F260, 0x1F265}, {0x1F300, 0x1F6D7}, {0x1F6E0, 0x1F6EC}, {0x1F6F0, 0x1F6FC}, {0x1F700, 0x1F773}, {0x1F780, 0x1F7D8},
{0x1F7E0, 0x1F7EB}, {0x1F800, 0x1F80B}, {0x1F810, 0x1F847}, {0x1F850, 0x1F859}, {0x1F860, 0x1F887}, {0x1F890, 0x1F8AD}, {0x1F8B0, 0x1F8B1}, {0x1F900, 0x1F978}, {0x1F97A, 0x1F9CB}, {0x1F9CD, 0x1FA53},
{0x1FA60, 0x1FA6D}, {0x1FA70, 0x1FA74}, {0x1FA78, 0x1FA7A}, {0x1FA80, 0x1FA86}, {0x1FA90, 0x1FAA8}, {0x1FAB0, 0x1FAB6}, {0x1FAC0, 0x1FAC2}, {0x1FAD0, 0x1FAD6}, {0x1FB00, 0x1FB92}, {0x1FB94, 0x1FBCA},
};
static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
{0x0, 0x8}, {0xE, 0x1B}, {0x7F, 0x84}, {0x86, 0x9F}, {0xAD, 0xAD}, {0x378, 0x379}, {0x380, 0x383}, {0x38B, 0x38B}, {0x38D, 0x38D}, {0x3A2, 0x3A2}, {0x530, 0x530}, {0x557, 0x558}, {0x58B, 0x58C},
{0x590, 0x590}, {0x5C8, 0x5CF}, {0x5EB, 0x5EE}, {0x5F5, 0x605}, {0x61C, 0x61D}, {0x6DD, 0x6DD}, {0x70E, 0x70F}, {0x74B, 0x74C}, {0x7B2, 0x7BF}, {0x7FB, 0x7FC}, {0x82E, 0x82F}, {0x83F, 0x83F},
{0x85C, 0x85D}, {0x85F, 0x85F}, {0x86B, 0x89F}, {0x8B5, 0x8B5}, {0x8C8, 0x8D2}, {0x8E2, 0x8E2}, {0x984, 0x984}, {0x98D, 0x98E}, {0x991, 0x992}, {0x9A9, 0x9A9}, {0x9B1, 0x9B1}, {0x9B3, 0x9B5},
{0x9BA, 0x9BB}, {0x9C5, 0x9C6}, {0x9C9, 0x9CA}, {0x9CF, 0x9D6}, {0x9D8, 0x9DB}, {0x9DE, 0x9DE}, {0x9E4, 0x9E5}, {0x9FF, 0xA00}, {0xA04, 0xA04}, {0xA0B, 0xA0E}, {0xA11, 0xA12}, {0xA29, 0xA29},
{0xA31, 0xA31}, {0xA34, 0xA34}, {0xA37, 0xA37}, {0xA3A, 0xA3B}, {0xA3D, 0xA3D}, {0xA43, 0xA46}, {0xA49, 0xA4A}, {0xA4E, 0xA50}, {0xA52, 0xA58}, {0xA5D, 0xA5D}, {0xA5F, 0xA65}, {0xA77, 0xA80},
{0xA84, 0xA84}, {0xA8E, 0xA8E}, {0xA92, 0xA92}, {0xAA9, 0xAA9}, {0xAB1, 0xAB1}, {0xAB4, 0xAB4}, {0xABA, 0xABB}, {0xAC6, 0xAC6}, {0xACA, 0xACA}, {0xACE, 0xACF}, {0xAD1, 0xADF}, {0xAE4, 0xAE5},
{0xAF2, 0xAF8}, {0xB00, 0xB00}, {0xB04, 0xB04}, {0xB0D, 0xB0E}, {0xB11, 0xB12}, {0xB29, 0xB29}, {0xB31, 0xB31}, {0xB34, 0xB34}, {0xB3A, 0xB3B}, {0xB45, 0xB46}, {0xB49, 0xB4A}, {0xB4E, 0xB54},
{0xB58, 0xB5B}, {0xB5E, 0xB5E}, {0xB64, 0xB65}, {0xB78, 0xB81}, {0xB84, 0xB84}, {0xB8B, 0xB8D}, {0xB91, 0xB91}, {0xB96, 0xB98}, {0xB9B, 0xB9B}, {0xB9D, 0xB9D}, {0xBA0, 0xBA2}, {0xBA5, 0xBA7},
{0xBAB, 0xBAD}, {0xBBA, 0xBBD}, {0xBC3, 0xBC5}, {0xBC9, 0xBC9}, {0xBCE, 0xBCF}, {0xBD1, 0xBD6}, {0xBD8, 0xBE5}, {0xBFB, 0xBFF}, {0xC0D, 0xC0D}, {0xC11, 0xC11}, {0xC29, 0xC29}, {0xC3A, 0xC3C},
{0xC45, 0xC45}, {0xC49, 0xC49}, {0xC4E, 0xC54}, {0xC57, 0xC57}, {0xC5B, 0xC5F}, {0xC64, 0xC65}, {0xC70, 0xC76}, {0xC8D, 0xC8D}, {0xC91, 0xC91}, {0xCA9, 0xCA9}, {0xCB4, 0xCB4}, {0xCBA, 0xCBB},
{0xCC5, 0xCC5}, {0xCC9, 0xCC9}, {0xCCE, 0xCD4}, {0xCD7, 0xCDD}, {0xCDF, 0xCDF}, {0xCE4, 0xCE5}, {0xCF0, 0xCF0}, {0xCF3, 0xCFF}, {0xD0D, 0xD0D}, {0xD11, 0xD11}, {0xD45, 0xD45}, {0xD49, 0xD49},
{0xD50, 0xD53}, {0xD64, 0xD65}, {0xD80, 0xD80}, {0xD84, 0xD84}, {0xD97, 0xD99}, {0xDB2, 0xDB2}, {0xDBC, 0xDBC}, {0xDBE, 0xDBF}, {0xDC7, 0xDC9}, {0xDCB, 0xDCE}, {0xDD5, 0xDD5}, {0xDD7, 0xDD7},
{0xDE0, 0xDE5}, {0xDF0, 0xDF1}, {0xDF5, 0xE00}, {0xE3B, 0xE3E}, {0xE5C, 0xE80}, {0xE83, 0xE83}, {0xE85, 0xE85}, {0xE8B, 0xE8B}, {0xEA4, 0xEA4}, {0xEA6, 0xEA6}, {0xEBE, 0xEBF}, {0xEC5, 0xEC5},
{0xEC7, 0xEC7}, {0xECE, 0xECF}, {0xEDA, 0xEDB}, {0xEE0, 0xEFF}, {0xF48, 0xF48}, {0xF6D, 0xF70}, {0xF98, 0xF98}, {0xFBD, 0xFBD}, {0xFCD, 0xFCD}, {0xFDB, 0xFFF}, {0x10C6, 0x10C6}, {0x10C8, 0x10CC},
{0x10CE, 0x10CF}, {0x1249, 0x1249}, {0x124E, 0x124F}, {0x1257, 0x1257}, {0x1259, 0x1259}, {0x125E, 0x125F}, {0x1289, 0x1289}, {0x128E, 0x128F}, {0x12B1, 0x12B1}, {0x12B6, 0x12B7}, {0x12BF, 0x12BF},
{0x12C1, 0x12C1}, {0x12C6, 0x12C7}, {0x12D7, 0x12D7}, {0x1311, 0x1311}, {0x1316, 0x1317}, {0x135B, 0x135C}, {0x137D, 0x137F}, {0x139A, 0x139F}, {0x13F6, 0x13F7}, {0x13FE, 0x13FF}, {0x169D, 0x169F},
{0x16F9, 0x16FF}, {0x170D, 0x170D}, {0x1715, 0x171F}, {0x1737, 0x173F}, {0x1754, 0x175F}, {0x176D, 0x176D}, {0x1771, 0x1771}, {0x1774, 0x177F}, {0x17DE, 0x17DF}, {0x17EA, 0x17EF}, {0x17FA, 0x17FF},
{0x180E, 0x180F}, {0x181A, 0x181F}, {0x1879, 0x187F}, {0x18AB, 0x18AF}, {0x18F6, 0x18FF}, {0x191F, 0x191F}, {0x192C, 0x192F}, {0x193C, 0x193F}, {0x1941, 0x1943}, {0x196E, 0x196F}, {0x1975, 0x197F},
{0x19AC, 0x19AF}, {0x19CA, 0x19CF}, {0x19DB, 0x19DD}, {0x1A1C, 0x1A1D}, {0x1A5F, 0x1A5F}, {0x1A7D, 0x1A7E}, {0x1A8A, 0x1A8F}, {0x1A9A, 0x1A9F}, {0x1AAE, 0x1AAF}, {0x1AC1, 0x1AFF}, {0x1B4C, 0x1B4F},
{0x1B7D, 0x1B7F}, {0x1BF4, 0x1BFB}, {0x1C38, 0x1C3A}, {0x1C4A, 0x1C4C}, {0x1C89, 0x1C8F}, {0x1CBB, 0x1CBC}, {0x1CC8, 0x1CCF}, {0x1CFB, 0x1CFF}, {0x1DFA, 0x1DFA}, {0x1F16, 0x1F17}, {0x1F1E, 0x1F1F},
{0x1F46, 0x1F47}, {0x1F4E, 0x1F4F}, {0x1F58, 0x1F58}, {0x1F5A, 0x1F5A}, {0x1F5C, 0x1F5C}, {0x1F5E, 0x1F5E}, {0x1F7E, 0x1F7F}, {0x1FB5, 0x1FB5}, {0x1FC5, 0x1FC5}, {0x1FD4, 0x1FD5}, {0x1FDC, 0x1FDC},
{0x1FF0, 0x1FF1}, {0x1FF5, 0x1FF5}, {0x1FFF, 0x1FFF}, {0x200B, 0x200F}, {0x202A, 0x202E}, {0x2060, 0x206F}, {0x2072, 0x2073}, {0x208F, 0x208F}, {0x209D, 0x209F}, {0x20C0, 0x20CF}, {0x20F1, 0x20FF},
{0x218C, 0x218F}, {0x2427, 0x243F}, {0x244B, 0x245F}, {0x2B74, 0x2B75}, {0x2B96, 0x2B96}, {0x2C2F, 0x2C2F}, {0x2C5F, 0x2C5F}, {0x2CF4, 0x2CF8}, {0x2D26, 0x2D26}, {0x2D28, 0x2D2C}, {0x2D2E, 0x2D2F},
{0x2D68, 0x2D6E}, {0x2D71, 0x2D7E}, {0x2D97, 0x2D9F}, {0x2DA7, 0x2DA7}, {0x2DAF, 0x2DAF}, {0x2DB7, 0x2DB7}, {0x2DBF, 0x2DBF}, {0x2DC7, 0x2DC7}, {0x2DCF, 0x2DCF}, {0x2DD7, 0x2DD7}, {0x2DDF, 0x2DDF},
{0x2E53, 0x2E7F}, {0x2E9A, 0x2E9A}, {0x2EF4, 0x2EFF}, {0x2FD6, 0x2FEF}, {0x2FFC, 0x2FFF}, {0x3040, 0x3040}, {0x3097, 0x3098}, {0x3100, 0x3104}, {0x3130, 0x3130}, {0x318F, 0x318F}, {0x31E4, 0x31EF},
{0x321F, 0x321F}, {0x9FFD, 0x9FFF}, {0xA48D, 0xA48F}, {0xA4C7, 0xA4CF}, {0xA62C, 0xA63F}, {0xA6F8, 0xA6FF}, {0xA7C0, 0xA7C1}, {0xA7CB, 0xA7F4}, {0xA82D, 0xA82F}, {0xA83A, 0xA83F}, {0xA878, 0xA87F},
{0xA8C6, 0xA8CD}, {0xA8DA, 0xA8DF}, {0xA954, 0xA95E}, {0xA97D, 0xA97F}, {0xA9CE, 0xA9CE}, {0xA9DA, 0xA9DD}, {0xA9FF, 0xA9FF}, {0xAA37, 0xAA3F}, {0xAA4E, 0xAA4F}, {0xAA5A, 0xAA5B}, {0xAAC3, 0xAADA},
{0xAAF7, 0xAB00}, {0xAB07, 0xAB08}, {0xAB0F, 0xAB10}, {0xAB17, 0xAB1F}, {0xAB27, 0xAB27}, {0xAB2F, 0xAB2F}, {0xAB6C, 0xAB6F}, {0xABEE, 0xABEF}, {0xABFA, 0xABFF}, {0xD7A4, 0xD7AF}, {0xD7C7, 0xD7CA},
{0xD7FC, 0xF8FF}, {0xFA6E, 0xFA6F}, {0xFADA, 0xFAFF}, {0xFB07, 0xFB12}, {0xFB18, 0xFB1C}, {0xFB37, 0xFB37}, {0xFB3D, 0xFB3D}, {0xFB3F, 0xFB3F}, {0xFB42, 0xFB42}, {0xFB45, 0xFB45}, {0xFBC2, 0xFBD2},
{0xFD40, 0xFD4F}, {0xFD90, 0xFD91}, {0xFDC8, 0xFDEF}, {0xFDFE, 0xFDFF}, {0xFE1A, 0xFE1F}, {0xFE53, 0xFE53}, {0xFE67, 0xFE67}, {0xFE6C, 0xFE6F}, {0xFE75, 0xFE75}, {0xFEFD, 0xFF00}, {0xFFBF, 0xFFC1},
{0xFFC8, 0xFFC9}, {0xFFD0, 0xFFD1}, {0xFFD8, 0xFFD9}, {0xFFDD, 0xFFDF}, {0xFFE7, 0xFFE7}, {0xFFEF, 0xFFFB}, {0xFFFE, 0xFFFF}, {0x1000C, 0x1000C}, {0x10027, 0x10027}, {0x1003B, 0x1003B},
{0x1003E, 0x1003E}, {0x1004E, 0x1004F}, {0x1005E, 0x1007F}, {0x100FB, 0x100FF}, {0x10103, 0x10106}, {0x10134, 0x10136}, {0x1018F, 0x1018F}, {0x1019D, 0x1019F}, {0x101A1, 0x101CF}, {0x101FE, 0x1027F},
{0x1029D, 0x1029F}, {0x102D1, 0x102DF}, {0x102FC, 0x102FF}, {0x10324, 0x1032C}, {0x1034B, 0x1034F}, {0x1037B, 0x1037F}, {0x1039E, 0x1039E}, {0x103C4, 0x103C7}, {0x103D6, 0x103FF}, {0x1049E, 0x1049F},
{0x104AA, 0x104AF}, {0x104D4, 0x104D7}, {0x104FC, 0x104FF}, {0x10528, 0x1052F}, {0x10564, 0x1056E}, {0x10570, 0x105FF}, {0x10737, 0x1073F}, {0x10756, 0x1075F}, {0x10768, 0x107FF}, {0x10806, 0x10807},
{0x10809, 0x10809}, {0x10836, 0x10836}, {0x10839, 0x1083B}, {0x1083D, 0x1083E}, {0x10856, 0x10856}, {0x1089F, 0x108A6}, {0x108B0, 0x108DF}, {0x108F3, 0x108F3}, {0x108F6, 0x108FA}, {0x1091C, 0x1091E},
{0x1093A, 0x1093E}, {0x10940, 0x1097F}, {0x109B8, 0x109BB}, {0x109D0, 0x109D1}, {0x10A04, 0x10A04}, {0x10A07, 0x10A0B}, {0x10A14, 0x10A14}, {0x10A18, 0x10A18}, {0x10A36, 0x10A37}, {0x10A3B, 0x10A3E},
{0x10A49, 0x10A4F}, {0x10A59, 0x10A5F}, {0x10AA0, 0x10ABF}, {0x10AE7, 0x10AEA}, {0x10AF7, 0x10AFF}, {0x10B36, 0x10B38}, {0x10B56, 0x10B57}, {0x10B73, 0x10B77}, {0x10B92, 0x10B98}, {0x10B9D, 0x10BA8},
{0x10BB0, 0x10BFF}, {0x10C49, 0x10C7F}, {0x10CB3, 0x10CBF}, {0x10CF3, 0x10CF9}, {0x10D28, 0x10D2F}, {0x10D3A, 0x10E5F}, {0x10E7F, 0x10E7F}, {0x10EAA, 0x10EAA}, {0x10EAE, 0x10EAF}, {0x10EB2, 0x10EFF},
{0x10F28, 0x10F2F}, {0x10F5A, 0x10FAF}, {0x10FCC, 0x10FDF}, {0x10FF7, 0x10FFF}, {0x1104E, 0x11051}, {0x11070, 0x1107E}, {0x110BD, 0x110BD}, {0x110C2, 0x110CF}, {0x110E9, 0x110EF}, {0x110FA, 0x110FF},
{0x11135, 0x11135}, {0x11148, 0x1114F}, {0x11177, 0x1117F}, {0x111E0, 0x111E0}, {0x111F5, 0x111FF}, {0x11212, 0x11212}, {0x1123F, 0x1127F}, {0x11287, 0x11287}, {0x11289, 0x11289}, {0x1128E, 0x1128E},
{0x1129E, 0x1129E}, {0x112AA, 0x112AF}, {0x112EB, 0x112EF}, {0x112FA, 0x112FF}, {0x11304, 0x11304}, {0x1130D, 0x1130E}, {0x11311, 0x11312}, {0x11329, 0x11329}, {0x11331, 0x11331}, {0x11334, 0x11334},
{0x1133A, 0x1133A}, {0x11345, 0x11346}, {0x11349, 0x1134A}, {0x1134E, 0x1134F}, {0x11351, 0x11356}, {0x11358, 0x1135C}, {0x11364, 0x11365}, {0x1136D, 0x1136F}, {0x11375, 0x113FF}, {0x1145C, 0x1145C},
{0x11462, 0x1147F}, {0x114C8, 0x114CF}, {0x114DA, 0x1157F}, {0x115B6, 0x115B7}, {0x115DE, 0x115FF}, {0x11645, 0x1164F}, {0x1165A, 0x1165F}, {0x1166D, 0x1167F}, {0x116B9, 0x116BF}, {0x116CA, 0x116FF},
{0x1171B, 0x1171C}, {0x1172C, 0x1172F}, {0x11740, 0x117FF}, {0x1183C, 0x1189F}, {0x118F3, 0x118FE}, {0x11907, 0x11908}, {0x1190A, 0x1190B}, {0x11914, 0x11914}, {0x11917, 0x11917}, {0x11936, 0x11936},
{0x11939, 0x1193A}, {0x11947, 0x1194F}, {0x1195A, 0x1199F}, {0x119A8, 0x119A9}, {0x119D8, 0x119D9}, {0x119E5, 0x119FF}, {0x11A48, 0x11A4F}, {0x11AA3, 0x11ABF}, {0x11AF9, 0x11BFF}, {0x11C09, 0x11C09},
{0x11C37, 0x11C37}, {0x11C46, 0x11C4F}, {0x11C6D, 0x11C6F}, {0x11C90, 0x11C91}, {0x11CA8, 0x11CA8}, {0x11CB7, 0x11CFF}, {0x11D07, 0x11D07}, {0x11D0A, 0x11D0A}, {0x11D37, 0x11D39}, {0x11D3B, 0x11D3B},
{0x11D3E, 0x11D3E}, {0x11D48, 0x11D4F}, {0x11D5A, 0x11D5F}, {0x11D66, 0x11D66}, {0x11D69, 0x11D69}, {0x11D8F, 0x11D8F}, {0x11D92, 0x11D92}, {0x11D99, 0x11D9F}, {0x11DAA, 0x11EDF}, {0x11EF9, 0x11FAF},
{0x11FB1, 0x11FBF}, {0x11FF2, 0x11FFE}, {0x1239A, 0x123FF}, {0x1246F, 0x1246F}, {0x12475, 0x1247F}, {0x12544, 0x12FFF}, {0x1342F, 0x143FF}, {0x14647, 0x167FF}, {0x16A39, 0x16A3F}, {0x16A5F, 0x16A5F},
{0x16A6A, 0x16A6D}, {0x16A70, 0x16ACF}, {0x16AEE, 0x16AEF}, {0x16AF6, 0x16AFF}, {0x16B46, 0x16B4F}, {0x16B5A, 0x16B5A}, {0x16B62, 0x16B62}, {0x16B78, 0x16B7C}, {0x16B90, 0x16E3F}, {0x16E9B, 0x16EFF},
{0x16F4B, 0x16F4E}, {0x16F88, 0x16F8E}, {0x16FA0, 0x16FDF}, {0x16FE5, 0x16FEF}, {0x16FF2, 0x16FFF}, {0x187F8, 0x187FF}, {0x18CD6, 0x18CFF}, {0x18D09, 0x1AFFF}, {0x1B11F, 0x1B14F}, {0x1B153, 0x1B163},
{0x1B168, 0x1B16F}, {0x1B2FC, 0x1BBFF}, {0x1BC6B, 0x1BC6F}, {0x1BC7D, 0x1BC7F}, {0x1BC89, 0x1BC8F}, {0x1BC9A, 0x1BC9B}, {0x1BCA0, 0x1CFFF}, {0x1D0F6, 0x1D0FF}, {0x1D127, 0x1D128}, {0x1D173, 0x1D17A},
{0x1D1E9, 0x1D1FF}, {0x1D246, 0x1D2DF}, {0x1D2F4, 0x1D2FF}, {0x1D357, 0x1D35F}, {0x1D379, 0x1D3FF}, {0x1D455, 0x1D455}, {0x1D49D, 0x1D49D}, {0x1D4A0, 0x1D4A1}, {0x1D4A3, 0x1D4A4}, {0x1D4A7, 0x1D4A8},
{0x1D4AD, 0x1D4AD}, {0x1D4BA, 0x1D4BA}, {0x1D4BC, 0x1D4BC}, {0x1D4C4, 0x1D4C4}, {0x1D506, 0x1D506}, {0x1D50B, 0x1D50C}, {0x1D515, 0x1D515}, {0x1D51D, 0x1D51D}, {0x1D53A, 0x1D53A}, {0x1D53F, 0x1D53F},
{0x1D545, 0x1D545}, {0x1D547, 0x1D549}, {0x1D551, 0x1D551}, {0x1D6A6, 0x1D6A7}, {0x1D7CC, 0x1D7CD}, {0x1DA8C, 0x1DA9A}, {0x1DAA0, 0x1DAA0}, {0x1DAB0, 0x1DFFF}, {0x1E007, 0x1E007}, {0x1E019, 0x1E01A},
{0x1E022, 0x1E022}, {0x1E025, 0x1E025}, {0x1E02B, 0x1E0FF}, {0x1E12D, 0x1E12F}, {0x1E13E, 0x1E13F}, {0x1E14A, 0x1E14D}, {0x1E150, 0x1E2BF}, {0x1E2FA, 0x1E2FE}, {0x1E300, 0x1E7FF}, {0x1E8C5, 0x1E8C6},
{0x1E8D7, 0x1E8FF}, {0x1E94C, 0x1E94F}, {0x1E95A, 0x1E95D}, {0x1E960, 0x1EC70}, {0x1ECB5, 0x1ED00}, {0x1ED3E, 0x1EDFF}, {0x1EE04, 0x1EE04}, {0x1EE20, 0x1EE20}, {0x1EE23, 0x1EE23}, {0x1EE25, 0x1EE26},
{0x1EE28, 0x1EE28}, {0x1EE33, 0x1EE33}, {0x1EE38, 0x1EE38}, {0x1EE3A, 0x1EE3A}, {0x1EE3C, 0x1EE41}, {0x1EE43, 0x1EE46}, {0x1EE48, 0x1EE48}, {0x1EE4A, 0x1EE4A}, {0x1EE4C, 0x1EE4C}, {0x1EE50, 0x1EE50},
{0x1EE53, 0x1EE53}, {0x1EE55, 0x1EE56}, {0x1EE58, 0x1EE58}, {0x1EE5A, 0x1EE5A}, {0x1EE5C, 0x1EE5C}, {0x1EE5E, 0x1EE5E}, {0x1EE60, 0x1EE60}, {0x1EE63, 0x1EE63}, {0x1EE65, 0x1EE66}, {0x1EE6B, 0x1EE6B},
{0x1EE73, 0x1EE73}, {0x1EE78, 0x1EE78}, {0x1EE7D, 0x1EE7D}, {0x1EE7F, 0x1EE7F}, {0x1EE8A, 0x1EE8A}, {0x1EE9C, 0x1EEA0}, {0x1EEA4, 0x1EEA4}, {0x1EEAA, 0x1EEAA}, {0x1EEBC, 0x1EEEF}, {0x1EEF2, 0x1EFFF},
{0x1F02C, 0x1F02F}, {0x1F094, 0x1F09F}, {0x1F0AF, 0x1F0B0}, {0x1F0C0, 0x1F0C0}, {0x1F0D0, 0x1F0D0}, {0x1F0F6, 0x1F0FF}, {0x1F1AE, 0x1F1E5}, {0x1F203, 0x1F20F}, {0x1F23C, 0x1F23F}, {0x1F249, 0x1F24F},
{0x1F252, 0x1F25F}, {0x1F266, 0x1F2FF}, {0x1F6D8, 0x1F6DF}, {0x1F6ED, 0x1F6EF}, {0x1F6FD, 0x1F6FF}, {0x1F774, 0x1F77F}, {0x1F7D9, 0x1F7DF}, {0x1F7EC, 0x1F7FF}, {0x1F80C, 0x1F80F}, {0x1F848, 0x1F84F},
{0x1F85A, 0x1F85F}, {0x1F888, 0x1F88F}, {0x1F8AE, 0x1F8AF}, {0x1F8B2, 0x1F8FF}, {0x1F979, 0x1F979}, {0x1F9CC, 0x1F9CC}, {0x1FA54, 0x1FA5F}, {0x1FA6E, 0x1FA6F}, {0x1FA75, 0x1FA77}, {0x1FA7B, 0x1FA7F},
{0x1FA87, 0x1FA8F}, {0x1FAA9, 0x1FAAF}, {0x1FAB7, 0x1FABF}, {0x1FAC3, 0x1FACF}, {0x1FAD7, 0x1FAFF}, {0x1FB93, 0x1FB93}, {0x1FBCB, 0x1FBEF}, {0x1FBFA, 0x1FFFF}, {0x2A6DE, 0x2A6FF}, {0x2B735, 0x2B73F},
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
};
static std::string codepoint_to_utf8(uint32_t cp) {
std::string result;
if (/* 0x00 <= cp && */ cp <= 0x7f) {
result.push_back(cp);
}
else if (0x80 <= cp && cp <= 0x7ff) {
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
result.push_back(0x80 | (cp & 0x3f));
}
else if (0x800 <= cp && cp <= 0xffff) {
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
}
else if (0x10000 <= cp && cp <= 0x10ffff) {
result.push_back(0xf0 | ((cp >> 18) & 0x07));
result.push_back(0x80 | ((cp >> 12) & 0x3f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
}
else {
throw std::invalid_argument("invalid codepoint");
}
return result;
}
static std::string codepoints_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
result.append(codepoint_to_utf8(cps[i]));
}
return result;
}
static uint32_t codepoint_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
offset += 1;
return result;
}
else if (!(utf8[offset + 0] & 0x40)) {
throw std::invalid_argument("invalid character");
}
else if (!(utf8[offset + 0] & 0x20)) {
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
offset += 2;
return result;
}
else if (!(utf8[offset + 0] & 0x10)) {
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
offset += 3;
return result;
}
else if (!(utf8[offset + 0] & 0x08)) {
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80))
throw std::invalid_argument("invalid character");
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
offset += 4;
return result;
}
throw std::invalid_argument("invalid string");
}
static std::vector<uint32_t> codepoints_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(codepoint_from_utf8(utf8, offset));
}
return result;
}
static std::vector<uint16_t> codepoint_to_utf16(uint32_t cp) {
std::vector<uint16_t> result;
if (/* 0x0000 <= cp && */ cp <= 0xffff) {
result.emplace_back(cp);
}
else if (0x10000 <= cp && cp <= 0x10ffff) {
result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
}
else {
throw std::invalid_argument("invalid codepoint");
}
return result;
}
static std::vector<uint16_t> codepoints_to_utf16(const std::vector<uint32_t> & cps) {
std::vector<uint16_t> result;
for (size_t i = 0; i < cps.size(); ++i) {
auto temp = codepoint_to_utf16(cps[i]);
result.insert(result.end(), temp.begin(), temp.end());
}
return result;
}
static uint32_t codepoint_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
assert(offset < utf16.size());
if (((utf16[0] >> 10) << 10) != 0xd800) {
auto result = utf16[offset + 0];
offset += 1;
return result;
}
else {
if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00))
throw std::invalid_argument("invalid character");
auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
offset += 2;
return result;
}
throw std::invalid_argument("invalid string");
}
static std::vector<uint32_t> codepoints_from_utf16(const std::vector<uint16_t> & utf16) {
std::vector<uint32_t> result;
size_t offset = 0;
while (offset < utf16.size())
result.push_back(codepoint_from_utf16(utf16, offset));
return result;
}
#define CODEPOINT_TYPE_UNIDENTIFIED 0
#define CODEPOINT_TYPE_DIGIT 1
#define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_WHITESPACE 3
#define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6
#define CODEPOINT_TYPE_CONTROL 7
static std::unordered_map<uint32_t, int> codepoint_type_map() {
std::unordered_map<uint32_t, int> codepoint_types;
for (auto p : digit_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_DIGIT;
}
for(auto p : letter_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_LETTER;
}
for(auto p : whitespace_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_WHITESPACE;
}
for(auto p : accent_mark_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
}
for(auto p : punctuation_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_PUNCTUATION;
}
for (auto p : symbol_ranges) {
for (auto i = p.first; i <= p.second; ++i)
codepoint_types[i] = CODEPOINT_TYPE_SYMBOL;
}
for(auto p : control_ranges) {
for(auto i = p.first; i <= p.second; ++ i)
codepoint_types[i] = CODEPOINT_TYPE_CONTROL;
}
return codepoint_types;
}
static int codepoint_type(uint32_t cp) {
static std::unordered_map<uint32_t, int> codepoint_types = codepoint_type_map();
return codepoint_types[cp];
}
static int codepoint_type(const std::string & utf8) {
if (utf8.length() == 0)
return CODEPOINT_TYPE_UNIDENTIFIED;
size_t offset = 0;
return codepoint_type(codepoint_from_utf8(utf8, offset));
}
static std::unordered_map<uint8_t, std::string> bytes_to_unicode_map_bpe() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[ch] = codepoint_to_utf8(ch);
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(ch) == map.end()) {
map[ch] = codepoint_to_utf8(256 + n);
++n;
}
}
return map;
}
static std::string bytes_to_unicode_bpe(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = bytes_to_unicode_map_bpe();
return map.at(byte);
}
static std::unordered_map<std::string, uint8_t> unicode_to_bytes_map_bpe() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = u'!'; ch <= u'~'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
assert(0 <= ch && ch < 256);
map[codepoint_to_utf8(ch)] = ch;
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(codepoint_to_utf8(ch)) == map.end()) {
map[codepoint_to_utf8(256 + n)] = ch;
++n;
}
}
return map;
}
static uint8_t unicode_to_bytes_bpe(const std::string & utf8) {
static std::unordered_map<std::string, uint8_t> map = unicode_to_bytes_map_bpe();
return map.at(utf8);
}