diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile index a75bc976f..491d67676 100644 --- a/.devops/full.Dockerfile +++ b/.devops/full.Dockerfile @@ -5,9 +5,10 @@ FROM ubuntu:$UBUNTU_VERSION as build RUN apt-get update && \ apt-get install -y build-essential python3 python3-pip +COPY requirements.txt requirements.txt + RUN pip install --upgrade pip setuptools wheel \ - && pip install numpy requests sentencepiece tqdm \ - && pip install torch --index-url https://download.pytorch.org/whl/cpu + && pip install -r requirements.txt WORKDIR /app diff --git a/.devops/main.Dockerfile b/.devops/main.Dockerfile index cd575efa0..2e629f8ce 100644 --- a/.devops/main.Dockerfile +++ b/.devops/main.Dockerfile @@ -15,4 +15,4 @@ FROM ubuntu:$UBUNTU_VERSION as runtime COPY --from=build /app/main /main -ENTRYPOINT [ "/main" ] \ No newline at end of file +ENTRYPOINT [ "/main" ] diff --git a/.dockerignore b/.dockerignore index 952990f26..462fac23a 100644 --- a/.dockerignore +++ b/.dockerignore @@ -21,4 +21,4 @@ models/* arm_neon.h compile_commands.json -Dockerfile \ No newline at end of file +Dockerfile diff --git a/.ecrc b/.ecrc new file mode 100644 index 000000000..b682057dd --- /dev/null +++ b/.ecrc @@ -0,0 +1,5 @@ +{ + "Disable": { + "IndentSize": true + } +} diff --git a/.editorconfig b/.editorconfig new file mode 100644 index 000000000..135a7e4bc --- /dev/null +++ b/.editorconfig @@ -0,0 +1,19 @@ +# https://EditorConfig.org + +# Top-most EditorConfig file +root = true + +# Unix-style newlines with a newline ending every file, utf-8 charset +[*] +end_of_line = lf +insert_final_newline = true +trim_trailing_whitespace = true +charset = utf-8 +indent_style = space +indent_size = 4 + +[Makefile] +indent_style = tab + +[prompts/*.txt] +insert_final_newline = unset diff --git a/.github/ISSUE_TEMPLATE/custom.md b/.github/ISSUE_TEMPLATE/custom.md index 0d508802d..8fd955356 100644 --- a/.github/ISSUE_TEMPLATE/custom.md +++ b/.github/ISSUE_TEMPLATE/custom.md @@ -22,9 +22,9 @@ Please provide a detailed written description of what you were trying to do, and # Current Behavior -Please provide a detailed written description of what `llama.cpp` did, instead. +Please provide a detailed written description of what `llama.cpp` did, instead. -# Environment and Context +# Environment and Context Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions. @@ -133,7 +133,7 @@ llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin. llama_model_load: .......................................................................................... done llama_model_load: model size = 4869.09 MB / num tensors = 723 -system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | +system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | main: prompt: 'Please close your issue when it has been answered.' main: number of tokens in prompt = 11 @@ -166,14 +166,14 @@ main: total time = 246406.42 ms Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.': - 3636882.89 msec task-clock # 14.677 CPUs utilized - 13509 context-switches # 3.714 /sec - 2436 cpu-migrations # 0.670 /sec - 10476679 page-faults # 2.881 K/sec + 3636882.89 msec task-clock # 14.677 CPUs utilized + 13509 context-switches # 3.714 /sec + 2436 cpu-migrations # 0.670 /sec + 10476679 page-faults # 2.881 K/sec 13133115082869 cycles # 3.611 GHz (16.77%) 29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%) 10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%) - 23479217109614 instructions # 1.79 insn per cycle + 23479217109614 instructions # 1.79 insn per cycle # 0.44 stalled cycles per insn (16.76%) 2353072268027 branches # 647.002 M/sec (16.77%) 1998682780 branch-misses # 0.08% of all branches (16.76%) diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index f70821de2..28402c933 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -60,4 +60,4 @@ jobs: push: ${{ github.event_name == 'push' }} platforms: linux/amd64,linux/arm64 tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}" - file: ${{ matrix.config.dockerfile }} \ No newline at end of file + file: ${{ matrix.config.dockerfile }} diff --git a/.github/workflows/editorconfig.yml b/.github/workflows/editorconfig.yml new file mode 100644 index 000000000..b4e535acf --- /dev/null +++ b/.github/workflows/editorconfig.yml @@ -0,0 +1,17 @@ +name: EditorConfig Checker + +on: + push: + branches: + - master + pull_request: + branches: + - master + +jobs: + editorconfig: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - uses: editorconfig-checker/action-editorconfig-checker@main + - run: editorconfig-checker diff --git a/.gitignore b/.gitignore index d8dd34fb9..ba5cbf1ed 100644 --- a/.gitignore +++ b/.gitignore @@ -23,6 +23,7 @@ models/* /result /perplexity /embedding +/benchmark-q4_0-matmult /Pipfile arm_neon.h diff --git a/CMakeLists.txt b/CMakeLists.txt index 6bec1f97b..5a20de3a2 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -56,6 +56,10 @@ option(LLAMA_AVX "llama: enable AVX" option(LLAMA_AVX2 "llama: enable AVX2" ON) option(LLAMA_AVX512 "llama: enable AVX512" OFF) option(LLAMA_FMA "llama: enable FMA" ON) +# in MSVC F16C is implied with AVX2/AVX512 +if (NOT MSVC) + option(LLAMA_F16C "llama: enable F16C" ON) +endif() # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) @@ -116,6 +120,21 @@ if (LLAMA_OPENBLAS) add_compile_definitions(GGML_USE_OPENBLAS) add_link_options(${BLAS_LIBRARIES}) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas) + + # find header file + set(OPENBLAS_INCLUDE_SEARCH_PATHS + /usr/include + /usr/include/openblas + /usr/include/openblas-base + /usr/local/include + /usr/local/include/openblas + /usr/local/include/openblas-base + /opt/OpenBLAS/include + $ENV{OpenBLAS_HOME} + $ENV{OpenBLAS_HOME}/include + ) + find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS}) + add_compile_options(-I${OPENBLAS_INC}) else() message(WARNING "OpenBLAS not found") endif() @@ -207,7 +226,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$") add_compile_options(/arch:AVX) endif() else() - add_compile_options(-mf16c) + if (LLAMA_F16C) + add_compile_options(-mf16c) + endif() if (LLAMA_FMA) add_compile_options(-mfma) endif() @@ -247,7 +268,6 @@ endif() add_library(llama llama.cpp llama.h - llama_internal.h llama_util.h) target_include_directories(llama PUBLIC .) diff --git a/Makefile b/Makefile index 3e58a28a7..e7470d51a 100644 --- a/Makefile +++ b/Makefile @@ -133,48 +133,53 @@ $(info I CC: $(CCV)) $(info I CXX: $(CXXV)) $(info ) -default: main quantize perplexity embedding +default: main quantize quantize-stats perplexity embedding # # Build library # ggml.o: ggml.c ggml.h - $(CC) $(CFLAGS) -c ggml.c -o ggml.o + $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp llama.h llama_util.h llama_internal.h - $(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o +llama.o: llama.cpp ggml.h llama.h llama_util.h + $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h - $(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o + $(CXX) $(CXXFLAGS) -c $< -o $@ clean: - rm -vf *.o main quantize quantize-stats perplexity embedding + rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult main: examples/main/main.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) @echo @echo '==== Run ./main -h for help. ====' @echo quantize: examples/quantize/quantize.cpp ggml.o llama.o - $(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o - $(CXX) $(CXXFLAGS) examples/quantize-stats/quantize-stats.cpp ggml.o llama.o -o quantize-stats $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/embedding/embedding.cpp ggml.o llama.o common.o -o embedding $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) libllama.so: llama.o ggml.o - $(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS) + $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) + # # Tests # +benchmark: examples/benchmark/benchmark-q4_0-matmult.c ggml.o + $(CXX) $(CXXFLAGS) $^ -o benchmark-q4_0-matmult $(LDFLAGS) + ./benchmark-q4_0-matmult + .PHONY: tests tests: bash ./tests/run-tests.sh diff --git a/README.md b/README.md index ef82855e4..78215c9ce 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915) - [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784) ## Description @@ -48,6 +49,7 @@ New features will probably be added mostly through community contributions. - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) +- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node) **UI:** @@ -148,30 +150,52 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8 ## Usage -Here are the step for the LLaMA-7B model: +Here are the step for the LLaMA-7B model. + +### Get the Code ```bash -# build this repo git clone https://github.com/ggerganov/llama.cpp cd llama.cpp -make +``` -#For Windows and CMake, use the following command instead: -cd -mkdir build -cd build -cmake .. -cmake --build . --config Release +### Build +Note: For Windows, CMake or Zig can be used. + +1. Use `make` + + ```bash + make + ``` + +1. Use CMake + + ```bash + mkdir build + cd build + cmake .. + cmake --build . --config Release + ``` + +1. Use Zig + + ```bash + zig build -Drelease-fast + ``` + +### Prepare Data & Run + +```bash # obtain the original LLaMA model weights and place them in ./models ls ./models 65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model # install Python dependencies -python3 -m pip install torch numpy sentencepiece +python3 -m pip install -r requirements.txt # convert the 7B model to ggml FP16 format -python3 convert-pth-to-ggml.py models/7B/ 1 +python3 convert.py models/7B/ # quantize the model to 4-bits (using method 2 = q4_0) ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2 @@ -180,8 +204,6 @@ python3 convert-pth-to-ggml.py models/7B/ 1 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128 ``` -Currently, it's best to use Python 3.9 or Python 3.10, as `sentencepiece` has not yet published a wheel for Python 3.11. - When running the larger models, make sure you have enough disk space to store all the intermediate files. ### Memory/Disk Requirements @@ -243,7 +265,7 @@ There 26 letters in the English Alphabet The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis > List 5 words that start with "ca". cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. -> +> ``` ### Using [GPT4All](https://github.com/nomic-ai/gpt4all) @@ -254,19 +276,19 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. convert the model from the old format to the new format with [./migrate-ggml-2023-03-30-pr613.py](./migrate-ggml-2023-03-30-pr613.py): ```bash - python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model + python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model python3 migrate-ggml-2023-03-30-pr613.py models/gpt4all-7B/gpt4all-lora-quantized.bin models/gpt4all-7B/gpt4all-lora-quantized-new.bin ``` - + - You can now use the newly generated `gpt4all-lora-quantized-new.bin` model in exactly the same way as all other models - The original model is saved in the same folder with a suffix `.orig` ### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data - **Under no circumstances share IPFS, magnet links, or any other links to model downloads anywhere in this respository, including in issues, discussions or pull requests. They will be immediately deleted.** -- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository. +- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository. - Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data. -- Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files. +- Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files. - The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory: `sha256sum --ignore-missing -c SHA256SUMS` on Linux @@ -284,7 +306,7 @@ convert the model from the old format to the new format with [./migrate-ggml-202 - GPT-3.5 / InstructGPT / ChatGPT: - [Aligning language models to follow instructions](https://openai.com/research/instruction-following) - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155) - + ### Perplexity (Measuring model quality) You can use the `perplexity` example to measure perplexity over the given prompt. For more background, diff --git a/build.zig b/build.zig index defc2c3ad..306127ffe 100644 --- a/build.zig +++ b/build.zig @@ -1,16 +1,14 @@ const std = @import("std"); -pub fn build(b: *std.Build) void { +pub fn build(b: *std.build.Builder) void { const target = b.standardTargetOptions(.{}); - const optimize = b.standardOptimizeOption(.{}); + const optimize = b.standardReleaseOptions(); const want_lto = b.option(bool, "lto", "Want -fLTO"); - const lib = b.addStaticLibrary(.{ - .name = "llama", - .target = target, - .optimize = optimize, - }); + const lib = b.addStaticLibrary("llama", null); lib.want_lto = want_lto; + lib.setTarget(target); + lib.setBuildMode(optimize); lib.linkLibCpp(); lib.addIncludePath("."); lib.addIncludePath("examples"); @@ -44,16 +42,12 @@ pub fn build(b: *std.Build) void { fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep { const b = args.b; const lib = args.lib; - const target = args.target; - const optimize = args.optimize; const want_lto = args.want_lto; - const exe = b.addExecutable(.{ - .name = name, - .target = target, - .optimize = optimize, - }); + const exe = b.addExecutable(name, null); exe.want_lto = want_lto; + lib.setTarget(args.target); + lib.setBuildMode(args.optimize); exe.addIncludePath("."); exe.addIncludePath("examples"); exe.addCSourceFiles(&.{ diff --git a/convert-ggml-to-pth.py b/convert-ggml-to-pth.py deleted file mode 100644 index 25a44237a..000000000 --- a/convert-ggml-to-pth.py +++ /dev/null @@ -1,299 +0,0 @@ -# Author: github.com/ductai199x -import argparse -import os -import struct - -import numpy as np -import torch -from numba import njit -from tqdm.auto import tqdm - - -def read_header(fin): - values = struct.unpack("i" * 9, fin.read(4 * 9)) - _, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values - return { - "vocab_size": vocab_size, - "dim": dim, - "multiple_of": multiple_of, - "n_heads": n_heads, - "n_layers": n_layers, - }, ftype - - -def read_tokens(fin, vocab_size): - tokens = [] - for _ in range(vocab_size): - text_len = struct.unpack("i", fin.read(4))[0] - text_bytes = fin.read(text_len) - try: - text = text_bytes.decode() - except UnicodeDecodeError: - text = text_bytes.decode(errors="replace") - score = struct.unpack("f", fin.read(4))[0] - tokens.append((text, score)) - return tokens - - -@njit -def dequantize_weights_numba(fin_data, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - bs = 4 + (qk // 2) - - weights = np.zeros((n_rows, n_cols), dtype=np.float32) - data_pos = 0 - - for row in range(n_rows): - for block in range(nb): - d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0] - data_pos += 4 - packed_values = fin_data[data_pos : data_pos + (qk // 2)] - data_pos += qk // 2 - - for i in range(qk // 2): - packed_value = packed_values[i] - v0 = np.float32((packed_value & 0b00001111) - 8) * d - v1 = np.float32((packed_value >> 4) - 8) * d - - weights[row, block * qk + 2 * i] = v0 - weights[row, block * qk + 2 * i + 1] = v1 - - return weights - - -def dequantize_weights(fin, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - data_size = n_rows * n_cols // 2 + n_rows * nb * 4 - fin_data = fin.read(data_size) - return dequantize_weights_numba(fin_data, n_rows, n_cols) - - -def read_variables(fin): - model = {} - pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables") - while True: - start_pos = fin.tell() - try: - n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3)) - except struct.error: - break - - shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims))) - shape = shape[::-1] - name = fin.read(name_length).decode() - - # ensure tensor data is aligned - tensor_data_offset = fin.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fin.seek(tensor_data_offset) - - if ftype_cur == 2: - # 4-bit quantized weights - dtype = np.uint8 - data = dequantize_weights(fin, shape[0], shape[1]) - data = data.reshape(shape) - elif ftype_cur == 0: - dtype = np.float32 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - elif ftype_cur == 1: - dtype = np.float16 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - - model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16) - - pbar.update(fin.tell() - start_pos) - - return model - - -def convert_to_hf_format(model, hparams): - # This works for llama 7B, need to test with other models - n_layers = hparams["n_layers"] - n_heads = hparams["n_heads"] - dim = hparams["dim"] - dims_per_head = dim // n_heads - base = 10000.0 - inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) - - # permute for sliced rotary - def permute(w): - return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) - - state_dict = {} - for layer_i in range(n_layers): - state_dict.update( - { - f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( - model[f"layers.{layer_i}.attention.wq.weight"] - ), - f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( - model[f"layers.{layer_i}.attention.wk.weight"] - ), - f"model.layers.{layer_i}.self_attn.v_proj.weight": model[ - f"layers.{layer_i}.attention.wv.weight" - ], - f"model.layers.{layer_i}.self_attn.o_proj.weight": model[ - f"layers.{layer_i}.attention.wo.weight" - ], - f"model.layers.{layer_i}.mlp.gate_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w1.weight" - ], - f"model.layers.{layer_i}.mlp.down_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w2.weight" - ], - f"model.layers.{layer_i}.mlp.up_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w3.weight" - ], - f"model.layers.{layer_i}.input_layernorm.weight": model[ - f"layers.{layer_i}.attention_norm.weight" - ], - f"model.layers.{layer_i}.post_attention_layernorm.weight": model[ - f"layers.{layer_i}.ffn_norm.weight" - ], - } - ) - state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq - state_dict.update( - { - "model.embed_tokens.weight": model["tok_embeddings.weight"], - "model.norm.weight": model["norm.weight"], - "lm_head.weight": model["output.weight"], - } - ) - - return state_dict - - -def chat(model, hparams, llama_dir): - from transformers import (GenerationConfig, LlamaForCausalLM, - LlamaTokenizer, StoppingCriteria, - StoppingCriteriaList) - from transformers.models.llama.configuration_llama import LlamaConfig - - class StoppingCriteriaSub(StoppingCriteria): - def __init__(self): - super().__init__() - - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]): - print(tokenizer.decode(input_ids[0]), end="", flush=True) - if input_ids[0][-1] == 13: - return True - - return False - - config = LlamaConfig( - vocab_size=hparams["vocab_size"], - dim=hparams["dim"], - num_hidden_layers=hparams["n_layers"], - num_attention_heads=hparams["n_heads"], - ) - - llama = LlamaForCausalLM(config=config) - llama.load_state_dict(state_dict=model, strict=True) - tokenizer = LlamaTokenizer.from_pretrained(llama_dir) - - device = torch.device("cpu") - llama = llama.to(device) - - ctx = """You are AI. -This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself. -User: Hello, AI. -AI: Hello! How can I assist you today? -""" - print(ctx.rstrip("\n")) - while True: - print("-" * 60) - prompt = input("User: ") - if ctx != "": - ctx = f"{ctx}User: {prompt}\n" - else: - ctx = f"{prompt}\nAI:" - - ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx - - print("-" * 60) - if len(ctx.strip()) > 0: - input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device) - generation_config = GenerationConfig( - temperature=0.8, - top_p=0.95, - top_k=50, - repetition_penalty=1.1764, - ) - with torch.no_grad(): - generation_output = llama.generate( - input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_length=2048, - do_sample=True, - stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]), - ) - s = generation_output.sequences[0] - decoded = tokenizer.decode(s) - ctx = f"{decoded}\n" - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files." - ) - parser.add_argument( - "--prefix", - "-p", - type=str, - required=True, - help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).", - ) - parser.add_argument( - "--hf", - action="store_true", - help="Whether to save the model in the Hugging Face format. (default: False)", - ) - parser.add_argument( - "--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)" - ) - args = parser.parse_args() - - llama_dir = os.path.abspath(f"{args.input_dir}/../") - - ggml_files = sorted( - [f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)] - ) - - fin = open(ggml_files[0], "rb") - hparams, ftype = read_header(fin) - tokens = read_tokens(fin, hparams["vocab_size"]) - model = read_variables(fin) - - for f in tqdm(ggml_files[1:]): - fin = open(f, "rb") - read_header(fin) - read_tokens(fin, hparams["vocab_size"]) - model.update(read_variables(fin)) - - if args.hf: - model = convert_to_hf_format(model, hparams) - - pth_ckpt = { - "state_dict": model, - "hparams": hparams, - "tokens": tokens, - } - - torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth") - - if args.chat: - if not args.hf: - model = convert_to_hf_format(model, hparams) - chat(model, hparams, llama_dir) - - -if __name__ == "__main__": - main() diff --git a/convert-gpt4all-to-ggml.py b/convert-gpt4all-to-ggml.py deleted file mode 100644 index b1a5e0560..000000000 --- a/convert-gpt4all-to-ggml.py +++ /dev/null @@ -1,107 +0,0 @@ -#!/usr/bin/env python3 - -# -# TODO: deduplicate GPT4All with convert-unversioned-ggml-to-ggml.py -# - -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade a GPT4All model to the current format') - parser.add_argument('gpt4all_model', help='path to gpt4all-lora-quantized.bin') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - - # TODO: GPT4All - add extra token - text = "".encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", 0.0)) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - convert_one_file(args.gpt4all_model, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert-gptq-to-ggml.py b/convert-gptq-to-ggml.py deleted file mode 100644 index 42e99c2ff..000000000 --- a/convert-gptq-to-ggml.py +++ /dev/null @@ -1,172 +0,0 @@ -# Convert a GPTQ quantized LLaMA model to a ggml compatible file -# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa -# -import os -import re -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor - -if len(sys.argv) != 4: - print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n") - sys.exit(1) - -fname_model = sys.argv[1] -fname_tokenizer = sys.argv[2] -dir_out = sys.argv[3] - -model = torch.load(fname_model, map_location="cpu") - -n_vocab, n_embd = model['model.embed_tokens.weight'].shape -n_layer = 1 + max(int(m.group(1)) for name in model - if (m := re.match(r'model\.layers\.([0-9]+)', name))) - -# hardcoded: -n_mult = 256 -n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer] - -tokenizer = SentencePieceProcessor(fname_tokenizer) - -assert tokenizer.vocab_size() == n_vocab - -fname_out = sys.argv[3] - -fout = open(fname_out, "wb") - -fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex -fout.write(struct.pack("i", 1)) # file version -fout.write(struct.pack("i", n_vocab)) -fout.write(struct.pack("i", n_embd)) -fout.write(struct.pack("i", n_mult)) -fout.write(struct.pack("i", n_head)) -fout.write(struct.pack("i", n_layer)) -fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete) -fout.write(struct.pack("i", 4)) - - -# This loop unchanged from convert-pth-to-ggml.py: -for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def write_header(shape, dst_name, ftype_cur): - sname = dst_name.encode() - fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur)) - fout.write(struct.pack("i" * len(shape), *shape[::-1])) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fout.seek(tensor_data_offset) - -def convert_non_q4(src_name, dst_name): - v = model[src_name] - shape = v.shape - print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}") - if len(shape) == 1: - print(" Converting to float32") - v = v.to(torch.float32) - - ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype] - - # header - write_header(shape, dst_name, ftype_cur) - - # data - v.numpy().tofile(fout) - -def convert_q4(src_name, dst_name, permute=False): - zeros = model[f"{src_name}.zeros"].numpy() - scales = model[f"{src_name}.scales"].numpy() - bias = model[f"{src_name}.bias"].numpy() - qweight = model[f"{src_name}.qweight"].numpy().T # transpose - - # Q4_1 does not support bias; good thing the bias is always all zeros. - assert not np.any(bias) - - # Each int32 item is actually 8 int4 items packed together, and it's transposed. - shape = (qweight.shape[0], qweight.shape[1] * 8) - - print(f"Processing Q4 variable: {src_name} with shape: {shape}") - - # The output format has the int4 weights in groups of 32 rather than 8. - # It looks like this: - # For each row: - # For each group of 32 columns: - # - addend (float32, 4 bytes) - # - scale (float32, 4 bytes) - # - weights (int4 * 32, 16 bytes) - # Note that in the input, the scales and addends are shared between all - # the columns in a row, so we end up wasting quite a bit of memory with - # repeated scales and addends. - - addends = -zeros # flip sign - - # Since the output format is mixed between integers and floats, we have - # to hackily view the floats as int32s just so numpy will let us - # concatenate them. - addends_view = addends.view(dtype=np.int32) - scales_view = scales.view(dtype=np.int32) - - # Split into groups of 4 columns (i.e. 32 columns of quantized data): - grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4]) - - # Repeat addends and scales: - addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1) - scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1) - - blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no') - - if permute: - # Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py. - # This can be done after the above conversion because it doesn't affect column order/layout. - blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:]) - .swapaxes(1, 2) - .reshape(blob.shape)) - - # header - write_header(shape, dst_name, 3) # ftype = Q4_1 - - # data - blob.tofile(fout) - -convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight") -convert_non_q4("model.norm.weight", "norm.weight") -convert_non_q4("lm_head.weight", "output.weight") - -for i in range(n_layer): - convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight") - convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight") - - convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight") - convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight") - convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight") - - convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight") - convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight") - - -fout.close() - -print(f"Done. Output file: {fname_out}") -print() diff --git a/convert-pth-to-ggml.py b/convert-pth-to-ggml.py index dcef2f6a3..f87ac270c 100644 --- a/convert-pth-to-ggml.py +++ b/convert-pth-to-ggml.py @@ -1,274 +1,11 @@ -# Convert a LLaMA model checkpoint to a ggjt compatible file -# -# Load the model using Torch -# Iterate over all variables and write them to a binary file. -# -# For each variable, write the following: -# - Number of dimensions (int) -# - Name length (int) -# - Dimensions (int[n_dims]) -# - Name (char[name_length]) -# - Data (float[n_dims]) -# -# At the start of the ggml file we write the model parameters -# and vocabulary. -# +# Compatibility stub import argparse -import os -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor +import convert -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def parse_args(): - parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') - parser.add_argument('dir_model', help='directory containing the model checkpoint') - parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) - parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?') - return parser.parse_args() - -def get_n_parts(dim): - mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8} - n_parts = mappings.get(dim) - if n_parts is None: - print(f"Invalid dim: {dim}") - sys.exit(1) - - print(f"n_parts = {n_parts}\n") - return n_parts - -def load_hparams_and_tokenizer(dir_model): - # `dir_model` is something like `models/7B` or `models/7B/`. - # "tokenizer.model" is expected under model's parent dir. - # When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found. - # Let's use the model's parent dir directly. - model_parent_dir = os.path.dirname(os.path.normpath(dir_model)) - fname_hparams = f"{dir_model}/params.json" - fname_tokenizer = f"{model_parent_dir}/tokenizer.model" - with open(fname_hparams, "r") as f: - hparams = json.load(f) - print(hparams) - tokenizer = SentencePieceProcessor(fname_tokenizer) - hparams.update({"vocab_size": tokenizer.vocab_size()}) - return hparams, tokenizer - -def write_header(fout, hparams, ftype): - keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - values = [ - 0x67676a74, # magic: ggjt in hex - 1, # file version - *[hparams[key] for key in keys], - hparams["dim"] // hparams["n_heads"], # rot (obsolete) - ftype - ] - fout.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def process_and_write_variables(fout, model, ftype, part_id, n_parts): - for name, datao in model.items(): - if name.endswith("freqs"): - continue - - # remove dimensions with a single element - data = datao.numpy().squeeze() - partshape = data.shape - n_dims = len(data.shape) - assert n_dims in (1, 2) - - print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}") - - # coerce single-dimensional tensors from float16 to float32 - ftype_cur = 1 - if ftype == 0 or n_dims == 1: - print(" Converting to float32") - data = data.astype(np.float32) - ftype_cur = 0 - blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]] - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if "tok_embeddings" in name: - split_dim = 1 - elif "layers" in name: - if "attention.wo.weight" in name: - split_dim = 1 - elif "feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif "output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - sname = name.encode() - fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - data.tofile(fout) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - data.tofile(fout) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - data[row].tofile(fout) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur)) - -def main(): - args = parse_args() - dir_model = args.dir_model - ftype = args.ftype - ftype_str = ["f32", "f16"] - hparams, tokenizer = load_hparams_and_tokenizer(dir_model) - - print(args) - - # if only writing vocab to file - if args.vocab_only: - fname_model = f"{dir_model}/consolidated.00.pth" - fname_out = f"{dir_model}/ggml-vocab.bin" - print(f"Extracting only the vocab from '{fname_model}'\n") - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - print(f"Done. Output file: {fname_out}\n") - return - - n_parts = get_n_parts(hparams["dim"]) - fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin" - - # we output a single file for ggml - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fname_model = f"{dir_model}/consolidated.0{part_id}.pth" - model = torch.load(fname_model, map_location="cpu") - process_and_write_variables(fout, model, ftype, part_id, n_parts) - del model - - print(f"Done. Output file: {fname_out}\n") - -if __name__ == "__main__": - main() +parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') +parser.add_argument('dir_model', help='directory containing the model checkpoint') +parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) +args = parser.parse_args() +convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model]) diff --git a/convert-unversioned-ggml-to-ggml.py b/convert-unversioned-ggml-to-ggml.py deleted file mode 100644 index 5151d9081..000000000 --- a/convert-unversioned-ggml-to-ggml.py +++ /dev/null @@ -1,100 +0,0 @@ -#!/usr/bin/env python3 -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format') - parser.add_argument('dir_model', help='directory containing ggml .bin files') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - files = [] - files.extend(glob.glob(f"{args.dir_model}/*.bin")) - files.extend(glob.glob(f"{args.dir_model}/*.bin.*")) - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - for file in files: - convert_one_file(file, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert.py b/convert.py new file mode 100644 index 000000000..7b9f043b2 --- /dev/null +++ b/convert.py @@ -0,0 +1,1148 @@ +import argparse +import concurrent.futures +import copy +import enum +import faulthandler +import functools +import io +import itertools +import json +import math +import mmap +import pickle +import re +import signal +import struct +import sys +import zipfile +from abc import ABCMeta, abstractmethod +from dataclasses import dataclass +from pathlib import Path +from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, + Literal, Optional, Sequence, Tuple, TypeVar, Union) + +import numpy as np +from sentencepiece import SentencePieceProcessor # type: ignore + +if TYPE_CHECKING: + from typing_extensions import TypeAlias + +if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): + faulthandler.register(signal.SIGUSR1) + +NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' + + +@dataclass(frozen=True) +class UnquantizedDataType: + name: str + + +DT_F16 = UnquantizedDataType('F16') +DT_F32 = UnquantizedDataType('F32') +DT_I32 = UnquantizedDataType('I32') +DT_BF16 = UnquantizedDataType('BF16') + + +@dataclass(frozen=True) +class QuantizedDataType: + groupsize: int + have_addends: bool + have_g_idx: bool + + +DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False) +DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False) + +DataType = Union[UnquantizedDataType, QuantizedDataType] + +DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { + DT_F32: 0, + DT_F16: 1, + DT_Q4_0: 2, + DT_Q4_1: 3, +} + +FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ + {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} + +DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { + DT_F16: np.dtype(np.float16), + DT_F32: np.dtype(np.float32), + DT_I32: np.dtype(np.int32), +} + +NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ + {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} + + +class GGMLFileType(enum.Enum): + AllF32 = 0 + MostlyF16 = 1 # except 1d tensors + MostlyQ4_0 = 2 # except 1d tensors + MostlyQ4_1 = 3 # except 1d tensors + PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16 + + def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: + if len(tensor.shape) == 1: + # 1D tensors are always F32. + return DT_F32 + elif self == GGMLFileType.AllF32: + return DT_F32 + elif self == GGMLFileType.MostlyF16: + return DT_F16 + elif self == GGMLFileType.MostlyQ4_0: + return DT_Q4_0 + elif self == GGMLFileType.MostlyQ4_1: + return DT_Q4_1 + elif self == GGMLFileType.PerLayerIsQ4_1: + if name in ('output.weight', 'tok_embeddings.weight'): + return DT_F16 + else: + return DT_Q4_1 + else: + raise ValueError(self) + + +def make_tensors_list() -> List[str]: + ret = [ + 'tok_embeddings.weight', + 'norm.weight', + 'output.weight', + ] + for i in range(80): # maximum number of layer + ret += [ + f'layers.{i}.attention.wq.weight', + f'layers.{i}.attention.wk.weight', + f'layers.{i}.attention.wv.weight', + f'layers.{i}.attention.wo.weight', + f'layers.{i}.attention_norm.weight', + f'layers.{i}.feed_forward.w1.weight', + f'layers.{i}.feed_forward.w2.weight', + f'layers.{i}.feed_forward.w3.weight', + f'layers.{i}.atttention_norm.weight', + f'layers.{i}.ffn_norm.weight', + ] + return ret + + +TENSORS_LIST = make_tensors_list() +TENSORS_SET = set(TENSORS_LIST) + + +@dataclass +class Params: + n_vocab: int + n_embd: int + n_mult: int + n_head: int + n_layer: int + file_type: GGMLFileType + + @staticmethod + def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': + n_vocab, n_embd = model["tok_embeddings.weight"].shape + + return Params( + n_vocab=n_vocab, + n_embd=n_embd, + n_mult=256, + n_head=n_embd // 128, + n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), + file_type=file_type, + ) + + +class SentencePieceVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: + self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) + added_tokens: Dict[str, int] + if fname_added_tokens is not None: + added_tokens = json.load(open(fname_added_tokens)) + else: + added_tokens = {} + vocab_size: int = self.sentencepiece_tokenizer.vocab_size() + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base: int = vocab_size + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens + + def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: + tokenizer = self.sentencepiece_tokenizer + for i in range(tokenizer.vocab_size()): + text: bytes + if tokenizer.is_unknown(i): + text = " \u2047 ".encode("utf-8") + elif tokenizer.is_control(i): + text = b"" + elif tokenizer.is_byte(i): + piece = tokenizer.id_to_piece(i) + if len(piece) != 6: + raise Exception(f"Invalid token: {piece}") + byte_value = int(piece[3:-1], 16) + text = struct.pack("B", byte_value) + else: + text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") + score: float = tokenizer.get_score(i) + yield text, score + + def added_tokens(self) -> Iterable[Tuple[bytes, float]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + yield from self.sentencepiece_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class GGMLVocab: + def __init__(self, tokens: List[Tuple[bytes, float]]): + self.tokens = tokens + self.vocab_size = len(tokens) + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + return self.tokens + + def __repr__(self) -> str: + return f"" + + +Vocab = Union[SentencePieceVocab, GGMLVocab] + + +def permute(weights: NDArray, n_head: int) -> NDArray: + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + +def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray: + # First reinterpret each row from a list of int32s containing 8 values each + # to a list of uint8s containing 2 values each. + qvalues_pack8 = qvalues_pack32.view(np.uint8) + + # Then split out the two values per int8 (which requires an actual + # conversion because numpy doesn't natively support int4s). + qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8) + qvalues[:, 0::2] = qvalues_pack8 & 0xf + qvalues[:, 1::2] = qvalues_pack8 >> 4 + + assert addends is None or addends.shape == scales.shape + assert qvalues.shape[0] == scales.shape[0] + assert qvalues.shape[1] % scales.shape[1] == 0 + if g_idx is None: + repeat_count = qvalues.shape[1] // scales.shape[1] + scales = scales[:, :, np.newaxis] + if addends is not None: + addends = addends[:, :, np.newaxis] + # Reshape so that the below computation broadcasts over scales and addends: + qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count)) + else: + # In this case the scale and addend is selected for each column by g_idx: + assert addends is not None + scales = scales[:, g_idx] + addends = addends[:, g_idx] + if addends is None: + # Q4_0 + qvalues = qvalues.view(np.int8) + qvalues -= 8 + # And do the actual 'value = scale * qvalue + addend' computation. + values = scales * qvalues + if addends is not None: + values += addends + if g_idx is None: + values.shape = (values.shape[0], values.shape[1] * values.shape[2]) + return values + + +class Tensor(metaclass=ABCMeta): + data_type: DataType + + @abstractmethod + def astype(self, data_type: DataType) -> 'Tensor': ... + @abstractmethod + def permute(self, n_head: int) -> 'Tensor': ... + @abstractmethod + def to_ggml(self) -> 'GGMLCompatibleTensor': ... + + +class UnquantizedTensor(Tensor): + def __init__(self, ndarray: NDArray) -> None: + assert isinstance(ndarray, np.ndarray) + self.ndarray = ndarray + self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] + + def astype(self, data_type: DataType) -> Tensor: + dtype = DATA_TYPE_TO_NUMPY[data_type] + return UnquantizedTensor(self.ndarray.astype(dtype)) + + def to_ggml(self) -> 'UnquantizedTensor': + return self + + def permute(self, n_head: int) -> 'UnquantizedTensor': + return UnquantizedTensor(permute(self.ndarray, n_head)) + + +def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: + tensor = lazy_tensor.load() + assert isinstance(tensor, UnquantizedTensor) + + # double-check: + actual_shape = list(tensor.ndarray.shape) + assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) + if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: + if convert: + tensor.ndarray = tensor.ndarray.astype(expected_dtype) + else: + raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') + + return tensor.ndarray + + +class GGMLQuantizedTensor(Tensor): + data_type: QuantizedDataType + + def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None: + rows, columns = shape + assert data_type in (DT_Q4_1, DT_Q4_0) # for now + assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this + assert columns % data_type.groupsize == 0 + words_in_block = 6 if data_type == DT_Q4_1 else 5 + self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block)) + self.shape = shape[:] + self.data_type = data_type + + def astype(self, data_type: DataType) -> Tensor: + if data_type == self.data_type: + return self + scales = self.ndarray[:, :, 0].view(np.float32) + if self.data_type.have_addends: + addends = self.ndarray[:, :, 1].view(np.float32) + else: + addends = None + qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8]) + + dq = dequantize_q4(qweights, scales, addends, g_idx=None) + return UnquantizedTensor(dq).astype(data_type) + + def to_ggml(self) -> 'GGMLQuantizedTensor': + return self + + def permute(self, n_head: int) -> 'GGMLQuantizedTensor': + return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type) + + +GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor] + + +class DeferredPermutedTensor(Tensor): + def __init__(self, base: Tensor, n_head: int) -> None: + self.base = base + self.n_head = n_head + self.data_type = self.base.data_type + + def astype(self, data_type: DataType) -> Tensor: + return self.base.astype(data_type).permute(self.n_head) + + def to_ggml(self) -> GGMLCompatibleTensor: + return self.base.to_ggml().permute(self.n_head) + + def permute(self, n_head: int) -> Tensor: + raise Exception("shouldn't permute twice") + + +class GPTQForLLaMaQuantizedTensor(Tensor): + def __init__(self, model: 'LazyModel', namebase: str) -> None: + qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32) + scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True) + + bias = model.get(f"{namebase}.bias") + if bias is not None: + # Q4_1 does not support bias; good thing the bias is always all zeros. + assert not np.any(load_unquantized(bias)) + + if f"{namebase}.zeros" in model: + zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32) + else: + qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32) + assert qzeros.dtype == np.int32 + zeros = dequantize_q4(qzeros, scales, scales, g_idx=None) + assert zeros.dtype == np.float32 + + assert zeros.shape == scales.shape + + # Output is transposed compared to the input, and addends have their sign flipped. + # Scales and zeros similarly must be transposed but only for newer + # versions of GPTQ-for-LLaMa; the older versions can be identified by + # having shape (n_embd, 1). + qweight = qweight.T + if scales.shape[1] != 1: + scales = scales.T + zeros = zeros.T + + # Output also has signs flipped for the addends. + self.qweight = qweight + self.scales = scales + self.addends = -zeros + + self.g_idx: Optional[NDArray] + if f"{namebase}.g_idx" in model: + self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32) + assert self.g_idx.shape == (qweight.shape[1] * 8,) + else: + self.g_idx = None + + self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8] + self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True, + have_g_idx=(self.g_idx is not None)) + + def inspect(self, row: int, col: int) -> None: + '''For debugging.''' + qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf + if self.g_idx is not None: + group = self.g_idx[col] + else: + group = int(col // self.groupsize()) + scale = self.scales[row, group] + addend = self.addends[row, group] + with np.printoptions(precision=None, suppress=True): + print(f'scale:{scale} addend:{addend} qweight:{qweight}') + print('possible values:', np.arange(16) * scale + addend) + print('actual value:', qweight * scale + addend) + + def astype(self, data_type: DataType) -> Tensor: + if isinstance(data_type, QuantizedDataType): + assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False + return self.regroup(data_type.groupsize) + + dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx) + return UnquantizedTensor(dequantized).astype(data_type) + + def groupsize(self) -> int: + assert self.addends.shape == self.scales.shape + assert self.shape[1] % self.scales.shape[1] == 0 + return self.shape[1] // self.scales.shape[1] + + def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor': + # Old versions of GPTQ-for-LLaMa shared scales and addends between all the + # columns in a row. Newer versions share them between every set of N + # columns in a row, where N is the `groupsize` parameter, usually 128. The + # output format shares them between every set of 32 columns. To handle + # this, duplicate scales and addends for every smaller group. + # (In the above, 'row' and 'column' are in the sense of the output.) + assert self.g_idx is None + old_groupsize = self.groupsize() + assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize + ret = copy.copy(self) + ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1) + ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1) + ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False) + return ret + + def permute(self, n_head: int) -> Tensor: + return DeferredPermutedTensor(self, n_head) + + def to_ggml(self) -> GGMLQuantizedTensor: + # The output format looks like this: + # For each row: + # For each group of 32 columns: + # - addend (float32, 4 bytes) + # - scale (float32, 4 bytes) + # - weights (int4 * 32, 16 bytes) + + if self.groupsize() != 32: + raise Exception("should have been regrouped before converting to ggml") + + # Since the output format is mixed between integers and floats, we have + # to hackily view the floats as int32s just so numpy will let us + # concatenate them. + addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis] + scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis] + + # Split into groups of 4 columns (i.e. 32 columns of quantized data): + grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4]) + + # And concatenate: + grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no') + + return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1) + + +@dataclass +class LazyTensor: + _load: Callable[[], Tensor] + shape: List[int] + data_type: DataType + description: str + + def load(self) -> Tensor: + ret = self._load() + assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) + return ret + + def astype(self, data_type: DataType) -> 'LazyTensor': + self.validate_conversion_to(data_type) + + def load() -> Tensor: + return self.load().astype(data_type) + return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') + + def validate_conversion_to(self, data_type: DataType) -> None: + if data_type == self.data_type: + return + if isinstance(data_type, QuantizedDataType): + if not isinstance(self.data_type, QuantizedDataType): + raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") + if self.data_type.have_g_idx: + sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), which is not yet natively supported by GGML. For now you can still convert this model by passing `--outtype f16` to dequantize, but that will result in a much larger output file for no quality benefit.\n") + sys.exit(1) + assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends + + +LazyModel = Dict[str, LazyTensor] + + +@dataclass +class ModelPlus: + model: LazyModel + paths: List[Path] # Where this was read from. + format: Literal['ggml', 'torch', 'safetensors'] + vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab. + + +def merge_sharded(models: List[LazyModel]) -> LazyModel: + # Original LLaMA models have each file contain one part of each tensor. + # Use a dict instead of a set to preserve order. + names = {name: None for model in models for name in model} + + def convert(name: str) -> LazyTensor: + lazy_tensors: List[LazyTensor] = [model[name] for model in models] + if len(lazy_tensors) == 1: + # only one file; don't go through this procedure since there might + # be quantized tensors + return lazy_tensors[0] + if len(lazy_tensors[0].shape) == 1: + # the tensor is just duplicated in every file + return lazy_tensors[0] + if name.startswith('tok_embeddings.') or \ + name.endswith('.attention.wo.weight') or \ + name.endswith('.feed_forward.w2.weight'): + # split by columns + axis = 1 + else: + # split by rows + axis = 0 + concatenated_shape = list(lazy_tensors[0].shape) + concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) + + def load() -> UnquantizedTensor: + ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] + concatenated: NDArray = np.concatenate(ndarrays, axis=axis) + return UnquantizedTensor(concatenated) + description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' + return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) + return {name: convert(name) for name in names} + + +def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: + formats = set(mp.format for mp in models_plus) + assert len(formats) == 1, "different formats?" + format = formats.pop() + paths = [path for mp in models_plus for path in mp.paths] + # Use the first non-None vocab, if any. + try: + vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) + except StopIteration: + vocab = None + + if any("model.embed_tokens.weight" in mp.model for mp in models_plus): + # Transformers models put different tensors in different files, but + # don't split indivdual tensors between files. + model: LazyModel = {} + for mp in models_plus: + model.update(mp.model) + else: + model = merge_sharded([mp.model for mp in models_plus]) + + return ModelPlus(model, paths, format, vocab) + + +def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: + def load() -> Tensor: + return lazy_tensor.load().permute(n_head) + return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) + + +def convert_transformers_to_orig(model: LazyModel) -> LazyModel: + out: LazyModel = {} + out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] + out["norm.weight"] = model["model.norm.weight"] + out["output.weight"] = model["lm_head.weight"] + + n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 + for i in itertools.count(): + if f"model.layers.{i}.self_attn.q_proj.weight" not in model: + break + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) + out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] + out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] + + out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] + out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] + out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] + + out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] + out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"] + return out + + +def handle_quantization(model: LazyModel) -> LazyModel: + '''Convert a model with entries for 'foo.qweight', 'foo.scales', etc. + (which resolve to UnquantizedTensors with the raw data) to one with entries + for 'foo.weight' (which resolve to QuantizedTensors). + ''' + def convert(name: str) -> Tuple[str, LazyTensor]: + if name.endswith(".qweight"): + namebase = name.rsplit('.', 1)[0] + orig_name = namebase + ".weight" + + lazy_tensor = model[name] + assert len(lazy_tensor.shape) == 2 + real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8] + + # Calculate type. This replicates the logic in + # GPTQForLLaMaQuantizedTensor (which is executed when the modelis + # actually loaded). + lazy_scales = model[f"{namebase}.scales"] + scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0] + assert real_shape[1] % scales_width == 0 + groupsize = real_shape[1] // scales_width + have_g_idx = f"{namebase}.g_idx" in model + data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx) + + def load() -> Tensor: + return GPTQForLLaMaQuantizedTensor(model, namebase) + + return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]')) + else: + return (name, model[name]) + return dict(convert(name) for name in model) + +# Functionality that simulates `torch.load` but where individual tensors are +# only loaded into memory on demand, not all at once. +# PyTorch can't do this natively as of time of writing: +# - https://github.com/pytorch/pytorch/issues/64327 +# This allows us to de-shard without multiplying RAM usage, and also +# conveniently drops the PyTorch dependency (though we still need numpy). + + +@dataclass +class LazyStorageKind: + data_type: DataType + + +@dataclass +class LazyStorage: + load: Callable[[int, int], NDArray] + kind: LazyStorageKind + description: str + + +class LazyUnpickler(pickle.Unpickler): + def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): + super().__init__(fp) + self.data_base_path = data_base_path + self.zip_file = zip_file + + def persistent_load(self, pid: Any) -> Any: + assert pid[0] == 'storage' + assert isinstance(pid[1], LazyStorageKind) + data_type = pid[1].data_type + filename_stem = pid[2] + filename = self.data_base_path + '/' + filename_stem + info = self.zip_file.getinfo(filename) + + def load(offset: int, elm_count: int) -> NDArray: + dtype = DATA_TYPE_TO_NUMPY.get(data_type) + if dtype is None: + raise Exception("tensor stored in unsupported format") + fp = self.zip_file.open(info) + fp.seek(offset * dtype.itemsize) + size = elm_count * dtype.itemsize + data = fp.read(size) + assert len(data) == size + return np.frombuffer(data, dtype) + description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' + return LazyStorage(load=load, kind=pid[1], description=description) + + def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] + requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: + assert isinstance(storage, LazyStorage) + + def load() -> UnquantizedTensor: + elm_count = stride[0] * size[0] + return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) + description = f'pickled storage_offset={storage_offset} in {storage.description}' + return LazyTensor(load, list(size), storage.kind.data_type, description) + + CLASSES: Dict[Any, Any] = { + ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, + ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), + ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), + ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), + ('torch', 'IntStorage'): LazyStorageKind(DT_I32), + } + + def find_class(self, module: str, name: str) -> Any: + if not module.startswith('torch'): + return super().find_class(module, name) + return self.CLASSES[(module, name)] + + +def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: + zf = zipfile.ZipFile(outer_fp) + pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] + assert len(pickle_paths) == 1, pickle_paths + pickle_fp = zf.open(pickle_paths[0], 'r') + unpickler = LazyUnpickler(pickle_fp, + data_base_path=pickle_paths[0][:-4], + zip_file=zf) + model = unpickler.load() + as_dict = dict(model.items()) + return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) + + +SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { + 'F16': DT_F16, + 'F32': DT_F32, + 'I32': DT_I32, +} + + +def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: + header_size, = struct.unpack(' LazyTensor: + data_type = SAFETENSORS_DATA_TYPES[info['dtype']] + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + shape: List[int] = info['shape'] + begin, end = info['data_offsets'] + assert 0 <= begin <= end <= len(byte_buf) + assert end - begin == math.prod(shape) * numpy_dtype.itemsize + buf = byte_buf[begin:end] + + def load() -> UnquantizedTensor: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'safetensors begin={begin} end={end} type={data_type} path={path}' + return LazyTensor(load, shape, data_type, description) + model = {name: convert(info) for (name, info) in header.items()} + return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) + + +def must_read(fp: IO[bytes], length: int) -> bytes: + ret = fp.read(length) + if len(ret) < length: + raise Exception("unexpectedly reached end of file") + return ret + + +def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus: + magic = must_read(fp, 4)[::-1] + if magic in (b'ggmf', b'ggjt'): + version, = struct.unpack("i", must_read(fp, 4)) + assert version == 1 + else: + assert magic == b'ggml' + version = None + n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28)) + + tokens: List[Tuple[bytes, float]] = [] + for i in range(n_vocab): + if i == 32000: + # HACK: GPT4All messed with the format without changing the magic + # number. Specifically, they changed the vocab section to contain + # `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the + # extra pad token). Try to detect if we're reading a file like + # this. + orig_pos = fp.tell() + fp.seek(20, io.SEEK_CUR) + is_gpt4all = fp.read(21) == b'tok_embeddings.weight' + fp.seek(orig_pos) + if is_gpt4all: + break + + length, = struct.unpack("i", must_read(fp, 4)) + text = must_read(fp, length) + if magic != b'ggml': + score, = struct.unpack("f", must_read(fp, 4)) + tokens.append((text, score)) + vocab = GGMLVocab(tokens) if magic != b'ggml' else None + + model: LazyModel = {} + # Use mmap for the actual data to avoid race conditions with the file offset. + off = fp.raw.tell() + mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) + fp.raw.seek(off) # needed on Windows + + def read_tensor() -> None: # this is a function so that variables captured in `load` don't change + shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) + assert 0 <= shape_len <= 3 + shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len))) + shape = shape[::-1] + name = must_read(fp, name_len).decode('utf-8') + data_type = FTYPE_TO_DATA_TYPE[ftype] + + if magic == b'ggjt': + fp.seek((fp.tell() + 31) & -32) + + if data_type == DT_Q4_1: + # See GPTQForLLaMaQuantizedTensor.ggml_ndarray() + size = 24 * (shape[1] // 32) * shape[0] + elif data_type == DT_Q4_0: + size = 20 * (shape[1] // 32) * shape[0] + else: + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + elm_count = math.prod(shape) + size = elm_count * numpy_dtype.itemsize + offset = fp.tell() + buf = mapped[offset:offset+size] + fp.seek(size, io.SEEK_CUR) + + def load() -> Tensor: + if isinstance(data_type, QuantizedDataType): + ndarray = np.frombuffer(buf, dtype=np.uint32) + return GGMLQuantizedTensor(ndarray, shape, data_type) + else: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'ggml offset={offset} type={data_type} path={path}' + model[name] = LazyTensor(load, shape, data_type, description) + + while fp.read(1) != b'': + fp.seek(-1, io.SEEK_CUR) + read_tensor() + + return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab) + + +@functools.lru_cache(maxsize=None) +def lazy_load_file(path: Path) -> ModelPlus: + fp = open(path, 'rb') + first8 = fp.read(8) + fp.seek(0) + if first8[:2] == b'PK': + # A zip file, i.e. PyTorch format + return lazy_load_torch_file(fp, path) + elif first8[2:4] == b'gg': + # GGML format + return lazy_load_ggml_file(fp, path) + elif struct.unpack(' Iterable[Out]: + '''Parallel map, but with backpressure. If the caller doesn't call `next` + fast enough, this will stop calling `func` at some point rather than + letting results pile up in memory. Specifically, there is a max of one + output value buffered per thread.''' + with concurrent.futures.ThreadPoolExecutor() as executor: + futures: List[concurrent.futures.Future[Out]] = [] + items_rev = list(iterable)[::-1] + for i in range(min(concurrency, len(items_rev))): + futures.append(executor.submit(func, items_rev.pop())) + while futures: + result = futures.pop(0).result() + if items_rev: + futures.append(executor.submit(func, items_rev.pop())) + yield result + + +def check_vocab_size(params: Params, vocab: Vocab) -> None: + if params.n_vocab != vocab.vocab_size: + # GGMLVocab comes from the same file as the model so shouldn't mismatch: + assert isinstance(vocab, SentencePieceVocab) + if params.n_vocab == vocab.vocab_size_base: + print("Ignoring added_tokens.json since model matches vocab size without it.") + vocab.added_tokens_list = [] + vocab.vocab_size = vocab.vocab_size_base + return + msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" + if vocab.fname_added_tokens is not None: + msg += f" combined with {vocab.fname_added_tokens}" + msg += f" has {vocab.vocab_size})." + if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: + msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." + raise Exception(msg) + + +class OutputFile: + def __init__(self, fname_out: Path) -> None: + self.fout = open(fname_out, "wb") + + def write_file_header(self, params: Params) -> None: + self.fout.write(b"ggjt"[::-1]) # magic + values = [ + 1, # file version + params.n_vocab, + params.n_embd, + params.n_mult, + params.n_head, + params.n_layer, + params.n_embd // params.n_head, # rot (obsolete) + params.file_type.value, + ] + self.fout.write(struct.pack("i" * len(values), *values)) + + def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: + sname = name.encode('utf-8') + self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) + self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) + self.fout.write(sname) + self.fout.seek((self.fout.tell() + 31) & -32) + + def write_vocab(self, vocab: Vocab) -> None: + for text, score in vocab.all_tokens(): + self.fout.write(struct.pack("i", len(text))) + self.fout.write(text) + self.fout.write(struct.pack("f", score)) + + @staticmethod + def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: + of = OutputFile(fname_out) + params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, + n_head=1, n_layer=0, file_type=GGMLFileType.AllF32) + of = OutputFile(fname_out) + of.write_file_header(params) + of.write_vocab(vocab) + of.fout.close() + + @staticmethod + def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: + check_vocab_size(params, vocab) + of = OutputFile(fname_out) + of.write_file_header(params) + print("Writing vocab...") + of.write_vocab(vocab) + + def do_item(item: Tuple[str, LazyTensor]) -> NDArray: + name, lazy_tensor = item + return lazy_tensor.load().to_ggml().ndarray + + ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) + for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): + size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) + padi = len(str(len(model))) + print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") + of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) + ndarray.tofile(of.fout) + of.fout.close() + + +def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: + wq_type = model["layers.0.attention.wq.weight"].data_type + if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): + return GGMLFileType.AllF32 + if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): + return GGMLFileType.MostlyF16 + if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and + wq_type.have_addends): + if isinstance(model["output.weight"].data_type, QuantizedDataType): + return GGMLFileType.MostlyQ4_1 + else: + return GGMLFileType.PerLayerIsQ4_1 + if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)): + return GGMLFileType.MostlyQ4_0 + name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} + raise Exception(f"Unexpected combination of types: {name_to_type}") + + +def do_necessary_conversions(model: LazyModel) -> LazyModel: + model = handle_quantization(model) + + if "lm_head.weight" in model: + model = convert_transformers_to_orig(model) + model = filter_and_sort_tensors(model) + + return model + + +def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: + return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) + for (name, tensor) in model.items()} + + +def nth_multifile_path(path: Path, n: int) -> Optional[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the nth path in the model. + ''' + # Support the following patterns: + patterns: List[Tuple[str, str]] = [ + # - x.00.pth, x.01.pth, etc. + (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), + # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. + (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), + # x.bin, x.bin.1, etc. + (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') + ] + for regex, replacement in patterns: + if re.search(regex, path.name): + new_path = path.with_name(re.sub(regex, replacement, path.name)) + if new_path.exists(): + return new_path + return None + + +def find_multifile_paths(path: Path) -> List[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the whole list of paths in the model. + ''' + ret: List[Path] = [] + for i in itertools.count(): + nth_path = nth_multifile_path(path, i) + if nth_path is None: + break + ret.append(nth_path) + if not ret: + # No matches. This should only happen if the file was named, e.g., + # foo.0, and there was no file named foo. Oh well, try to process it + # as a single file. + return [path] + return ret + + +def load_some_model(path: Path) -> ModelPlus: + '''Load a model of any supported format.''' + # Be extra-friendly and accept either a file or a directory: + if path.is_dir(): + globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"] + files = [file for glob in globs for file in path.glob(glob)] + if not files: + # Try GGML too, but with lower priority, since if both a non-GGML + # model and a GGML model exist in the same directory, we assume the + # latter was converted from the former. + files = list(path.glob("ggml-model*.bin*")) + if not files: + raise Exception(f"Can't find model in directory {path}") + if len(files) > 1: + raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") + path = files[0] + + paths = find_multifile_paths(path) + models_plus: List[ModelPlus] = [] + for path in paths: + print(f"Loading model file {path}") + models_plus.append(lazy_load_file(path)) + + model_plus = merge_multifile_models(models_plus) + return model_plus + + +def filter_and_sort_tensors(model: LazyModel) -> LazyModel: + return {name: model[name] for name in TENSORS_LIST if name in model} + + +def load_vocab(path: Path) -> SentencePieceVocab: + # Be extra-friendly and accept either a file or a directory. Also, if it's + # a directory, it might be the model directory, and tokenizer.model might + # be in the parent of that. + if path.is_dir(): + path2 = path / "tokenizer.model" + # Use `.parent` instead of /.. to handle the symlink case better. + path3 = path.parent / "tokenizer.model" + if path2.exists(): + path = path2 + elif path3.exists(): + path = path3 + else: + raise FileNotFoundError(f"Could not find tokenizer.model in {path} or its parent; if it's in another directory, pass the directory as --vocab-dir") + added_tokens_path = path.parent / "added_tokens.json" + print(f"Loading vocab file {path}") + return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) + + +def default_outfile(model_paths: List[Path], params: Params) -> Path: + namestr = { + GGMLFileType.AllF32: "f32", + GGMLFileType.MostlyF16: "f16", + GGMLFileType.MostlyQ4_1: "q4_1", + GGMLFileType.PerLayerIsQ4_1: "q4_1", + }[params.file_type] + ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" + if ret in model_paths: + sys.stderr.write(f"Error: Default output path ({ret}) would overwrite the input. Please explicitly specify a path using --outfile.\n") + sys.exit(1) + return ret + + +def do_dump_model(model_plus: ModelPlus) -> None: + print(f"model_plus.paths = {model_plus.paths!r}") + print(f"model_plus.format = {model_plus.format!r}") + print(f"model_plus.vocab = {model_plus.vocab!r}") + for name, lazy_tensor in model_plus.model.items(): + print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") + + +def main(args_in: Optional[List[str]] = None) -> None: + parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") + parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outtype", choices=["f32", "f16", "q4_1"], help="output format (default: based on input)") + parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") + args = parser.parse_args(args_in) + + vocab: Vocab + if args.dump_single: + model_plus = lazy_load_file(args.model) + do_dump_model(model_plus) + elif args.vocab_only: + vocab = load_vocab(args.vocab_dir or args.model) + assert args.outfile, "need --outfile if using --vocab-only" + outfile = args.outfile + OutputFile.write_vocab_only(outfile, vocab) + print(f"Wrote {outfile}") + else: + model_plus = load_some_model(args.model) + if args.dump: + do_dump_model(model_plus) + return + if model_plus.vocab is not None and args.vocab_dir is None: + vocab = model_plus.vocab + else: + vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent + vocab = load_vocab(vocab_dir) + model = model_plus.model + model = do_necessary_conversions(model) + output_type = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, output_type) + params = Params.guessed(model, output_type) + outfile = args.outfile or default_outfile(model_plus.paths, params) + OutputFile.write_all(outfile, params, model, vocab) + print(f"Wrote {outfile}") + + +if __name__ == '__main__': + main() diff --git a/examples/Miku.sh b/examples/Miku.sh index 352478a15..c4cbf80f2 100755 --- a/examples/Miku.sh +++ b/examples/Miku.sh @@ -19,15 +19,15 @@ GEN_OPTIONS=(--batch_size 1024 --top_p 0.5) if [ -n "$N_THREAD" ]; then - GEN_OPTIONS+=(--threads "$N_THREAD") + GEN_OPTIONS+=(--threads "$N_THREAD") fi ./main "${GEN_OPTIONS[@]}" \ - --model "$MODEL" \ - --n_predict "$N_PREDICTS" \ - --color --interactive \ - --reverse-prompt "${USER_NAME}:" \ - --prompt " + --model "$MODEL" \ + --n_predict "$N_PREDICTS" \ + --color --interactive \ + --reverse-prompt "${USER_NAME}:" \ + --prompt " This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the users computer. ${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next. ${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct she will ask the user for help. diff --git a/examples/alpaca.sh b/examples/alpaca.sh index 4c9aa5077..8d6261730 100755 --- a/examples/alpaca.sh +++ b/examples/alpaca.sh @@ -7,4 +7,4 @@ cd `dirname $0` cd .. -./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 +./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt --ctx_size 2048 -n -1 -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 diff --git a/examples/benchmark/benchmark-q4_0-matmult.c b/examples/benchmark/benchmark-q4_0-matmult.c new file mode 100644 index 000000000..84b06766c --- /dev/null +++ b/examples/benchmark/benchmark-q4_0-matmult.c @@ -0,0 +1,270 @@ +/* + License: MIT License + + Changelog: + - 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel) + +*/ + +#include +#include "ggml.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +float tensor_sum_elements(struct ggml_tensor * tensor) { + float sum = 0; + if (tensor->type==GGML_TYPE_F32) { + for (int j = 0; j < tensor->ne[1]; j++) { + for (int k = 0; k < tensor->ne[0]; k++) { + sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; + } + } + } + return sum; +} + + +/* + These are mapping to unknown + GGML_TYPE_I8, + GGML_TYPE_I16, + GGML_TYPE_I32, + GGML_TYPE_COUNT, +*/ + +#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" + +#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ + TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ + TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ + { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } + +struct benchmark_params_struct { + int32_t n_threads = 1; + int32_t n_iterations = 10; +}; + +void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); + fprintf(stderr, "\n"); +} + +int main(int argc, char ** argv) { + + + struct benchmark_params_struct benchmark_params; + + bool invalid_param = false; + std::string arg; + for (int i = 1; i < argc; i++) { + arg = argv[i]; + + if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + benchmark_params.n_threads = std::stoi(argv[i]); + } else if (arg == "-i" || arg == "--iter") { + if (++i >= argc) { + invalid_param = true; + break; + } + benchmark_params.n_iterations = std::stoi(argv[i]); + } else if (arg == "-h" || arg == "--help") { + print_usage(argc, argv, benchmark_params); + exit(0); + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + print_usage(argc, argv, benchmark_params); + exit(1); + } + } + + + // create the ggml context + printf("Starting Test\n"); + + + + struct ggml_context * ctx; + //const int sizex = 4096; + //const int sizey = 11008; + +#undef VERBOSE_DEBUGGING +#ifndef VERBOSE_DEBUGGING + const int sizey = 4096; + const int sizex = 11008; + const int sizez = 128; +#else + /* Working - let's increase size */ + const int sizey = 1; + const int sizex = (8*32); + const int sizez = 1; + + /*const int sizey = 1; + const int sizex = 3*(8*32); + const int sizez = 1;*/ +#endif + + //printf("Memsize required = %i\n", sizex*sizex); + ggml_type wtype = GGML_TYPE_F32; + + size_t ctx_size = 0; + ctx_size += sizex*sizey*ggml_type_sizef(wtype); + ctx_size += sizex*sizey*ggml_type_sizef(wtype); + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); + ctx_size += sizex*sizeof(float); + ctx_size += 1024*1024*100; + + printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024)); + + struct ggml_init_params params = { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /* no_alloc =*/ 0 + }; + + ctx = ggml_init(params); + if (!ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + + + printf("Creating new tensors\n"); + // printf("Creating new tensor m1\n"); + struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); + ggml_set_f32(m11, 1.0f); + + // printf("Creating new tensor m1\n"); + struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); + ggml_set_f32(m12, 1.5f); + + // printf("Creating new tensor m2\n"); + struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); + ggml_set_f32(m2, 2.0f); + + printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); + // printf("Creating new tensor m11xm2\n"); + struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); + + // printf("Creating compute graph\n"); + struct ggml_cgraph gf = ggml_build_forward(m11xm2); + + gf.n_threads=benchmark_params.n_threads; + printf("cgraph->n_threads=%i\n",gf.n_threads); + + TENSOR_DUMP(m11); + TENSOR_DUMP(m2); + + ggml_graph_compute(ctx, &gf); + + TENSOR_DUMP(gf.nodes[0]); + + printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); + + int32_t nelements = sizex*sizey; + int32_t ne[2] = { sizex, sizey }; + + std::vector hist_cur(1 << 4, 0); + + // Set up a the benchmark matrices + // printf("Creating new tensor q11 & Running quantize\n"); + struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); + ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); + + // Set up a the compute graph + // printf("Creating new tensor q31\n"); + struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); + + // printf("Creating compute graph\n"); + struct ggml_cgraph gf31 = ggml_build_forward(q31); + gf31.n_threads=benchmark_params.n_threads; + + // Set up a second graph computation to make sure we override the CPU cache lines + // printf("Creating new tensor q12 & Running quantize\n"); + struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); + ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); + + // printf("Creating new tensor q32\n"); + struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); + + //printf("Creating compute graph\n"); + struct ggml_cgraph gf32 = ggml_build_forward(q32); + gf32.n_threads=benchmark_params.n_threads; + printf("cgraph->n_threads=%i\n",gf31.n_threads); + + const int dimx = sizex; + const int dimy = sizey; + const int dimz = sizez; + long long int flops_per_dot_product = dimy + dimy; + long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; + printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); + + + // Let's use the F32 result from above as a reference for the q4_0 multiplication + float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); + + + printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n"); + printf("==============================================================================================\n"); + + for (int i=0;i allowed_delta) { + printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", + sum_of_F32_reference, + sum_of_Q4_result, + delta, + allowed_delta + ); + exit(0); + } + + // Running a different graph computation to make sure we override the CPU cache lines + ggml_graph_compute(ctx, &gf32); + + } + +} diff --git a/examples/common.cpp b/examples/common.cpp index b7d381735..f007beba1 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -7,12 +7,6 @@ #include #include -#if defined(_MSC_VER) || defined(__MINGW32__) -#include // using malloc.h with MSC/MINGW -#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) -#include -#endif - #if defined (_WIN32) #include #include @@ -22,9 +16,9 @@ extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHand extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode); extern "C" __declspec(dllimport) int __stdcall SetConsoleCP(unsigned int wCodePageID); extern "C" __declspec(dllimport) int __stdcall SetConsoleOutputCP(unsigned int wCodePageID); -extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags, - const wchar_t * lpWideCharStr, int cchWideChar, - char * lpMultiByteStr, int cbMultiByte, +extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags, + const wchar_t * lpWideCharStr, int cchWideChar, + char * lpMultiByteStr, int cbMultiByte, const char * lpDefaultChar, bool * lpUsedDefaultChar); #define CP_UTF8 65001 #endif @@ -342,9 +336,9 @@ void win32_console_init(bool enable_color) { // Convert a wide Unicode string to an UTF8 string void win32_utf8_encode(const std::wstring & wstr, std::string & str) { - int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); - std::string strTo(size_needed, 0); - WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); - str = strTo; + int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); + std::string strTo(size_needed, 0); + WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); + str = strTo; } #endif diff --git a/examples/embedding/README.md b/examples/embedding/README.md index 21d8be65f..fe8f5dcc6 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -1,3 +1,3 @@ -# embedding - -TODO +# embedding + +TODO diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 03cd64439..c35e69530 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -1,6 +1,8 @@ #include "common.h" #include "llama.h" +#include + int main(int argc, char ** argv) { gpt_params params; params.model = "models/llama-7B/ggml-model.bin"; diff --git a/examples/gpt4all.sh b/examples/gpt4all.sh index d974f95a9..5fd739e55 100755 --- a/examples/gpt4all.sh +++ b/examples/gpt4all.sh @@ -10,6 +10,6 @@ cd .. ./main --color --instruct --threads 4 \ --model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \ --file ./prompts/alpaca.txt \ - --batch_size 8 --ctx_size 2048 \ + --batch_size 8 --ctx_size 2048 -n -1 \ --repeat_last_n 64 --repeat_penalty 1.3 \ --n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95 diff --git a/examples/main/README.md b/examples/main/README.md index 4701aa558..f09e7ba97 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -1,3 +1,3 @@ -# main - -TODO +# main + +TODO diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 13a35a787..eed1043bd 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -1,3 +1,8 @@ +// Defines sigaction on msys: +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + #include "common.h" #include "llama.h" @@ -6,6 +11,7 @@ #include #include #include +#include #include #include #include @@ -163,7 +169,7 @@ int main(int argc, char ** argv) { } // enable interactive mode if reverse prompt or interactive start is specified - if (params.antiprompt.size() != 0 || params.interactive_start) { + if (params.antiprompt.size() != 0 || params.interactive_start) { params.interactive = true; } diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index a932275c2..eacfb17c6 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -1,3 +1,3 @@ -# perplexity - -TODO +# perplexity + +TODO diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 69a5aa7f3..005a4fe72 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -2,6 +2,7 @@ #include "llama.h" #include +#include std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); @@ -27,20 +28,28 @@ void perplexity(llama_context * ctx, const gpt_params & params) { int count = 0; int seq_count = tokens.size() / params.n_ctx; + int n_vocab = llama_n_vocab(ctx); double nll = 0.0; - - fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count); + fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch); for (int i = 0; i < seq_count; ++i) { int start = i * params.n_ctx; - int end = start + params.n_ctx - 1; // TODO: this is not optimal, e.g. it makes the batch 511 instead of 512 - // it is better to always be power of 2 for better performance - std::vector embd(tokens.begin() + start, tokens.begin() + end); + int end = start + params.n_ctx; + + std::vector logits; + int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch; auto start_t = std::chrono::high_resolution_clock::now(); - if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads, params.n_ethreads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return; + + for (int j = 0; j < num_batches; ++j) { + int batch_start = start + j * params.n_batch; + int batch_size = std::min(end - batch_start, params.n_batch); + if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads, params.n_ethreads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + auto batch_logits = llama_get_logits(ctx); + logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } auto end_t = std::chrono::high_resolution_clock::now(); if (i == 0) { @@ -59,15 +68,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) { // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. - - auto logits = llama_get_logits(ctx); - for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) { + for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. - int n_vocab = llama_n_vocab(ctx); std::vector tok_logits( - logits + j * n_vocab, - logits + (j + 1) * n_vocab); - const float prob = softmax(tok_logits)[tokens[start + j + 1]]; + logits.begin() + j * n_vocab, + logits.begin() + (j + 1) * n_vocab); + float prob = softmax(tok_logits)[tokens[start + j + 1]]; nll += -std::log(prob); ++count; } @@ -82,11 +88,13 @@ int main(int argc, char ** argv) { gpt_params params; params.model = "models/llama-7B/ggml-model.bin"; + params.n_batch = 512; if (gpt_params_parse(argc, argv, params) == false) { return 1; } params.perplexity = true; + params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 203bfe8cc..050300931 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -1,6 +1,7 @@ #include "ggml.h" + +#define LLAMA_API_INTERNAL #include "llama.h" -#include "llama_internal.h" #include #include @@ -15,9 +16,6 @@ #include #include -static const char * type_strs[] = { "q4_0", "q4_1", "i8", "i16", "i32", "f16", "f32" }; -static_assert(sizeof(type_strs) == GGML_TYPE_COUNT * sizeof(char *), "Incomplete type list"); - struct quantize_stats_params { std::string model = "models/7B/ggml-model-f16.bin"; bool verbose = false; @@ -223,7 +221,7 @@ int main(int argc, char ** argv) { break; } int j; - for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], type_strs[j]) != 0; j++) { + for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) i)) != 0; j++) { // find match } if (j < GGML_TYPE_COUNT) { @@ -278,7 +276,7 @@ int main(int argc, char ** argv) { continue; } if (params.verbose) { - printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), type_strs[kv_tensor.second->type], ggml_nelements(kv_tensor.second)); + printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second)); } if (kv_tensor.second->type == GGML_TYPE_F16) { is_f16 = true; @@ -303,13 +301,14 @@ int main(int argc, char ** argv) { // loop throught quantization types for (int i = 0; i < GGML_TYPE_COUNT; i++) { + const ggml_type type = (ggml_type) i; if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { continue; } quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (params.verbose) { - printf("testing %s ...\n", type_strs[i]); + printf("testing %s ...\n", ggml_type_name(type)); } error_stats global_stats {}; @@ -321,7 +320,7 @@ int main(int argc, char ** argv) { if (params.verbose) { printf(" %s ...\n", kv_tensor.first.c_str()); } - std::string layer_name { type_strs[i] }; + std::string layer_name { ggml_type_name(type) }; layer_name += "::" + kv_tensor.first; test_roundtrip_on_layer( layer_name, @@ -336,7 +335,7 @@ int main(int argc, char ** argv) { ); } - print_error_stats(type_strs[i], global_stats, params.print_histogram); + print_error_stats(ggml_type_name(type), global_stats, params.print_histogram); } } diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 680757c6b..5c9e2ad94 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -5,15 +5,15 @@ #include // usage: -// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type +// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type // int main(int argc, char ** argv) { ggml_time_init(); if (argc != 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]); - fprintf(stderr, " type = 2 - q4_0\n"); - fprintf(stderr, " type = 3 - q4_1\n"); + fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0); + fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1); return 1; } @@ -27,7 +27,7 @@ int main(int argc, char ** argv) { const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; - const int itype = atoi(argv[3]); + const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]); const int64_t t_main_start_us = ggml_time_us(); @@ -37,7 +37,7 @@ int main(int argc, char ** argv) { { const int64_t t_start_us = ggml_time_us(); - if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) { + if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } diff --git a/flake.nix b/flake.nix index cd1b6d28e..5363052b1 100644 --- a/flake.nix +++ b/flake.nix @@ -10,7 +10,6 @@ inherit system; }; llama-python = pkgs.python310.withPackages (ps: with ps; [ - torch numpy sentencepiece ]); @@ -28,10 +27,8 @@ ]; installPhase = '' mkdir -p $out/bin - mv bin/main $out/bin/llama - mv bin/quantize $out/bin/quantize - mv bin/embedding $out/bin/embedding - mv bin/perplexity $out/bin/perplexity + mv bin/* $out/bin/ + mv $out/bin/main $out/bin/llama echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml diff --git a/ggml.c b/ggml.c index ada3bbbdc..69974989c 100644 --- a/ggml.c +++ b/ggml.c @@ -1,4 +1,4 @@ -// Defines CLOCK_MONOTONIC and asprintf on Linux +// Defines CLOCK_MONOTONIC on Linux #define _GNU_SOURCE #include "ggml.h" @@ -50,6 +50,7 @@ typedef HANDLE pthread_t; typedef DWORD thread_ret_t; static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) { + (void) unused; HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); if (handle == NULL) { @@ -61,6 +62,7 @@ static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void } static int pthread_join(pthread_t thread, void* unused) { + (void) unused; return (int) WaitForSingleObject(thread, INFINITE); } @@ -112,6 +114,23 @@ typedef void* thread_ret_t; #define GGML_MEM_ALIGN 16 #endif +#if defined(_MSC_VER) || defined(__MINGW32__) +#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) +#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) +#else +inline static void* ggml_aligned_malloc(size_t size) { + void* aligned_memory = NULL; + int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size); + if (result != 0) { + // Handle allocation failure + return NULL; + } + return aligned_memory; +} +#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) +#define GGML_ALIGNED_FREE(ptr) free(ptr) +#endif + #define UNUSED(x) (void)(x) #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) @@ -226,12 +245,12 @@ static inline float fp32_from_bits(uint32_t w) { } static inline uint32_t fp32_to_bits(float f) { - union { - float as_value; - uint32_t as_bits; - } fp32; - fp32.as_value = f; - return fp32.as_bits; + union { + float as_value; + uint32_t as_bits; + } fp32; + fp32.as_value = f; + return fp32.as_bits; } static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { @@ -408,8 +427,6 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); // quantization // -#define QK 32 - // AVX routines provided by GH user Const-me // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600 #if __AVX2__ || __AVX512F__ @@ -481,37 +498,113 @@ static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) } #endif -// method 5 -// blocks of QK elements -// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors) -typedef struct { - float d; // delta - uint8_t qs[QK / 2]; // nibbles / quants -} block_q4_0; -static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding"); +#if __ARM_NEON -// method 4 -// blocks of QK elements -// represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors) +#if !defined(__aarch64__) + +inline static uint16_t vaddvq_u8(uint8x16_t v) { + return + (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) + + (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) + + (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) + + (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) + + (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) + + (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) + + (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) + + (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15); +} + +inline static int32_t vaddvq_s16(int16x8_t v) { + return + (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +} + +inline static uint32_t vaddvq_u16(uint16x8_t v) { + return + (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) + + (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) + + (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) + + (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7); +} + +inline static int32_t vaddvq_s32(int32x4_t v) { + return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); +} + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +float vminvq_f32(float32x4_t v) { + return + MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +float vmaxvq_f32(float32x4_t v) { + return + MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { + return vget_low_s8(vcombine_s8(a, b)); +} + +int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { + return vget_high_s8(vcombine_s8(a, b)); +} + +uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { + return vget_low_u8(vcombine_u8(a, b)); +} + +uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { + return vget_high_u8(vcombine_u8(a, b)); +} + +#endif +#endif + + +#define QK4_0 32 typedef struct { - float d; - float m; - uint8_t qs[QK / 2]; // nibbles / quants + float d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); + +#define QK4_1 32 +typedef struct { + float d; // delta + float m; // min + uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; -static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding"); +static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + float d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); + // reference implementation for deterministic creation of model files static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; - uint8_t pp[QK/2]; + uint8_t pp[QK4_0/2]; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max - for (int l = 0; l < QK; l++) { - const float v = x[i*QK + l]; + for (int l = 0; l < QK4_0; l++) { + const float v = x[i*QK4_0 + l]; amax = MAX(amax, fabsf(v)); } @@ -520,9 +613,9 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r y[i].d = d; - for (int l = 0; l < QK; l += 2) { - const float v0 = x[i*QK + l + 0]*id; - const float v1 = x[i*QK + l + 1]*id; + for (int l = 0; l < QK4_0; l += 2) { + const float v0 = x[i*QK4_0 + l + 0]*id; + const float v1 = x[i*QK4_0 + l + 1]*id; const uint8_t vi0 = (int8_t)roundf(v0) + 8; const uint8_t vi1 = (int8_t)roundf(v1) + 8; @@ -538,8 +631,8 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r } static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; block_q4_0 * restrict y = vy; @@ -789,19 +882,19 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int } static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; block_q4_1 * restrict y = vy; - uint8_t pp[QK/2]; + uint8_t pp[QK4_1/2]; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; - for (int l = 0; l < QK; l++) { - const float v = x[i*QK + l]; + for (int l = 0; l < QK4_1; l++) { + const float v = x[i*QK4_1 + l]; if (v < min) min = v; if (v > max) max = v; } @@ -812,9 +905,9 @@ static void quantize_row_q4_1_reference(const float * restrict x, void * restric y[i].d = d; y[i].m = min; - for (int l = 0; l < QK; l += 2) { - const float v0 = (x[i*QK + l + 0] - min)*id; - const float v1 = (x[i*QK + l + 1] - min)*id; + for (int l = 0; l < QK4_1; l += 2) { + const float v0 = (x[i*QK4_1 + l + 0] - min)*id; + const float v1 = (x[i*QK4_1 + l + 1] - min)*id; const uint8_t vi0 = roundf(v0); const uint8_t vi1 = roundf(v1); @@ -830,9 +923,9 @@ static void quantize_row_q4_1_reference(const float * restrict x, void * restric } static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); + assert(k % QK4_1 == 0); - const int nb = k / QK; + const int nb = k / QK4_1; block_q4_1 * restrict y = vy; @@ -916,7 +1009,7 @@ static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int float32x4_t minv[8]; float32x4_t maxv[8]; - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l); + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l); for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); @@ -952,9 +1045,160 @@ static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int #endif } +// reference implementation for deterministic creation of model files +static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int l = 0; l < QK8_0; l++) { + const float v = x[i*QK8_0 + l]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < QK8_0; ++l) { + const float v = x[i*QK8_0 + l]*id; + y[i].qs[l] = roundf(v); + } + } +} + +static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); + for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); + + for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); + for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); + for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + } + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_0_reference(x, y, k); +#endif +} + static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; const block_q4_0 * restrict x = vx; @@ -965,7 +1209,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 32) { + for (int l = 0; l < QK4_0; l += 32) { // Load 32x4-bit integers into 32x8-bit integers __m256i vx8 = bytesFromNibbles(pp+l/2); @@ -987,7 +1231,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in // Scale and store for (int j = 0; j < 4; j++) { const __m256 result = _mm256_mul_ps(vf[j], d_v); - _mm256_storeu_ps(y + i * QK + l + j*8, result); + _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result); } } } @@ -997,7 +1241,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 16) { + for (int l = 0; l < QK4_0; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); @@ -1036,10 +1280,10 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const float32x4_t r3 = vmulq_f32(vf_3, vd); // Store - vst1q_f32(y + i*QK + l + 0, r0); - vst1q_f32(y + i*QK + l + 4, r1); - vst1q_f32(y + i*QK + l + 8, r2); - vst1q_f32(y + i*QK + l + 12, r3); + vst1q_f32(y + i*QK4_0 + l + 0, r0); + vst1q_f32(y + i*QK4_0 + l + 4, r1); + vst1q_f32(y + i*QK4_0 + l + 8, r2); + vst1q_f32(y + i*QK4_0 + l + 12, r3); } } #else @@ -1049,7 +1293,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_0; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; @@ -1060,19 +1304,19 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1); - y[i*QK + l + 0] = v0; - y[i*QK + l + 1] = v1; + y[i*QK4_0 + l + 0] = v0; + y[i*QK4_0 + l + 1] = v1; - assert(!isnan(y[i*QK + l + 0])); - assert(!isnan(y[i*QK + l + 1])); + assert(!isnan(y[i*QK4_0 + l + 0])); + assert(!isnan(y[i*QK4_0 + l + 1])); } } #endif } static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; const block_q4_1 * restrict x = vx; @@ -1083,7 +1327,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 32) { + for (int l = 0; l < QK4_1; l += 32) { // Load 32x4-bit integers into 32x8-bit integers __m256i vx8 = bytesFromNibbles(pp+l/2); @@ -1102,7 +1346,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in // Scale, add m and store for (int j = 0; j < 4; j++) { const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m); - _mm256_storeu_ps(y + i * QK + l + j*8, result); + _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result); } } } @@ -1113,7 +1357,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 16) { + for (int l = 0; l < QK4_1; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); @@ -1144,10 +1388,10 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); // Store - vst1q_f32(y + i*QK + l + 0, r0); - vst1q_f32(y + i*QK + l + 4, r1); - vst1q_f32(y + i*QK + l + 8, r2); - vst1q_f32(y + i*QK + l + 12, r3); + vst1q_f32(y + i*QK4_1 + l + 0, r0); + vst1q_f32(y + i*QK4_1 + l + 4, r1); + vst1q_f32(y + i*QK4_1 + l + 8, r2); + vst1q_f32(y + i*QK4_1 + l + 12, r3); } } #else @@ -1157,7 +1401,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; @@ -1166,11 +1410,11 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const float v0 = vi0*d + m; const float v1 = vi1*d + m; - y[i*QK + l + 0] = v0; - y[i*QK + l + 1] = v1; + y[i*QK4_1 + l + 0] = v0; + y[i*QK4_1 + l + 1] = v1; - assert(!isnan(y[i*QK + l + 0])); - assert(!isnan(y[i*QK + l + 1])); + assert(!isnan(y[i*QK4_1 + l + 0])); + assert(!isnan(y[i*QK4_1 + l + 1])); } } #endif @@ -1208,15 +1452,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c) #define GGML_F32x4_ADD vaddq_f32 #define GGML_F32x4_MUL vmulq_f32 -#if defined(__ARM_FEATURE_QRDMX) - #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) -#else - #define GGML_F32x4_REDUCE_ONE(x) \ - (vgetq_lane_f32(x, 0) + \ - vgetq_lane_f32(x, 1) + \ - vgetq_lane_f32(x, 2) + \ - vgetq_lane_f32(x, 3)) -#endif +#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) #define GGML_F32x4_REDUCE(res, x) \ { \ for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ @@ -1740,7 +1976,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float *s = sumf; } -#if __AVX512F__ && QK == 32 +#if __AVX512F__ && QK4_0 == 32 static inline __m512 dot_q4_0_oneblock_avx512( __m512 acc, const block_q4_0 * restrict x, @@ -1808,9 +2044,9 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t } static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK; + const int nb = n / QK4_0; - assert(n % QK == 0); + assert(n % QK4_0 == 0); assert(nb % 2 == 0); const block_q4_0 * restrict x = vx; @@ -1839,55 +2075,43 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b)); const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b)); const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4)); // sub 8 const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b); - const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b); const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b); - const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b); #if defined(__ARM_FEATURE_DOTPROD) - // dot product into int16x8_t + // dot product into int32x4_t int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls); int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls); p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs); p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs); - // scalar -#if defined(__ARM_FEATURE_QRDMX) - sum0 += x0->d * y0->d * vaddvq_s32(p_0); - sum1 += x1->d * y1->d * vaddvq_s32(p_1); + sum0 += x0->d*y0->d*vaddvq_s32(p_0); + sum1 += x1->d*y1->d*vaddvq_s32(p_1); #else - sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3)); - sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3)); -#endif -#else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs)); const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs)); const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls)); const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs)); const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs)); @@ -1900,14 +2124,8 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const int16x8_t p_0 = vaddq_s16(pl_0, ph_0); const int16x8_t p_1 = vaddq_s16(pl_1, ph_1); - // scalar -#if defined(__ARM_FEATURE_QRDMX) - sum0 += x0->d * y0->d * vaddvq_s16(p_0); - sum1 += x1->d * y1->d * vaddvq_s16(p_1); -#else - sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7)); - sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7)); -#endif + sum0 += x0->d*y0->d*vaddvq_s16(p_0); + sum1 += x1->d*y1->d*vaddvq_s16(p_1); #endif } @@ -2150,18 +2368,20 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const uint8_t * restrict p0 = x[i].qs; const uint8_t * restrict p1 = y[i].qs; - for (int j = 0; j < QK/2; j++) { + int sumi = 0; + for (int j = 0; j < QK4_0/2; j++) { const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; - const float f0 = d0*((int8_t) (v0 & 0xf) - 8); - const float f1 = d0*((int8_t) (v0 >> 4) - 8); + const int i0 = (v0 & 0xf) - 8; + const int i1 = (v0 >> 4) - 8; - const float f2 = d1*((int8_t) (v1 & 0xf) - 8); - const float f3 = d1*((int8_t) (v1 >> 4) - 8); + const int i2 = (v1 & 0xf) - 8; + const int i3 = (v1 >> 4) - 8; - sumf += f0*f2 + f1*f3; + sumi += i0*i2 + i1*i3; } + sumf += d0 * d1 * sumi; } #endif @@ -2169,7 +2389,7 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest } static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK; + const int nb = n / QK4_1; const block_q4_1 * restrict x = vx; const block_q4_1 * restrict y = vy; @@ -2246,46 +2466,81 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); - sumf = _mm_cvtss_f32( res ) + acc_offset * QK; + sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1; #elif defined(__ARM_NEON) float sum00 = 0.0f; float sum01 = 0.0f; float sum10 = 0.0f; float sum11 = 0.0f; - for (int i = 0; i < nb; ++i) { + for (int i = 0; i < nb; i += 2) { const block_q4_1 * restrict x0 = &x[i + 0]; const block_q4_1 * restrict y0 = &y[i + 0]; + const block_q4_1 * restrict x1 = &x[i + 1]; + const block_q4_1 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v1_0 = vld1q_u8(y0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + const uint8x16_t v1_1 = vld1q_u8(y1->qs); - // and with 0xf + // 4-bit -> 8-bit const uint8x16_t v0_0l = vandq_u8(v0_0, m4b); const uint8x16_t v1_0l = vandq_u8(v1_0, m4b); - const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4); const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4); - // dot product into uint16x8_t + const uint8x16_t v0_1l = vandq_u8(v0_1, m4b); + const uint8x16_t v1_1l = vandq_u8(v1_1, m4b); + const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4); + const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4); + + sum00 += x0->m*y0->m; + sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h)); + sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h)); + + sum00 += x1->m*y1->m; + sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h)); + sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h)); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l); + uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l); + + p_0 = vdotq_u32(p_0, v0_0h, v1_0h); + p_1 = vdotq_u32(p_1, v0_1h, v1_1h); + + sum11 += x0->d*y0->d*vaddvq_u32(p_0); + sum11 += x1->d*y1->d*vaddvq_u32(p_1); +#else const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l)); const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l)); - const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h)); const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h)); - const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h); - const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h); + const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l)); + const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l)); + const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h)); + const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h)); - sum00 += x0->m*y0->m; - sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h)); - sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h)); - sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0)); + const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h); + const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h); + + const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h); + const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h); + + const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0); + const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1); + + sum11 += x0->d*y0->d*vaddvq_u16(p_0); + sum11 += x1->d*y1->d*vaddvq_u16(p_1); +#endif } - sumf = QK*sum00 + sum01 + sum10 + sum11; + sumf = QK4_1*sum00 + sum01 + sum10 + sum11; #else // scalar for (int i = 0; i < nb; i++) { @@ -2298,7 +2553,7 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest const uint8_t * restrict p0 = x[i].qs; const uint8_t * restrict p1 = y[i].qs; - for (int j = 0; j < QK/2; j++) { + for (int j = 0; j < QK4_1/2; j++) { const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; @@ -2316,6 +2571,209 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest *s = sumf; } +static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK8_0; + + assert(n % QK8_0 == 0); + assert(nb % 2 == 0); + + const block_q4_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + + float sumf = 0.0; + +#if defined(__ARM_NEON) + float sum0 = 0.0f; + float sum1 = 0.0f; + + for (int i = 0; i < nb; i += 2) { + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0xf); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + // interleave + const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h); + const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h); + const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h); + const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls); + int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls); + + p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs); + p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs); + + sum0 += x0->d*y0->d*vaddvq_s32(p_0); + sum1 += x1->d*y1->d*vaddvq_s32(p_1); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs)); + + const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h); + const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h); + + const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h); + const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h); + + const int16x8_t p_0 = vaddq_s16(pl_0, ph_0); + const int16x8_t p_1 = vaddq_s16(pl_1, ph_1); + + sum0 += x0->d*y0->d*vaddvq_s16(p_0); + sum1 += x1->d*y1->d*vaddvq_s16(p_1); +#endif + } + + sumf = sum0 + sum1; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m256i bx = bytesFromNibbles(x[i].qs); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8( 8 ); + bx = _mm256_sub_epi8( bx, off ); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + // Get absolute values of x vectors + const __m256i ax = _mm256_sign_epi8(bx, bx); + + // Sign the values of the y vectors + const __m256i sy = _mm256_sign_epi8(by, bx); + + // Perform multiplication and create 16-bit values + const __m256i dot = _mm256_maddubs_epi16(ax, sy); + + const __m256i ones = _mm256_set1_epi16(1); + __m256i xy_q = _mm256_madd_epi16(ones, dot); + + /* Convert to vectore of 8 int32_t to 8 floats */ + __m256 q = _mm256_cvtepi32_ps( xy_q ); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( d, q, acc ); + } + + // Return horizontal sum of the acc vector + __m128 res = _mm256_extractf128_ps( acc, 1 ); + res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); + res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); + res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); + + sumf = _mm_cvtss_f32( res ); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m128i i32[2]; + for (int j = 0; j < 2; ++j) { + // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes + __m128i bx = bytesFromNibbles( x[i].qs + 8*j ); + __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j)); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m128i off = _mm_set1_epi8( 8 ); + bx = _mm_sub_epi8( bx, off ); + + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(bx, bx); + + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(by, bx); + + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); + + const __m128i ones = _mm_set1_epi16(1); + i32[j] = _mm_madd_epi16(ones, dot); + } + + // Convert int32_t to float + __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] )); + // Apply the scale, and accumulate + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); + } + + // Return horizontal sum of the acc vector + __m128 res = _mm256_extractf128_ps( acc, 1 ); + res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); + res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); + res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); + + sumf = _mm_cvtss_f32( res ); +#else + // scalar + for (int i = 0; i < nb; i++) { + const float d0 = x[i].d; + const float d1 = y[i].d; + + const uint8_t * restrict p0 = x[i].qs; + const int8_t * restrict p1 = y[i].qs; + + int sumi = 0; + for (int j = 0; j < QK8_0/2; j++) { + const uint8_t v0 = p0[j]; + + const int i0 = (int8_t) (v0 & 0xf) - 8; + const int i1 = (int8_t) (v0 >> 4) - 8; + + const int i2 = p1[2*j + 0]; + const int i3 = p1[2*j + 1]; + + sumi += i0*i2 + i1*i3; + } + sumf += d0*d1*sumi; + } +#endif + + *s = sumf; +} + // compute GGML_VEC_DOT_UNROLL dot products at once // xs - x row stride in bytes inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { @@ -2558,29 +3016,41 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x // static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { - QK, - QK, - 1, - 1, - 1, - 1, - 1, + [GGML_TYPE_F32] = 1, + [GGML_TYPE_F16] = 1, + [GGML_TYPE_Q4_0] = QK4_0, + [GGML_TYPE_Q4_1] = QK4_1, + [GGML_TYPE_Q8_0] = QK8_0, + [GGML_TYPE_I8] = 1, + [GGML_TYPE_I16] = 1, + [GGML_TYPE_I32] = 1, }; - -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); +static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { - sizeof(block_q4_0), - sizeof(block_q4_1), - sizeof(int8_t ), - sizeof(int16_t), - sizeof(int32_t), - sizeof(ggml_fp16_t), - sizeof(float ), + [GGML_TYPE_F32] = sizeof(float), + [GGML_TYPE_F16] = sizeof(ggml_fp16_t), + [GGML_TYPE_Q4_0] = sizeof(block_q4_0), + [GGML_TYPE_Q4_1] = sizeof(block_q4_1), + [GGML_TYPE_Q8_0] = sizeof(block_q8_0), + [GGML_TYPE_I8] = sizeof(int8_t), + [GGML_TYPE_I16] = sizeof(int16_t), + [GGML_TYPE_I32] = sizeof(int32_t), }; +static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated"); -// don't forget to update the array above when adding new types -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); + +static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = "f32", + [GGML_TYPE_F16] = "f16", + [GGML_TYPE_Q4_0] = "q4_0", + [GGML_TYPE_Q4_1] = "q4_1", + [GGML_TYPE_Q8_0] = "q8_0", + [GGML_TYPE_I8] = "i8", + [GGML_TYPE_I16] = "i16", + [GGML_TYPE_I32] = "i32", +}; +static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -2623,9 +3093,12 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "FLASH_ATTN", "FLASH_FF", + + "MAP_UNARY", + "MAP_BINARY", }; -static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); +static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2668,9 +3141,12 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "flash_attn(x)", "flash_ff(x)", + + "f(x)", + "f(x,y)", }; -static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); +static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -2800,6 +3276,11 @@ float ggml_type_sizef(enum ggml_type type) { return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type]; } +const char * ggml_type_name(enum ggml_type type) { + return GGML_TYPE_NAME[type]; +} + + size_t ggml_element_size(const struct ggml_tensor * tensor) { return GGML_TYPE_SIZE[tensor->type]; } @@ -2965,9 +3446,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { return NULL; } + const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1); + *ctx = (struct ggml_context) { - /*.mem_size =*/ params.mem_size, - /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), + /*.mem_size =*/ mem_size, + /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, /*.no_alloc =*/ params.no_alloc, /*.n_objects =*/ 0, @@ -2977,7 +3460,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { /*.scratch_save =*/ { 0, 0, NULL, }, }; - GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure + GGML_ASSERT(ctx->mem_buffer != NULL); ggml_assert_aligned(ctx->mem_buffer); @@ -3002,7 +3485,7 @@ void ggml_free(struct ggml_context * ctx) { __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size); if (ctx->mem_buffer_owned) { - free(ctx->mem_buffer); + GGML_ALIGNED_FREE(ctx->mem_buffer); } found = true; @@ -3240,14 +3723,6 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { char * const data = tensor->data; switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3283,7 +3758,7 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3300,14 +3775,6 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { char * const data = tensor->data; switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3343,7 +3810,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3354,14 +3821,6 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3387,7 +3846,7 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3398,14 +3857,6 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3431,7 +3882,7 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); ((float *)(tensor->data))[i] = value; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3440,14 +3891,6 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3473,7 +3916,7 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3484,14 +3927,6 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3517,7 +3952,7 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); ((float *)(tensor->data))[i] = value; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -4816,6 +5251,90 @@ struct ggml_tensor * ggml_flash_ff( return result; } +// ggml_map_unary + +struct ggml_tensor * ggml_map_unary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_UNARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, true); +} + +// ggml_map_binary + +struct ggml_tensor * ggml_map_binary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_BINARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, true); +} + //////////////////////////////////////////////////////////////////////////////// void ggml_set_param( @@ -5228,12 +5747,7 @@ static void ggml_compute_forward_dup( { ggml_compute_forward_dup_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5309,13 +5823,7 @@ static void ggml_compute_forward_add( { ggml_compute_forward_add_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5361,13 +5869,7 @@ static void ggml_compute_forward_sub( { ggml_compute_forward_sub_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5413,13 +5915,7 @@ static void ggml_compute_forward_mul( { ggml_compute_forward_mul_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5465,13 +5961,7 @@ static void ggml_compute_forward_div( { ggml_compute_forward_div_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5513,13 +6003,7 @@ static void ggml_compute_forward_sqr( { ggml_compute_forward_sqr_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5561,13 +6045,7 @@ static void ggml_compute_forward_sqrt( { ggml_compute_forward_sqrt_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5619,13 +6097,7 @@ static void ggml_compute_forward_sum( { ggml_compute_forward_sum_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5696,13 +6168,7 @@ static void ggml_compute_forward_mean( { ggml_compute_forward_mean_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5760,13 +6226,7 @@ static void ggml_compute_forward_repeat( { ggml_compute_forward_repeat_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5808,13 +6268,7 @@ static void ggml_compute_forward_abs( { ggml_compute_forward_abs_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5856,13 +6310,7 @@ static void ggml_compute_forward_sgn( { ggml_compute_forward_sgn_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5904,13 +6352,7 @@ static void ggml_compute_forward_neg( { ggml_compute_forward_neg_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5952,13 +6394,7 @@ static void ggml_compute_forward_step( { ggml_compute_forward_step_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6000,13 +6436,7 @@ static void ggml_compute_forward_relu( { ggml_compute_forward_relu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6065,13 +6495,7 @@ static void ggml_compute_forward_gelu( { ggml_compute_forward_gelu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6132,13 +6556,7 @@ static void ggml_compute_forward_silu( { ggml_compute_forward_silu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6218,13 +6636,7 @@ static void ggml_compute_forward_norm( { ggml_compute_forward_norm_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6298,13 +6710,7 @@ static void ggml_compute_forward_rms_norm( { ggml_compute_forward_rms_norm_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6436,7 +6842,7 @@ static void ggml_compute_forward_mul_mat_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } @@ -6608,7 +7014,7 @@ static void ggml_compute_forward_mul_mat_f16_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } @@ -6701,14 +7107,17 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { .dequantize_row_q = dequantize_row_q4_0, .quantize_row_q = quantize_row_q4_0, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, - .vec_dot_q = ggml_vec_dot_q4_0, + .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q4_0_q8_0, }, [GGML_TYPE_Q4_1] = { .dequantize_row_q = dequantize_row_q4_1, .quantize_row_q = quantize_row_q4_1, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, + .quantize_row_q_dot = quantize_row_q4_1, .vec_dot_q = ggml_vec_dot_q4_1, }, + // TODO: GGML_TYPE_Q8_0 }; // For internal test use @@ -6764,8 +7173,8 @@ static void ggml_compute_forward_mul_mat_q_f32( GGML_ASSERT(ne3 == ne13); const enum ggml_type type = src0->type; - quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; - vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; + quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; + vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); @@ -6821,7 +7230,7 @@ static void ggml_compute_forward_mul_mat_q_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } @@ -6834,12 +7243,12 @@ static void ggml_compute_forward_mul_mat_q_f32( if (params->type == GGML_TASK_INIT) { char * wdata = params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; + const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { - quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); wdata += row_size; } } @@ -6865,7 +7274,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const int ir1 = MIN(ir0 + dr, nr); void * wdata = params->wdata; - const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; + const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices @@ -6913,6 +7322,7 @@ static void ggml_compute_forward_mul_mat( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: { ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; @@ -6924,10 +7334,7 @@ static void ggml_compute_forward_mul_mat( { ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); } break; - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7009,13 +7416,7 @@ static void ggml_compute_forward_scale( { ggml_compute_forward_scale_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7176,6 +7577,7 @@ static void ggml_compute_forward_get_rows( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -7187,10 +7589,7 @@ static void ggml_compute_forward_get_rows( { ggml_compute_forward_get_rows_f32(params, src0, src1, dst); } break; - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7263,13 +7662,7 @@ static void ggml_compute_forward_diag_mask_inf( { ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7357,13 +7750,7 @@ static void ggml_compute_forward_soft_max( { ggml_compute_forward_soft_max_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7418,6 +7805,8 @@ static void ggml_compute_forward_rope_f32( // row index used to determine which thread to use int ir = 0; + const float theta_scale = powf(10000.0, -2.0f/n_dims); + for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); @@ -7425,11 +7814,13 @@ static void ggml_compute_forward_rope_f32( if (ir++ < ir0) continue; if (ir > ir1) break; - for (int i0 = 0; i0 < n_dims; i0 += 2) { - const float theta = powf(10000.0, ((float)-i0)/n_dims); + float theta = (float)p; - const float cos_theta = cosf(p*theta); - const float sin_theta = sinf(p*theta); + for (int i0 = 0; i0 < n_dims; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -7491,6 +7882,8 @@ static void ggml_compute_forward_rope_f16( // row index used to determine which thread to use int ir = 0; + const float theta_scale = powf(10000.0, -2.0f/n_dims); + for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); @@ -7498,11 +7891,13 @@ static void ggml_compute_forward_rope_f16( if (ir++ < ir0) continue; if (ir > ir1) break; - for (int i0 = 0; i0 < n_dims; i0 += 2) { - const float theta = powf(10000.0, ((float)-i0)/n_dims); + float theta = (float)p; - const float cos_theta = cosf(p*theta); - const float sin_theta = sinf(p*theta); + for (int i0 = 0; i0 < n_dims; i0 += 2) { + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + + theta *= theta_scale; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -7532,12 +7927,7 @@ static void ggml_compute_forward_rope( { ggml_compute_forward_rope_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7800,12 +8190,7 @@ static void ggml_compute_forward_conv_1d_1s( { ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8068,12 +8453,7 @@ static void ggml_compute_forward_conv_1d_2s( { ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8553,12 +8933,7 @@ static void ggml_compute_forward_flash_attn( { ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8764,12 +9139,100 @@ static void ggml_compute_forward_flash_ff( { GGML_ASSERT(false); // TODO } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_unary + +static void ggml_compute_forward_map_unary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + + +static void ggml_compute_forward_map_unary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_unary_f32(params, src0, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_binary + +static void ggml_compute_forward_map_binary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + + +static void ggml_compute_forward_map_binary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); + } break; + default: { GGML_ASSERT(false); } break; @@ -8925,6 +9388,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); } break; + case GGML_OP_MAP_UNARY: + { + const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun); + } + break; + case GGML_OP_MAP_BINARY: + { + const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun); + } + break; case GGML_OP_NONE: { // nop @@ -9184,6 +9659,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // not supported } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + GGML_ASSERT(false); // not supported + } break; case GGML_OP_NONE: { // nop @@ -9274,7 +9754,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { struct ggml_cgraph result = { /*.n_nodes =*/ 0, /*.n_leafs =*/ 0, - /*.n_threads =*/ 0, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, /*.work_size =*/ 0, /*.work =*/ NULL, /*.nodes =*/ { NULL }, @@ -9577,7 +10057,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } else #endif { - cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type]; + cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; } } else { GGML_ASSERT(false); @@ -9676,6 +10156,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) work_size = MAX(work_size, cur); } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + node->n_tasks = 1; + } break; case GGML_OP_NONE: { node->n_tasks = 1; @@ -9894,8 +10379,8 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { GGML_PRINT("=== GRAPH ===\n"); - GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); - GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size); + GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); + GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size); GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); for (int i = 0; i < cgraph->n_nodes; i++) { @@ -10747,16 +11232,16 @@ enum ggml_opt_result ggml_opt( //////////////////////////////////////////////////////////////////////////////// size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; for (int j = 0; j < n; j += k) { - block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK; + block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0; quantize_row_q4_0_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_0; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0xF; const uint8_t vi1 = y[i].qs[l/2] >> 4; @@ -10766,20 +11251,20 @@ size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * } } - return (n/QK*sizeof(block_q4_0)); + return (n/QK4_0*sizeof(block_q4_0)); } size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; for (int j = 0; j < n; j += k) { - block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK; + block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1; quantize_row_q4_1_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0xF; const uint8_t vi1 = y[i].qs[l/2] >> 4; @@ -10789,7 +11274,7 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * } } - return (n/QK*sizeof(block_q4_1)); + return (n/QK4_1*sizeof(block_q4_1)); } //////////////////////////////////////////////////////////////////////////////// diff --git a/ggml.h b/ggml.h index a5245a8ae..241e96a19 100644 --- a/ggml.h +++ b/ggml.h @@ -177,11 +177,12 @@ extern "C" { #include #include -#define GGML_MAX_DIMS 4 -#define GGML_MAX_NODES 4096 -#define GGML_MAX_PARAMS 16 -#define GGML_MAX_CONTEXTS 64 -#define GGML_MAX_OPT 4 +#define GGML_MAX_DIMS 4 +#define GGML_MAX_NODES 4096 +#define GGML_MAX_PARAMS 16 +#define GGML_MAX_CONTEXTS 64 +#define GGML_MAX_OPT 4 +#define GGML_DEFAULT_N_THREADS 4 #ifdef __ARM_NEON // we use the built-in 16-bit float type @@ -198,13 +199,15 @@ struct ggml_object; struct ggml_context; enum ggml_type { - GGML_TYPE_Q4_0, - GGML_TYPE_Q4_1, + // explicitly numbered values are used in llama.cpp files + GGML_TYPE_F32 = 0, + GGML_TYPE_F16 = 1, + GGML_TYPE_Q4_0 = 2, + GGML_TYPE_Q4_1 = 3, + GGML_TYPE_Q8_0 = 4, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, - GGML_TYPE_F16, - GGML_TYPE_F32, GGML_TYPE_COUNT, }; @@ -251,6 +254,9 @@ enum ggml_op { GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, + GGML_OP_MAP_UNARY, + GGML_OP_MAP_BINARY, + GGML_OP_COUNT, }; @@ -349,6 +355,8 @@ int ggml_blck_size (enum ggml_type type); size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float +const char * ggml_type_name(enum ggml_type type); + size_t ggml_element_size(const struct ggml_tensor * tensor); struct ggml_context * ggml_init(struct ggml_init_params params); @@ -650,6 +658,21 @@ struct ggml_tensor * ggml_flash_ff( struct ggml_tensor * c0, struct ggml_tensor * c1); +// Mapping operations +typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); +typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun); + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun); + // // automatic differentiation // @@ -814,6 +837,7 @@ typedef struct { dequantize_row_q_t dequantize_row_q; quantize_row_q_t quantize_row_q; quantize_row_q_t quantize_row_q_reference; + quantize_row_q_t quantize_row_q_dot; vec_dot_q_t vec_dot_q; } quantize_fns_t; diff --git a/llama.cpp b/llama.cpp index 4e77bb31b..e0d1ac66b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,10 +1,15 @@ +// Defines fileno on msys: +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + #include "llama_util.h" #include "llama.h" -#include "llama_internal.h" #include "ggml.h" #include +#include #include #include #include @@ -77,7 +82,7 @@ struct llama_hparams { uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; - uint32_t f16 = 1; + enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return memcmp(this, &other, sizeof(llama_hparams)); @@ -257,22 +262,12 @@ static size_t checked_div(size_t a, size_t b) { } static std::string llama_format_tensor_shape(const std::vector & ne) { - std::string ret = "[" + std::to_string(ne.at(0)); + char buf[256]; + snprintf(buf, sizeof(buf), "%5u", ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { - ret += " x " + std::to_string(ne.at(i)); - } - ret += "]"; - return ret; -} - -static const char * llama_format_type(enum ggml_type type) { - switch (type) { - case GGML_TYPE_F32: return "f32"; - case GGML_TYPE_F16: return "f16"; - case GGML_TYPE_Q4_0: return "q4_0"; - case GGML_TYPE_Q4_1: return "q4_1"; - default: LLAMA_ASSERT(false); + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); } + return buf; } static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { @@ -427,7 +422,7 @@ struct llama_file_loader { hparams.n_head = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); - hparams.f16 = file.read_u32(); + hparams.ftype = (enum llama_ftype) file.read_u32(); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); @@ -453,20 +448,21 @@ struct llama_file_loader { llama_load_tensor_shard shard; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); - uint32_t ftype = file.read_u32(); + shard.type = (enum ggml_type) file.read_u32(); shard.ne.resize(n_dims); file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims); } - switch (ftype) { - case 0: shard.type = GGML_TYPE_F32; break; - case 1: shard.type = GGML_TYPE_F16; break; - case 2: shard.type = GGML_TYPE_Q4_0; break; - case 3: shard.type = GGML_TYPE_Q4_1; break; + switch (shard.type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: { - throw format("unrecognized ftype %u\n", ftype); + throw format("unrecognized tensor type %u\n", shard.type); } } @@ -497,18 +493,18 @@ struct llama_file_loader { struct llama_file_saver { llama_file file; llama_file_loader * any_file_loader; - llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16) + llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_magic(); - write_hparams(new_f16); + write_hparams(new_ftype); write_vocab(); } void write_magic() { file.write_u32('ggjt'); // magic file.write_u32(1); // version } - void write_hparams(uint32_t new_f16) { + void write_hparams(enum llama_ftype new_ftype) { const llama_hparams & hparams = any_file_loader->hparams; file.write_u32(hparams.n_vocab); file.write_u32(hparams.n_embd); @@ -516,7 +512,7 @@ struct llama_file_saver { file.write_u32(hparams.n_head); file.write_u32(hparams.n_layer); file.write_u32(hparams.n_rot); - file.write_u32(new_f16); + file.write_u32(new_ftype); } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { @@ -531,17 +527,17 @@ struct llama_file_saver { } } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { - uint32_t ftype; switch (new_type) { - case GGML_TYPE_F32: ftype = 0; break; - case GGML_TYPE_F16: ftype = 1; break; - case GGML_TYPE_Q4_0: ftype = 2; break; - case GGML_TYPE_Q4_1: ftype = 3; break; + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: LLAMA_ASSERT(false); } file.write_u32((uint32_t) tensor.ne.size()); file.write_u32((uint32_t) tensor.name.size()); - file.write_u32(ftype); + file.write_u32(new_type); file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); file.write_raw(tensor.name.data(), tensor.name.size()); file.seek(-file.tell() & 31, SEEK_CUR); @@ -815,6 +811,18 @@ static const char *llama_file_version_name(llama_file_version version) { } } +static const char *llama_ftype_name(enum llama_ftype ftype) { + switch (ftype) { + case LLAMA_FTYPE_ALL_F32: return "all F32"; + case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; + case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; + case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; + case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: + return "mostly Q4_1, some F16"; + default: return "unknown, may not work"; + } +} + static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_7B: return "7B"; @@ -867,7 +875,7 @@ static void llama_model_load_internal( fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); - fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16); + fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); @@ -934,8 +942,8 @@ static void llama_model_load_internal( ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}); - model.norm = ml->get_tensor("norm.weight", {n_embd}); - model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); + model.norm = ml->get_tensor("norm.weight", {n_embd}); + model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { @@ -1541,17 +1549,17 @@ static llama_vocab::id llama_sample_top_p_top_k( // quantization // -static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) { +static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) { ggml_type quantized_type; - switch (itype) { - case 2: quantized_type = GGML_TYPE_Q4_0; break; - case 3: quantized_type = GGML_TYPE_Q4_1; break; - default: throw format("invalid quantization type %d\n", itype); + switch (ftype) { + case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; + case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; + default: throw format("invalid output file type %d\n", ftype); }; std::unique_ptr model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false, /*vocab_only*/ false)); - llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype); + llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); size_t total_size_org = 0; size_t total_size_new = 0; @@ -1564,10 +1572,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s tensor.data = read_data.addr; model_loader->load_data_for(tensor); - printf("[%zu/%zu] %36s - %s, type = %6s, ", + printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), - llama_format_type(tensor.type)); + ggml_type_name(tensor.type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? @@ -1600,7 +1608,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s f32_data[i] = ggml_fp16_to_fp32(f16_data[i]); } } else { - throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type)); + throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type)); } printf("quantizing .. "); @@ -1742,9 +1750,9 @@ void llama_free(struct llama_context * ctx) { int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype) { + enum llama_ftype ftype) { try { - llama_model_quantize_internal(fname_inp, fname_out, itype); + llama_model_quantize_internal(fname_inp, fname_out, ftype); return 0; } catch (const std::string & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str()); diff --git a/llama.h b/llama.h index fdb00f3a2..697f187ea 100644 --- a/llama.h +++ b/llama.h @@ -65,6 +65,15 @@ extern "C" { void * progress_callback_user_data; }; + // model file types + enum llama_ftype { + LLAMA_FTYPE_ALL_F32 = 0, + LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 + }; + LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API bool llama_mmap_supported(); @@ -85,7 +94,7 @@ extern "C" { LLAMA_API int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype); + enum llama_ftype ftype); // Returns the KV cache that will contain the context for the // ongoing prediction with the model. @@ -171,4 +180,15 @@ extern "C" { } #endif +// Internal API to be implemented by llama.cpp and used by tests/benchmarks only +#ifdef LLAMA_API_INTERNAL + +#include +#include +struct ggml_tensor; + +std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); + +#endif + #endif // LLAMA_H diff --git a/llama_internal.h b/llama_internal.h deleted file mode 100644 index 543eed996..000000000 --- a/llama_internal.h +++ /dev/null @@ -1,12 +0,0 @@ -// Internal header to be included by llama.cpp and tests/benchmarks only. - -#ifndef LLAMA_INTERNAL_H -#define LLAMA_INTERNAL_H - -#include -#include -struct ggml_tensor; - -std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); - -#endif // LLAMA_INTERNAL_H diff --git a/llama_util.h b/llama_util.h index d68f49bd2..c92c0cc71 100755 --- a/llama_util.h +++ b/llama_util.h @@ -26,7 +26,9 @@ #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN - #define NOMINMAX + #ifndef NOMINMAX + #define NOMINMAX + #endif #include #include #include // for _fseeki64 @@ -41,8 +43,12 @@ } while (0) #ifdef __GNUC__ +#ifdef __MINGW32__ +__attribute__((format(gnu_printf, 1, 2))) +#else __attribute__((format(printf, 1, 2))) #endif +#endif static std::string format(const char * fmt, ...) { va_list ap, ap2; va_start(ap, fmt); @@ -55,7 +61,7 @@ static std::string format(const char * fmt, ...) { va_end(ap2); va_end(ap); return std::string(buf.data(), size); -}; +} struct llama_file { // use FILE * so we don't have to re-open the file to mmap @@ -170,7 +176,6 @@ struct llama_mmap { flags |= MAP_POPULATE; #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); - close(fd); if (addr == MAP_FAILED) { throw format("mmap failed: %s", strerror(errno)); } @@ -209,6 +214,7 @@ struct llama_mmap { throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()); } + #if _WIN32_WINNT >= _WIN32_WINNT_WIN8 // Advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; @@ -217,6 +223,9 @@ struct llama_mmap { fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } + #else + #pragma message("warning: You are building for pre-Windows 8; prefetch not supported") + #endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8 } ~llama_mmap() { @@ -338,8 +347,8 @@ struct llama_mlock { // Hopefully a megabyte is enough overhead: size_t increment = size + 1048576; // The minimum must be <= the maximum, so we need to increase both: - min_ws_size += size; - max_ws_size += size; + min_ws_size += increment; + max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); diff --git a/migrate-ggml-2023-03-30-pr613.py b/migrate-ggml-2023-03-30-pr613.py deleted file mode 100644 index b6ef2476e..000000000 --- a/migrate-ggml-2023-03-30-pr613.py +++ /dev/null @@ -1,311 +0,0 @@ -# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic -# -# We caused a breaking change to the file format on 2023-03-30 in: -# https://github.com/ggerganov/llama.cpp/pull/613 -# -# (1) If you still have the Meta LLaMA .pth files, then close this -# file now; you can just run `convert-pth-to-ggml.py` again to -# migrate to the new format. The tool is easier to use too. It -# isn't necessary anymore to manage split output files because -# the new format always combines things into a single file. -# -# (2) If you deleted the Meta LLaMA .pth files due to save on disk -# space, then this tool is intended to help you. Please check -# out the instructions below. -# -# USAGE -# -# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT -# -# PREREQUISITES -# -# pip install numpy -# cd llama.cpp -# make -j4 -# -# EXAMPLE (7B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/7B/ggml-model-f16.bin -# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin -# -# EXAMPLE (13B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/13B/ggml-model-f16.bin* -# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin -# - -import argparse -import os -import sys -import json -import struct -import numpy as np - -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPE_NAMES = { - 0: "F32", - 1: "F16", - 2: "Q4_0", - 3: "Q4_1", -} - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -HPARAMS = [ - 'magic', # int32 - 'version', # int32 - 'n_vocab', # int32 - 'n_embd', # int32 - 'n_mult', # int32 - 'n_head', # int32 - 'n_layer', # int32 - 'n_rot', # int32 - 'f16', # int32 -] - -def read_hparams(fin): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - buf = fin.read(struct_size) - ints = struct.unpack(struct_fmt, buf) - hparams = dict(zip(HPARAMS, ints)) - return hparams - -def write_hparams(fout, hparams): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - ints = [hparams[h] for h in HPARAMS] - fout.write(struct.pack(struct_fmt, *ints)) - -def read_tokens(fin, hparams): - tokens = [] - for i in range(hparams['n_vocab']): - len_b = fin.read(4) - (length,) = struct.unpack("i", len_b) - word = fin.read(length) - score_b = fin.read(4) - (score,) = struct.unpack("f", score_b) - tokens.append((word, score)) - return tokens - -def write_tokens(fout, tokens): - for word, score in tokens: - fout.write(struct.pack("i", len(word))) - fout.write(word) - fout.write(struct.pack("f", score)) - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def copy_tensors(fin, fout, part_id, n_parts): - while True: - - b = fin.read(4) - if not b: break - (n_dims,) = struct.unpack("i", b) - b = fin.read(4) - (length,) = struct.unpack("i", b) - b = fin.read(4) - (ftype,) = struct.unpack("i", b) - - assert n_dims in (1, 2) - - partshape = list(range(n_dims)) - for i in range(n_dims): - b = fin.read(4) - partshape[i] = struct.unpack("i", b)[0] - partshape = list(reversed(partshape)) - - name = fin.read(length) - data = fin.read(ggml_nbytes(partshape, ftype)) - - blck_size = GGML_BLCK_SIZE[WTYPES[ftype]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype]] - - print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}") - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if b"tok_embeddings" in name: - split_dim = 1 - elif b"layers" in name: - if b"attention.wo.weight" in name: - split_dim = 1 - elif b"feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif b"output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - fout.write(struct.pack("iii", n_dims, len(name), ftype)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(name) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - fout.write(data) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - fout.write(data) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bpr = partshape[1] // blck_size * type_size - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - fout.write(data[row * bpr:row * bpr + bpr]) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype)) - -def parse_args(): - parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format') - parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)') - parser.add_argument('fout_path', help='your new ggjt file name') - return parser.parse_args() - -def main(): - args = parse_args() - assert args.fin_path - assert args.fout_path - assert args.fin_path != args.fout_path - - with open(args.fin_path, "rb") as fin: - hparams = read_hparams(fin) - tokens = read_tokens(fin, hparams) - - if hparams['magic'] == 0x67676a74: # ggjt - print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n") - sys.exit(1) - - if hparams['magic'] != 0x67676d66: # ggmf - print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n") - sys.exit(1) - - hparams['magic'] = 0x67676a74 # ggjt - - # count number of multipart files by convention - n_parts = 1 - while True: - if os.path.exists(f"{args.fin_path}.{n_parts}"): - n_parts += 1 - else: - break - - # we output a single file for ggml - with open(args.fout_path, "wb") as fout: - write_hparams(fout, hparams) - write_tokens(fout, tokens) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fin_path = args.fin_path - if part_id > 0: - fin_path += f".{part_id}" - with open(fin_path, "rb") as fin: - read_tokens(fin, read_hparams(fin)) - copy_tensors(fin, fout, part_id, n_parts) - - print(f"Done. Output file: {args.fout_path}\n") - -if __name__ == "__main__": - main() diff --git a/prompts/chat-with-bob.txt b/prompts/chat-with-bob.txt index 009da39ae..ad494d831 100644 --- a/prompts/chat-with-bob.txt +++ b/prompts/chat-with-bob.txt @@ -4,4 +4,4 @@ User: Hello, Bob. Bob: Hello. How may I help you today? User: Please tell me the largest city in Europe. Bob: Sure. The largest city in Europe is Moscow, the capital of Russia. -User: +User: \ No newline at end of file diff --git a/prompts/reason-act.txt b/prompts/reason-act.txt index 872016631..a4f4f4ee6 100644 --- a/prompts/reason-act.txt +++ b/prompts/reason-act.txt @@ -15,4 +15,4 @@ Answer: The calculate tool says it is 9.3333333333 Question: What is capital of france? Thought: Do I need to use an action? No, I know the answer Answer: Paris is the capital of France -Question: +Question: \ No newline at end of file diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 000000000..6c32cbd04 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,2 @@ +numpy==1.24 +sentencepiece==0.1.98