From 2663d2c6784ad7b77998c6874df25648d597f74b Mon Sep 17 00:00:00 2001 From: comex Date: Tue, 11 Apr 2023 06:19:54 -0700 Subject: [PATCH 01/49] Windows fixes (#890) Mostly for msys2 and mingw64 builds, which are different from each other and different from standard Visual Studio builds. Isn't Windows fun? - Define _GNU_SOURCE in more files (it's already used in ggml.c for Linux's sake). - Don't use PrefetchVirtualMemory if not building for Windows 8 or later (mingw64 doesn't by default). But warn the user about this situation since it's probably not intended. - Check for NOMINMAX already being defined, which it is on mingw64. - Actually use the `increment` variable (bug in my `pizza` PR). - Suppress unused variable warnings in the fake pthread_create and pthread_join implementations for Windows. - (not Windows-related) Remove mention of `asprintf` from comment; `asprintf` is no longer used. Fixes #871. --- examples/main/main.cpp | 5 +++++ ggml.c | 4 +++- llama.cpp | 5 +++++ llama_util.h | 12 +++++++++--- 4 files changed, 22 insertions(+), 4 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index d333d0dba..bf756c16d 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -1,3 +1,8 @@ +// Defines sigaction on msys: +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + #include "common.h" #include "llama.h" diff --git a/ggml.c b/ggml.c index ada3bbbdc..897b67d93 100644 --- a/ggml.c +++ b/ggml.c @@ -1,4 +1,4 @@ -// Defines CLOCK_MONOTONIC and asprintf on Linux +// Defines CLOCK_MONOTONIC on Linux #define _GNU_SOURCE #include "ggml.h" @@ -50,6 +50,7 @@ typedef HANDLE pthread_t; typedef DWORD thread_ret_t; static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) { + (void) unused; HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); if (handle == NULL) { @@ -61,6 +62,7 @@ static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void } static int pthread_join(pthread_t thread, void* unused) { + (void) unused; return (int) WaitForSingleObject(thread, INFINITE); } diff --git a/llama.cpp b/llama.cpp index 203a1adc0..54ba01eef 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,3 +1,8 @@ +// Defines fileno on msys: +#ifndef _GNU_SOURCE +#define _GNU_SOURCE +#endif + #include "llama_util.h" #include "llama.h" #include "llama_internal.h" diff --git a/llama_util.h b/llama_util.h index d68f49bd2..653bf7138 100755 --- a/llama_util.h +++ b/llama_util.h @@ -26,7 +26,9 @@ #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN - #define NOMINMAX + #ifndef NOMINMAX + #define NOMINMAX + #endif #include #include #include // for _fseeki64 @@ -209,6 +211,7 @@ struct llama_mmap { throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()); } + #if _WIN32_WINNT >= _WIN32_WINNT_WIN8 // Advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; @@ -217,6 +220,9 @@ struct llama_mmap { fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } + #else + #pragma message("warning: You are building for pre-Windows 8; prefetch not supported") + #endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8 } ~llama_mmap() { @@ -338,8 +344,8 @@ struct llama_mlock { // Hopefully a megabyte is enough overhead: size_t increment = size + 1048576; // The minimum must be <= the maximum, so we need to increase both: - min_ws_size += size; - max_ws_size += size; + min_ws_size += increment; + max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); From 3e6e70d8e8917b5bd14c7c9f9b89a585f1ff0b31 Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Tue, 11 Apr 2023 15:03:51 +0000 Subject: [PATCH 02/49] Add enum llama_ftype, sync ggml_type to model files (#709) --- examples/quantize/quantize.cpp | 10 ++--- ggml.c | 35 ++++++++---------- ggml.h | 9 +++-- llama.cpp | 67 ++++++++++++++++++++-------------- llama.h | 10 ++++- 5 files changed, 74 insertions(+), 57 deletions(-) diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 680757c6b..5c9e2ad94 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -5,15 +5,15 @@ #include // usage: -// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type +// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type // int main(int argc, char ** argv) { ggml_time_init(); if (argc != 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]); - fprintf(stderr, " type = 2 - q4_0\n"); - fprintf(stderr, " type = 3 - q4_1\n"); + fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0); + fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1); return 1; } @@ -27,7 +27,7 @@ int main(int argc, char ** argv) { const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; - const int itype = atoi(argv[3]); + const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]); const int64_t t_main_start_us = ggml_time_us(); @@ -37,7 +37,7 @@ int main(int argc, char ** argv) { { const int64_t t_start_us = ggml_time_us(); - if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) { + if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } diff --git a/ggml.c b/ggml.c index 897b67d93..31947c4c1 100644 --- a/ggml.c +++ b/ggml.c @@ -2560,29 +2560,26 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x // static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { - QK, - QK, - 1, - 1, - 1, - 1, - 1, + [GGML_TYPE_F32] = 1, + [GGML_TYPE_F16] = 1, + [GGML_TYPE_Q4_0] = QK, + [GGML_TYPE_Q4_1] = QK, + [GGML_TYPE_I8] = 1, + [GGML_TYPE_I16] = 1, + [GGML_TYPE_I32] = 1, }; - -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); +static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { - sizeof(block_q4_0), - sizeof(block_q4_1), - sizeof(int8_t ), - sizeof(int16_t), - sizeof(int32_t), - sizeof(ggml_fp16_t), - sizeof(float ), + [GGML_TYPE_F32] = sizeof(float), + [GGML_TYPE_F16] = sizeof(ggml_fp16_t), + [GGML_TYPE_Q4_0] = sizeof(block_q4_0), + [GGML_TYPE_Q4_1] = sizeof(block_q4_1), + [GGML_TYPE_I8] = sizeof(int8_t), + [GGML_TYPE_I16] = sizeof(int16_t), + [GGML_TYPE_I32] = sizeof(int32_t), }; - -// don't forget to update the array above when adding new types -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); +static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", diff --git a/ggml.h b/ggml.h index a5245a8ae..7d8b7a182 100644 --- a/ggml.h +++ b/ggml.h @@ -198,13 +198,14 @@ struct ggml_object; struct ggml_context; enum ggml_type { - GGML_TYPE_Q4_0, - GGML_TYPE_Q4_1, + // explicitly numbered values are used in llama.cpp files + GGML_TYPE_F32 = 0, + GGML_TYPE_F16 = 1, + GGML_TYPE_Q4_0 = 2, + GGML_TYPE_Q4_1 = 3, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, - GGML_TYPE_F16, - GGML_TYPE_F32, GGML_TYPE_COUNT, }; diff --git a/llama.cpp b/llama.cpp index 54ba01eef..653558be9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -82,7 +82,7 @@ struct llama_hparams { uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; - uint32_t f16 = 1; + enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return memcmp(this, &other, sizeof(llama_hparams)); @@ -432,7 +432,7 @@ struct llama_file_loader { hparams.n_head = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); - hparams.f16 = file.read_u32(); + hparams.ftype = (enum llama_ftype) file.read_u32(); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); @@ -458,20 +458,21 @@ struct llama_file_loader { llama_load_tensor_shard shard; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); - uint32_t ftype = file.read_u32(); + shard.type = (enum ggml_type) file.read_u32(); shard.ne.resize(n_dims); file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims); } - switch (ftype) { - case 0: shard.type = GGML_TYPE_F32; break; - case 1: shard.type = GGML_TYPE_F16; break; - case 2: shard.type = GGML_TYPE_Q4_0; break; - case 3: shard.type = GGML_TYPE_Q4_1; break; + switch (shard.type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: { - throw format("unrecognized ftype %u\n", ftype); + throw format("unrecognized tensor type %u\n", shard.type); } } @@ -502,18 +503,18 @@ struct llama_file_loader { struct llama_file_saver { llama_file file; llama_file_loader * any_file_loader; - llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16) + llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_magic(); - write_hparams(new_f16); + write_hparams(new_ftype); write_vocab(); } void write_magic() { file.write_u32('ggjt'); // magic file.write_u32(1); // version } - void write_hparams(uint32_t new_f16) { + void write_hparams(enum llama_ftype new_ftype) { const llama_hparams & hparams = any_file_loader->hparams; file.write_u32(hparams.n_vocab); file.write_u32(hparams.n_embd); @@ -521,7 +522,7 @@ struct llama_file_saver { file.write_u32(hparams.n_head); file.write_u32(hparams.n_layer); file.write_u32(hparams.n_rot); - file.write_u32(new_f16); + file.write_u32(new_ftype); } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { @@ -536,17 +537,17 @@ struct llama_file_saver { } } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { - uint32_t ftype; switch (new_type) { - case GGML_TYPE_F32: ftype = 0; break; - case GGML_TYPE_F16: ftype = 1; break; - case GGML_TYPE_Q4_0: ftype = 2; break; - case GGML_TYPE_Q4_1: ftype = 3; break; + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: LLAMA_ASSERT(false); } file.write_u32((uint32_t) tensor.ne.size()); file.write_u32((uint32_t) tensor.name.size()); - file.write_u32(ftype); + file.write_u32(new_type); file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); file.write_raw(tensor.name.data(), tensor.name.size()); file.seek(-file.tell() & 31, SEEK_CUR); @@ -820,6 +821,16 @@ static const char *llama_file_version_name(llama_file_version version) { } } +static const char *llama_ftype_name(enum llama_ftype ftype) { + switch (ftype) { + case LLAMA_FTYPE_ALL_F32: return "all F32"; + case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; + case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; + case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; + default: LLAMA_ASSERT(false); + } +} + static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_7B: return "7B"; @@ -872,7 +883,7 @@ static void llama_model_load_internal( fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); - fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16); + fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); @@ -1544,17 +1555,17 @@ static llama_vocab::id llama_sample_top_p_top_k( // quantization // -static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) { +static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) { ggml_type quantized_type; - switch (itype) { - case 2: quantized_type = GGML_TYPE_Q4_0; break; - case 3: quantized_type = GGML_TYPE_Q4_1; break; - default: throw format("invalid quantization type %d\n", itype); + switch (ftype) { + case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; + case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; + default: throw format("invalid output file type %d\n", ftype); }; std::unique_ptr model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false, /*vocab_only*/ false)); - llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype); + llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); size_t total_size_org = 0; size_t total_size_new = 0; @@ -1745,9 +1756,9 @@ void llama_free(struct llama_context * ctx) { int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype) { + enum llama_ftype ftype) { try { - llama_model_quantize_internal(fname_inp, fname_out, itype); + llama_model_quantize_internal(fname_inp, fname_out, ftype); return 0; } catch (const std::string & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str()); diff --git a/llama.h b/llama.h index 42c364c6b..8a0d50fb8 100644 --- a/llama.h +++ b/llama.h @@ -65,6 +65,14 @@ extern "C" { void * progress_callback_user_data; }; + // model file types + enum llama_ftype { + LLAMA_FTYPE_ALL_F32 = 0, + LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + }; + LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API bool llama_mmap_supported(); @@ -85,7 +93,7 @@ extern "C" { LLAMA_API int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype); + enum llama_ftype ftype); // Returns the KV cache that will contain the context for the // ongoing prediction with the model. From 8b679987cdce292ff36bd741f6715e4927e26f9b Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Tue, 11 Apr 2023 21:45:44 +0200 Subject: [PATCH 03/49] Fix whitespace, add .editorconfig, add GitHub workflow (#883) --- .devops/main.Dockerfile | 2 +- .dockerignore | 2 +- .ecrc | 5 +++++ .editorconfig | 16 ++++++++++++++++ .github/ISSUE_TEMPLATE/custom.md | 16 ++++++++-------- .github/workflows/docker.yml | 2 +- .github/workflows/editorconfig.yml | 17 +++++++++++++++++ README.md | 10 +++++----- examples/Miku.sh | 12 ++++++------ examples/common.cpp | 14 +++++++------- examples/embedding/README.md | 6 +++--- examples/main/README.md | 6 +++--- examples/main/main.cpp | 2 +- examples/perplexity/README.md | 6 +++--- ggml.c | 14 +++++++------- 15 files changed, 84 insertions(+), 46 deletions(-) create mode 100644 .ecrc create mode 100644 .editorconfig create mode 100644 .github/workflows/editorconfig.yml diff --git a/.devops/main.Dockerfile b/.devops/main.Dockerfile index cd575efa0..2e629f8ce 100644 --- a/.devops/main.Dockerfile +++ b/.devops/main.Dockerfile @@ -15,4 +15,4 @@ FROM ubuntu:$UBUNTU_VERSION as runtime COPY --from=build /app/main /main -ENTRYPOINT [ "/main" ] \ No newline at end of file +ENTRYPOINT [ "/main" ] diff --git a/.dockerignore b/.dockerignore index 952990f26..462fac23a 100644 --- a/.dockerignore +++ b/.dockerignore @@ -21,4 +21,4 @@ models/* arm_neon.h compile_commands.json -Dockerfile \ No newline at end of file +Dockerfile diff --git a/.ecrc b/.ecrc new file mode 100644 index 000000000..b682057dd --- /dev/null +++ b/.ecrc @@ -0,0 +1,5 @@ +{ + "Disable": { + "IndentSize": true + } +} diff --git a/.editorconfig b/.editorconfig new file mode 100644 index 000000000..df8aaf504 --- /dev/null +++ b/.editorconfig @@ -0,0 +1,16 @@ +# https://EditorConfig.org + +# Top-most EditorConfig file +root = true + +# Unix-style newlines with a newline ending every file, utf-8 charset +[*] +end_of_line = lf +insert_final_newline = true +trim_trailing_whitespace = true +charset = utf-8 +indent_style = space +indent_size = 4 + +[Makefile] +indent_style = tab diff --git a/.github/ISSUE_TEMPLATE/custom.md b/.github/ISSUE_TEMPLATE/custom.md index 0d508802d..8fd955356 100644 --- a/.github/ISSUE_TEMPLATE/custom.md +++ b/.github/ISSUE_TEMPLATE/custom.md @@ -22,9 +22,9 @@ Please provide a detailed written description of what you were trying to do, and # Current Behavior -Please provide a detailed written description of what `llama.cpp` did, instead. +Please provide a detailed written description of what `llama.cpp` did, instead. -# Environment and Context +# Environment and Context Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions. @@ -133,7 +133,7 @@ llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin. llama_model_load: .......................................................................................... done llama_model_load: model size = 4869.09 MB / num tensors = 723 -system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | +system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | main: prompt: 'Please close your issue when it has been answered.' main: number of tokens in prompt = 11 @@ -166,14 +166,14 @@ main: total time = 246406.42 ms Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.': - 3636882.89 msec task-clock # 14.677 CPUs utilized - 13509 context-switches # 3.714 /sec - 2436 cpu-migrations # 0.670 /sec - 10476679 page-faults # 2.881 K/sec + 3636882.89 msec task-clock # 14.677 CPUs utilized + 13509 context-switches # 3.714 /sec + 2436 cpu-migrations # 0.670 /sec + 10476679 page-faults # 2.881 K/sec 13133115082869 cycles # 3.611 GHz (16.77%) 29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%) 10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%) - 23479217109614 instructions # 1.79 insn per cycle + 23479217109614 instructions # 1.79 insn per cycle # 0.44 stalled cycles per insn (16.76%) 2353072268027 branches # 647.002 M/sec (16.77%) 1998682780 branch-misses # 0.08% of all branches (16.76%) diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index f70821de2..28402c933 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -60,4 +60,4 @@ jobs: push: ${{ github.event_name == 'push' }} platforms: linux/amd64,linux/arm64 tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}" - file: ${{ matrix.config.dockerfile }} \ No newline at end of file + file: ${{ matrix.config.dockerfile }} diff --git a/.github/workflows/editorconfig.yml b/.github/workflows/editorconfig.yml new file mode 100644 index 000000000..b4e535acf --- /dev/null +++ b/.github/workflows/editorconfig.yml @@ -0,0 +1,17 @@ +name: EditorConfig Checker + +on: + push: + branches: + - master + pull_request: + branches: + - master + +jobs: + editorconfig: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - uses: editorconfig-checker/action-editorconfig-checker@main + - run: editorconfig-checker diff --git a/README.md b/README.md index ef82855e4..da05ef87a 100644 --- a/README.md +++ b/README.md @@ -243,7 +243,7 @@ There 26 letters in the English Alphabet The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis > List 5 words that start with "ca". cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. -> +> ``` ### Using [GPT4All](https://github.com/nomic-ai/gpt4all) @@ -254,17 +254,17 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. convert the model from the old format to the new format with [./migrate-ggml-2023-03-30-pr613.py](./migrate-ggml-2023-03-30-pr613.py): ```bash - python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model + python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model python3 migrate-ggml-2023-03-30-pr613.py models/gpt4all-7B/gpt4all-lora-quantized.bin models/gpt4all-7B/gpt4all-lora-quantized-new.bin ``` - + - You can now use the newly generated `gpt4all-lora-quantized-new.bin` model in exactly the same way as all other models - The original model is saved in the same folder with a suffix `.orig` ### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data - **Under no circumstances share IPFS, magnet links, or any other links to model downloads anywhere in this respository, including in issues, discussions or pull requests. They will be immediately deleted.** -- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository. +- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository. - Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data. - Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files. - The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory: @@ -284,7 +284,7 @@ convert the model from the old format to the new format with [./migrate-ggml-202 - GPT-3.5 / InstructGPT / ChatGPT: - [Aligning language models to follow instructions](https://openai.com/research/instruction-following) - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155) - + ### Perplexity (Measuring model quality) You can use the `perplexity` example to measure perplexity over the given prompt. For more background, diff --git a/examples/Miku.sh b/examples/Miku.sh index 352478a15..c4cbf80f2 100755 --- a/examples/Miku.sh +++ b/examples/Miku.sh @@ -19,15 +19,15 @@ GEN_OPTIONS=(--batch_size 1024 --top_p 0.5) if [ -n "$N_THREAD" ]; then - GEN_OPTIONS+=(--threads "$N_THREAD") + GEN_OPTIONS+=(--threads "$N_THREAD") fi ./main "${GEN_OPTIONS[@]}" \ - --model "$MODEL" \ - --n_predict "$N_PREDICTS" \ - --color --interactive \ - --reverse-prompt "${USER_NAME}:" \ - --prompt " + --model "$MODEL" \ + --n_predict "$N_PREDICTS" \ + --color --interactive \ + --reverse-prompt "${USER_NAME}:" \ + --prompt " This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the users computer. ${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next. ${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct she will ask the user for help. diff --git a/examples/common.cpp b/examples/common.cpp index f909eed24..91d96efae 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -22,9 +22,9 @@ extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHand extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode); extern "C" __declspec(dllimport) int __stdcall SetConsoleCP(unsigned int wCodePageID); extern "C" __declspec(dllimport) int __stdcall SetConsoleOutputCP(unsigned int wCodePageID); -extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags, - const wchar_t * lpWideCharStr, int cchWideChar, - char * lpMultiByteStr, int cbMultiByte, +extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags, + const wchar_t * lpWideCharStr, int cchWideChar, + char * lpMultiByteStr, int cbMultiByte, const char * lpDefaultChar, bool * lpUsedDefaultChar); #define CP_UTF8 65001 #endif @@ -328,9 +328,9 @@ void win32_console_init(bool enable_color) { // Convert a wide Unicode string to an UTF8 string void win32_utf8_encode(const std::wstring & wstr, std::string & str) { - int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); - std::string strTo(size_needed, 0); - WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); - str = strTo; + int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); + std::string strTo(size_needed, 0); + WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); + str = strTo; } #endif diff --git a/examples/embedding/README.md b/examples/embedding/README.md index 21d8be65f..fe8f5dcc6 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -1,3 +1,3 @@ -# embedding - -TODO +# embedding + +TODO diff --git a/examples/main/README.md b/examples/main/README.md index 4701aa558..f09e7ba97 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -1,3 +1,3 @@ -# main - -TODO +# main + +TODO diff --git a/examples/main/main.cpp b/examples/main/main.cpp index bf756c16d..ba153cb82 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -168,7 +168,7 @@ int main(int argc, char ** argv) { } // enable interactive mode if reverse prompt or interactive start is specified - if (params.antiprompt.size() != 0 || params.interactive_start) { + if (params.antiprompt.size() != 0 || params.interactive_start) { params.interactive = true; } diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index a932275c2..eacfb17c6 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -1,3 +1,3 @@ -# perplexity - -TODO +# perplexity + +TODO diff --git a/ggml.c b/ggml.c index 31947c4c1..a26b4853f 100644 --- a/ggml.c +++ b/ggml.c @@ -228,12 +228,12 @@ static inline float fp32_from_bits(uint32_t w) { } static inline uint32_t fp32_to_bits(float f) { - union { - float as_value; - uint32_t as_bits; - } fp32; - fp32.as_value = f; - return fp32.as_bits; + union { + float as_value; + uint32_t as_bits; + } fp32; + fp32.as_value = f; + return fp32.as_bits; } static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { @@ -1881,7 +1881,7 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3)); #endif #else - const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls)); const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs)); From 4dbbd407500cf500ca5f47e4e947635797997c05 Mon Sep 17 00:00:00 2001 From: Nicolai Weitkemper Date: Wed, 12 Apr 2023 08:46:20 +0200 Subject: [PATCH 04/49] readme: link to sha256sums file (#902) This is to emphasize that these do not need to be obtained from elsewhere. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index da05ef87a..914c07995 100644 --- a/README.md +++ b/README.md @@ -266,7 +266,7 @@ convert the model from the old format to the new format with [./migrate-ggml-202 - **Under no circumstances share IPFS, magnet links, or any other links to model downloads anywhere in this respository, including in issues, discussions or pull requests. They will be immediately deleted.** - The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository. - Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data. -- Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files. +- Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files. - The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory: `sha256sum --ignore-missing -c SHA256SUMS` on Linux From 782438070f7568380755ffc7bf5e09b20c1e8272 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 12 Apr 2023 14:31:12 +0300 Subject: [PATCH 05/49] readme : update hot topics with link to "GPU support" issue --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 914c07995..ccb0f8774 100644 --- a/README.md +++ b/README.md @@ -9,6 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** +- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/issues/914) - [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784) ## Description From f76cb3a34d6a6b03afb96650e39495f201eac042 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 12 Apr 2023 14:48:57 +0300 Subject: [PATCH 06/49] readme : change "GPU support" link to discussion --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ccb0f8774..dbc088532 100644 --- a/README.md +++ b/README.md @@ -9,7 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ **Hot topics:** -- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/issues/914) +- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915) - [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784) ## Description From e7f6997f897a18b6372a6460e25c5f89e1469f1d Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Wed, 12 Apr 2023 15:06:16 +0000 Subject: [PATCH 07/49] Don't crash on ftype (formerly f16) == 4 (#917) --- llama.cpp | 4 +++- llama.h | 1 + 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 653558be9..6d8b706b9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -827,7 +827,9 @@ static const char *llama_ftype_name(enum llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; - default: LLAMA_ASSERT(false); + case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: + return "mostly Q4_1, some F16"; + default: return "unknown, may not work"; } } diff --git a/llama.h b/llama.h index 8a0d50fb8..7a258a1e1 100644 --- a/llama.h +++ b/llama.h @@ -71,6 +71,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 }; LLAMA_API struct llama_context_params llama_context_default_params(); From 82d146df9b43cf677e0dbce20b03cf864958a0cc Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Thu, 13 Apr 2023 11:33:16 +0200 Subject: [PATCH 08/49] do not force the prompt file to end with a new line (#908) --- .editorconfig | 3 +++ prompts/chat-with-bob.txt | 2 +- prompts/reason-act.txt | 2 +- 3 files changed, 5 insertions(+), 2 deletions(-) diff --git a/.editorconfig b/.editorconfig index df8aaf504..135a7e4bc 100644 --- a/.editorconfig +++ b/.editorconfig @@ -14,3 +14,6 @@ indent_size = 4 [Makefile] indent_style = tab + +[prompts/*.txt] +insert_final_newline = unset diff --git a/prompts/chat-with-bob.txt b/prompts/chat-with-bob.txt index 009da39ae..ad494d831 100644 --- a/prompts/chat-with-bob.txt +++ b/prompts/chat-with-bob.txt @@ -4,4 +4,4 @@ User: Hello, Bob. Bob: Hello. How may I help you today? User: Please tell me the largest city in Europe. Bob: Sure. The largest city in Europe is Moscow, the capital of Russia. -User: +User: \ No newline at end of file diff --git a/prompts/reason-act.txt b/prompts/reason-act.txt index 872016631..a4f4f4ee6 100644 --- a/prompts/reason-act.txt +++ b/prompts/reason-act.txt @@ -15,4 +15,4 @@ Answer: The calculate tool says it is 9.3333333333 Question: What is capital of france? Thought: Do I need to use an action? No, I know the answer Answer: Paris is the capital of France -Question: +Question: \ No newline at end of file From 95ea26f6e92d620a5437f576b80868aee7f808d6 Mon Sep 17 00:00:00 2001 From: SebastianApel <13675545+SebastianApel@users.noreply.github.com> Date: Thu, 13 Apr 2023 14:46:23 +0200 Subject: [PATCH 09/49] benchmark : add tool for timing q4_0 matrix multiplication (#653) * Initial version of q4_0 matrix multiplication benchmark * Bugfix: Added dependency to ggml.o to benchmark * Reviewer requests: added parameter for threads, switched to ggml_time_us() * Reviewer input: removed rtsc, use epsilon for check * Review comment: Removed set_locale * Feature: Param for numer of iterations, Bugfix for use of parameter threads * Reviewer suggestion: Moved to examples * Reviewer feedback: Updated clean: and benchmark: sections --------- Co-authored-by: Georgi Gerganov --- Makefile | 7 +- examples/benchmark/benchmark-q4_0-matmult.c | 270 ++++++++++++++++++++ 2 files changed, 276 insertions(+), 1 deletion(-) create mode 100644 examples/benchmark/benchmark-q4_0-matmult.c diff --git a/Makefile b/Makefile index 3e58a28a7..fe2f26ecb 100644 --- a/Makefile +++ b/Makefile @@ -149,7 +149,7 @@ common.o: examples/common.cpp examples/common.h $(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o clean: - rm -vf *.o main quantize quantize-stats perplexity embedding + rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult main: examples/main/main.cpp ggml.o llama.o common.o $(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS) @@ -171,10 +171,15 @@ embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o libllama.so: llama.o ggml.o $(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS) + # # Tests # +benchmark: ggml.o + $(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS) + ./benchmark-q4_0-matmult + .PHONY: tests tests: bash ./tests/run-tests.sh diff --git a/examples/benchmark/benchmark-q4_0-matmult.c b/examples/benchmark/benchmark-q4_0-matmult.c new file mode 100644 index 000000000..9ca9b133a --- /dev/null +++ b/examples/benchmark/benchmark-q4_0-matmult.c @@ -0,0 +1,270 @@ +/* + License: MIT License + + Changelog: + - 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel) + +*/ + +#include +#include "ggml.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +float tensor_sum_elements(struct ggml_tensor * tensor) { + float sum = 0; + if (tensor->type==6) { + for (int j = 0; j < tensor->ne[1]; j++) { + for (int k = 0; k < tensor->ne[0]; k++) { + sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; + } + } + } + return sum; +} + + +/* + These are mapping to unknown + GGML_TYPE_I8, + GGML_TYPE_I16, + GGML_TYPE_I32, + GGML_TYPE_COUNT, +*/ + +#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" + +#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ + TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ + TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ + { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } + +struct benchmark_params_struct { + int32_t n_threads = 1; + int32_t n_iterations = 10; +}; + +void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); + fprintf(stderr, "\n"); +} + +int main(int argc, char ** argv) { + + + struct benchmark_params_struct benchmark_params; + + bool invalid_param = false; + std::string arg; + for (int i = 1; i < argc; i++) { + arg = argv[i]; + + if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + benchmark_params.n_threads = std::stoi(argv[i]); + } else if (arg == "-i" || arg == "--iter") { + if (++i >= argc) { + invalid_param = true; + break; + } + benchmark_params.n_iterations = std::stoi(argv[i]); + } else if (arg == "-h" || arg == "--help") { + print_usage(argc, argv, benchmark_params); + exit(0); + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + print_usage(argc, argv, benchmark_params); + exit(1); + } + } + + + // create the ggml context + printf("Starting Test\n"); + + + + struct ggml_context * ctx; + //const int sizex = 4096; + //const int sizey = 11008; + +#undef VERBOSE_DEBUGGING +#ifndef VERBOSE_DEBUGGING + const int sizey = 4096; + const int sizex = 11008; + const int sizez = 128; +#else + /* Working - let's increase size */ + const int sizey = 1; + const int sizex = (8*32); + const int sizez = 1; + + /*const int sizey = 1; + const int sizex = 3*(8*32); + const int sizez = 1;*/ +#endif + + //printf("Memsize required = %i\n", sizex*sizex); + ggml_type wtype = GGML_TYPE_F32; + + size_t ctx_size = 0; + ctx_size += sizex*sizey*ggml_type_sizef(wtype); + ctx_size += sizex*sizey*ggml_type_sizef(wtype); + ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); + ctx_size += sizex*sizeof(float); + ctx_size += 1024*1024*100; + + printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024)); + + struct ggml_init_params params = { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /* no_alloc =*/ 0 + }; + + ctx = ggml_init(params); + if (!ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + + + printf("Creating new tensors\n"); + // printf("Creating new tensor m1\n"); + struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); + ggml_set_f32(m11, 1.0f); + + // printf("Creating new tensor m1\n"); + struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); + ggml_set_f32(m12, 1.5f); + + // printf("Creating new tensor m2\n"); + struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); + ggml_set_f32(m2, 2.0f); + + printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); + // printf("Creating new tensor m11xm2\n"); + struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); + + // printf("Creating compute graph\n"); + struct ggml_cgraph gf = ggml_build_forward(m11xm2); + + gf.n_threads=benchmark_params.n_threads; + printf("cgraph->n_threads=%i\n",gf.n_threads); + + TENSOR_DUMP(m11); + TENSOR_DUMP(m2); + + ggml_graph_compute(ctx, &gf); + + TENSOR_DUMP(gf.nodes[0]); + + printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); + + int32_t nelements = sizex*sizey; + int32_t ne[2] = { sizex, sizey }; + + std::vector hist_cur(1 << 4, 0); + + // Set up a the benchmark matrices + // printf("Creating new tensor q11 & Running quantize\n"); + struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); + ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); + + // Set up a the compute graph + // printf("Creating new tensor q31\n"); + struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); + + // printf("Creating compute graph\n"); + struct ggml_cgraph gf31 = ggml_build_forward(q31); + gf31.n_threads=benchmark_params.n_threads; + + // Set up a second graph computation to make sure we override the CPU cache lines + // printf("Creating new tensor q12 & Running quantize\n"); + struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); + ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); + + // printf("Creating new tensor q32\n"); + struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); + + //printf("Creating compute graph\n"); + struct ggml_cgraph gf32 = ggml_build_forward(q32); + gf32.n_threads=benchmark_params.n_threads; + printf("cgraph->n_threads=%i\n",gf31.n_threads); + + const int dimx = sizex; + const int dimy = sizey; + const int dimz = sizez; + long long int flops_per_dot_product = dimy + dimy; + long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; + printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); + + + // Let's use the F32 result from above as a reference for the q4_0 multiplication + float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); + + + printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n"); + printf("==============================================================================================\n"); + + for (int i=0;i allowed_delta) { + printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", + sum_of_F32_reference, + sum_of_Q4_result, + delta, + allowed_delta + ); + exit(0); + } + + // Running a different graph computation to make sure we override the CPU cache lines + ggml_graph_compute(ctx, &gf32); + + } + +} From 585d91a156794d30eec16ebe67c8d7a1d41406c1 Mon Sep 17 00:00:00 2001 From: anzz1 Date: Thu, 13 Apr 2023 15:48:21 +0300 Subject: [PATCH 10/49] cmake : add explicit F16C option (x86) (#576) Fixes building for x86 processors missing F16C featureset MSVC not included, as in MSVC F16C is implied with AVX2/AVX512 --- CMakeLists.txt | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 6bec1f97b..affff3ea1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -56,6 +56,10 @@ option(LLAMA_AVX "llama: enable AVX" option(LLAMA_AVX2 "llama: enable AVX2" ON) option(LLAMA_AVX512 "llama: enable AVX512" OFF) option(LLAMA_FMA "llama: enable FMA" ON) +# in MSVC F16C is implied with AVX2/AVX512 +if (NOT MSVC) + option(LLAMA_F16C "llama: enable F16C" ON) +endif() # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) @@ -207,7 +211,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$") add_compile_options(/arch:AVX) endif() else() - add_compile_options(-mf16c) + if (LLAMA_F16C) + add_compile_options(-mf16c) + endif() if (LLAMA_FMA) add_compile_options(-mfma) endif() From 107980d970808c2ccf9334ad033e2782a560b911 Mon Sep 17 00:00:00 2001 From: niansa/tuxifan Date: Thu, 13 Apr 2023 15:03:39 +0200 Subject: [PATCH 11/49] examples : add -n to alpaca and gpt4all scripts (#706) --- examples/alpaca.sh | 2 +- examples/gpt4all.sh | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/alpaca.sh b/examples/alpaca.sh index 4c9aa5077..8d6261730 100755 --- a/examples/alpaca.sh +++ b/examples/alpaca.sh @@ -7,4 +7,4 @@ cd `dirname $0` cd .. -./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 +./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt --ctx_size 2048 -n -1 -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 diff --git a/examples/gpt4all.sh b/examples/gpt4all.sh index d974f95a9..5fd739e55 100755 --- a/examples/gpt4all.sh +++ b/examples/gpt4all.sh @@ -10,6 +10,6 @@ cd .. ./main --color --instruct --threads 4 \ --model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \ --file ./prompts/alpaca.txt \ - --batch_size 8 --ctx_size 2048 \ + --batch_size 8 --ctx_size 2048 -n -1 \ --repeat_last_n 64 --repeat_penalty 1.3 \ --n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95 From 8c3ffc2f048a372639906fb30ec3c2070288d3be Mon Sep 17 00:00:00 2001 From: Vladimir Date: Thu, 13 Apr 2023 15:24:30 +0200 Subject: [PATCH 12/49] ggml : update cblas_sgemm columns var to be more reasonable (#838) --- ggml.c | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/ggml.c b/ggml.c index a26b4853f..546da30d1 100644 --- a/ggml.c +++ b/ggml.c @@ -6435,7 +6435,7 @@ static void ggml_compute_forward_mul_mat_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } @@ -6607,7 +6607,7 @@ static void ggml_compute_forward_mul_mat_f16_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } @@ -6820,7 +6820,7 @@ static void ggml_compute_forward_mul_mat_q_f32( cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, - x, ne10, + x, ne00, 0.0f, d, ne01); } } From 4579af95e8e16910f6dbab0994917a5b3901f0cf Mon Sep 17 00:00:00 2001 From: Judd Date: Thu, 13 Apr 2023 21:43:22 +0800 Subject: [PATCH 13/49] zig : update build.zig (#872) * update * update readme * minimize the changes. --------- Co-authored-by: zjli2019 --- README.md | 40 +++++++++++++++++++++++++++++++--------- build.zig | 22 ++++++++-------------- 2 files changed, 39 insertions(+), 23 deletions(-) diff --git a/README.md b/README.md index dbc088532..c0958ebd6 100644 --- a/README.md +++ b/README.md @@ -149,21 +149,43 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8 ## Usage -Here are the step for the LLaMA-7B model: +Here are the step for the LLaMA-7B model. + +### Get the Code ```bash -# build this repo git clone https://github.com/ggerganov/llama.cpp cd llama.cpp -make +``` -#For Windows and CMake, use the following command instead: -cd -mkdir build -cd build -cmake .. -cmake --build . --config Release +### Build +Note: For Windows, CMake or Zig can be used. + +1. Use `make` + + ```bash + make + ``` + +1. Use CMake + + ```bash + mkdir build + cd build + cmake .. + cmake --build . --config Release + ``` + +1. Use Zig + + ```bash + zig build -Drelease-fast + ``` + +### Prepare Data & Run + +```bash # obtain the original LLaMA model weights and place them in ./models ls ./models 65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model diff --git a/build.zig b/build.zig index defc2c3ad..306127ffe 100644 --- a/build.zig +++ b/build.zig @@ -1,16 +1,14 @@ const std = @import("std"); -pub fn build(b: *std.Build) void { +pub fn build(b: *std.build.Builder) void { const target = b.standardTargetOptions(.{}); - const optimize = b.standardOptimizeOption(.{}); + const optimize = b.standardReleaseOptions(); const want_lto = b.option(bool, "lto", "Want -fLTO"); - const lib = b.addStaticLibrary(.{ - .name = "llama", - .target = target, - .optimize = optimize, - }); + const lib = b.addStaticLibrary("llama", null); lib.want_lto = want_lto; + lib.setTarget(target); + lib.setBuildMode(optimize); lib.linkLibCpp(); lib.addIncludePath("."); lib.addIncludePath("examples"); @@ -44,16 +42,12 @@ pub fn build(b: *std.Build) void { fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep { const b = args.b; const lib = args.lib; - const target = args.target; - const optimize = args.optimize; const want_lto = args.want_lto; - const exe = b.addExecutable(.{ - .name = name, - .target = target, - .optimize = optimize, - }); + const exe = b.addExecutable(name, null); exe.want_lto = want_lto; + lib.setTarget(args.target); + lib.setBuildMode(args.optimize); exe.addIncludePath("."); exe.addIncludePath("examples"); exe.addCSourceFiles(&.{ From c729ff730a46a135817a3d9988a097e3678a9722 Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Thu, 13 Apr 2023 15:49:05 +0200 Subject: [PATCH 14/49] flake.nix: add all binaries from bin (#848) --- flake.nix | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/flake.nix b/flake.nix index cd1b6d28e..91d2edd79 100644 --- a/flake.nix +++ b/flake.nix @@ -28,10 +28,8 @@ ]; installPhase = '' mkdir -p $out/bin - mv bin/main $out/bin/llama - mv bin/quantize $out/bin/quantize - mv bin/embedding $out/bin/embedding - mv bin/perplexity $out/bin/perplexity + mv bin/* $out/bin/ + mv $out/bin/main $out/bin/llama echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml From 7e941b95eba067cb5b92785e642fd803657376ee Mon Sep 17 00:00:00 2001 From: "Genkagaku.GPT" Date: Thu, 13 Apr 2023 21:54:27 +0800 Subject: [PATCH 15/49] readme : llama node binding (#911) * chore: add nodejs binding * chore: add nodejs binding --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index c0958ebd6..a7f220eb2 100644 --- a/README.md +++ b/README.md @@ -49,6 +49,7 @@ New features will probably be added mostly through community contributions. - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) +- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node) **UI:** From ec29272175d7a79681d9919f3e755b1bcefa0478 Mon Sep 17 00:00:00 2001 From: CRD716 Date: Thu, 13 Apr 2023 08:59:53 -0500 Subject: [PATCH 16/49] readme : remove python 3.10 warning (#929) --- README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/README.md b/README.md index a7f220eb2..c88e0de28 100644 --- a/README.md +++ b/README.md @@ -204,8 +204,6 @@ python3 convert-pth-to-ggml.py models/7B/ 1 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128 ``` -Currently, it's best to use Python 3.9 or Python 3.10, as `sentencepiece` has not yet published a wheel for Python 3.11. - When running the larger models, make sure you have enough disk space to store all the intermediate files. ### Memory/Disk Requirements From 8cda5c981d0bf4dcb7664194b2cb9a06e2dbdd54 Mon Sep 17 00:00:00 2001 From: CRD716 Date: Thu, 13 Apr 2023 09:03:57 -0500 Subject: [PATCH 17/49] fix whitespace (#944) --- Makefile | 6 +- examples/benchmark/benchmark-q4_0-matmult.c | 106 ++++++++++---------- 2 files changed, 56 insertions(+), 56 deletions(-) diff --git a/Makefile b/Makefile index fe2f26ecb..c7ccf462d 100644 --- a/Makefile +++ b/Makefile @@ -171,15 +171,15 @@ embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o libllama.so: llama.o ggml.o $(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS) - + # # Tests # benchmark: ggml.o - $(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS) + $(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS) ./benchmark-q4_0-matmult - + .PHONY: tests tests: bash ./tests/run-tests.sh diff --git a/examples/benchmark/benchmark-q4_0-matmult.c b/examples/benchmark/benchmark-q4_0-matmult.c index 9ca9b133a..90f537fd8 100644 --- a/examples/benchmark/benchmark-q4_0-matmult.c +++ b/examples/benchmark/benchmark-q4_0-matmult.c @@ -24,12 +24,12 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { float sum = 0; - if (tensor->type==6) { - for (int j = 0; j < tensor->ne[1]; j++) { - for (int k = 0; k < tensor->ne[0]; k++) { - sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; - } - } + if (tensor->type==6) { + for (int j = 0; j < tensor->ne[1]; j++) { + for (int k = 0; k < tensor->ne[0]; k++) { + sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; + } + } } return sum; } @@ -39,7 +39,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { These are mapping to unknown GGML_TYPE_I8, GGML_TYPE_I16, - GGML_TYPE_I32, + GGML_TYPE_I32, GGML_TYPE_COUNT, */ @@ -50,7 +50,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } -struct benchmark_params_struct { +struct benchmark_params_struct { int32_t n_threads = 1; int32_t n_iterations = 10; }; @@ -67,7 +67,7 @@ void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct para int main(int argc, char ** argv) { - + struct benchmark_params_struct benchmark_params; bool invalid_param = false; @@ -90,7 +90,7 @@ int main(int argc, char ** argv) { } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, benchmark_params); exit(0); - } + } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv, benchmark_params); @@ -101,9 +101,9 @@ int main(int argc, char ** argv) { // create the ggml context printf("Starting Test\n"); - - + + struct ggml_context * ctx; //const int sizex = 4096; //const int sizey = 11008; @@ -111,31 +111,31 @@ int main(int argc, char ** argv) { #undef VERBOSE_DEBUGGING #ifndef VERBOSE_DEBUGGING const int sizey = 4096; - const int sizex = 11008; + const int sizex = 11008; const int sizez = 128; #else /* Working - let's increase size */ const int sizey = 1; - const int sizex = (8*32); + const int sizex = (8*32); const int sizez = 1; /*const int sizey = 1; - const int sizex = 3*(8*32); + const int sizex = 3*(8*32); const int sizez = 1;*/ #endif //printf("Memsize required = %i\n", sizex*sizex); - ggml_type wtype = GGML_TYPE_F32; - + ggml_type wtype = GGML_TYPE_F32; + size_t ctx_size = 0; ctx_size += sizex*sizey*ggml_type_sizef(wtype); ctx_size += sizex*sizey*ggml_type_sizef(wtype); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizeof(float); - ctx_size += 1024*1024*100; - + ctx_size += 1024*1024*100; + printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024)); - + struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, @@ -147,88 +147,88 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } - - + + printf("Creating new tensors\n"); // printf("Creating new tensor m1\n"); struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m11, 1.0f); - + // printf("Creating new tensor m1\n"); struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); ggml_set_f32(m12, 1.5f); - + // printf("Creating new tensor m2\n"); struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); ggml_set_f32(m2, 2.0f); - + printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); // printf("Creating new tensor m11xm2\n"); struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); - + // printf("Creating compute graph\n"); struct ggml_cgraph gf = ggml_build_forward(m11xm2); - + gf.n_threads=benchmark_params.n_threads; - printf("cgraph->n_threads=%i\n",gf.n_threads); - + printf("cgraph->n_threads=%i\n",gf.n_threads); + TENSOR_DUMP(m11); TENSOR_DUMP(m2); - + ggml_graph_compute(ctx, &gf); TENSOR_DUMP(gf.nodes[0]); - + printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); - + int32_t nelements = sizex*sizey; int32_t ne[2] = { sizex, sizey }; - - std::vector hist_cur(1 << 4, 0); + + std::vector hist_cur(1 << 4, 0); // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); - + // Set up a the compute graph // printf("Creating new tensor q31\n"); struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); - + // printf("Creating compute graph\n"); struct ggml_cgraph gf31 = ggml_build_forward(q31); gf31.n_threads=benchmark_params.n_threads; - - // Set up a second graph computation to make sure we override the CPU cache lines + + // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); - + //printf("Creating compute graph\n"); struct ggml_cgraph gf32 = ggml_build_forward(q32); gf32.n_threads=benchmark_params.n_threads; - printf("cgraph->n_threads=%i\n",gf31.n_threads); - + printf("cgraph->n_threads=%i\n",gf31.n_threads); + const int dimx = sizex; const int dimy = sizey; const int dimz = sizez; long long int flops_per_dot_product = dimy + dimy; long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); - + // Let's use the F32 result from above as a reference for the q4_0 multiplication float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); - + printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n"); printf("==============================================================================================\n"); - + for (int i=0;i allowed_delta) { printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", - sum_of_F32_reference, + sum_of_F32_reference, sum_of_Q4_result, delta, allowed_delta ); exit(0); } - - // Running a different graph computation to make sure we override the CPU cache lines + + // Running a different graph computation to make sure we override the CPU cache lines ggml_graph_compute(ctx, &gf32); - + } - + } From 6c248707f51c8a50f7792e7f7787ec481881db88 Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Thu, 13 Apr 2023 16:08:32 +0200 Subject: [PATCH 18/49] ggml : introduce GGML_ALIGNED_MALLOC/GGML_ALIGNED_FREE macros (#884) which allows us to use aligned_alloc or _aligned_malloc functions --- ggml.c | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/ggml.c b/ggml.c index 546da30d1..281fd8ec9 100644 --- a/ggml.c +++ b/ggml.c @@ -114,6 +114,14 @@ typedef void* thread_ret_t; #define GGML_MEM_ALIGN 16 #endif +#if defined(_MSC_VER) || defined(__MINGW32__) +#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) +#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) +#else +#define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size) +#define GGML_ALIGNED_FREE(ptr) free(ptr) +#endif + #define UNUSED(x) (void)(x) #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) @@ -2966,7 +2974,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { *ctx = (struct ggml_context) { /*.mem_size =*/ params.mem_size, - /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), + /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size), /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, /*.no_alloc =*/ params.no_alloc, /*.n_objects =*/ 0, @@ -3001,7 +3009,7 @@ void ggml_free(struct ggml_context * ctx) { __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size); if (ctx->mem_buffer_owned) { - free(ctx->mem_buffer); + GGML_ALIGNED_FREE(ctx->mem_buffer); } found = true; From 6232f2d7fd7a22d5eeb62182b2f21fcf01359754 Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Thu, 13 Apr 2023 14:59:50 +0000 Subject: [PATCH 19/49] ggml : optimize non-SIMD Q4_0 vector dot product (#703) --- ggml.c | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/ggml.c b/ggml.c index 281fd8ec9..eb47d8298 100644 --- a/ggml.c +++ b/ggml.c @@ -2160,18 +2160,20 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const uint8_t * restrict p0 = x[i].qs; const uint8_t * restrict p1 = y[i].qs; + int sumi = 0; for (int j = 0; j < QK/2; j++) { const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; - const float f0 = d0*((int8_t) (v0 & 0xf) - 8); - const float f1 = d0*((int8_t) (v0 >> 4) - 8); + const int8_t i0 = (int8_t) (v0 & 0xf) - 8; + const int8_t i1 = (int8_t) (v0 >> 4) - 8; - const float f2 = d1*((int8_t) (v1 & 0xf) - 8); - const float f3 = d1*((int8_t) (v1 >> 4) - 8); + const int8_t i2 = (int8_t) (v1 & 0xf) - 8; + const int8_t i3 = (int8_t) (v1 >> 4) - 8; - sumf += f0*f2 + f1*f3; + sumi += i0*i2 + i1*i3; } + sumf += d0 * d1 * sumi; } #endif From c85980acd04631a7c43d13676276f76ec72f5dfe Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 13 Apr 2023 18:01:22 +0300 Subject: [PATCH 20/49] gitignore : benchmark --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index d8dd34fb9..ba5cbf1ed 100644 --- a/.gitignore +++ b/.gitignore @@ -23,6 +23,7 @@ models/* /result /perplexity /embedding +/benchmark-q4_0-matmult /Pipfile arm_neon.h From 9190e8eac8bdc108c40d2d7505e9b45fa773251f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 13 Apr 2023 18:04:45 +0300 Subject: [PATCH 21/49] llama : merge llama_internal.h into llama.h Hide it behind an #ifdef --- CMakeLists.txt | 1 - Makefile | 2 +- examples/quantize-stats/quantize-stats.cpp | 3 ++- llama.cpp | 1 - llama.h | 11 +++++++++++ llama_internal.h | 12 ------------ 6 files changed, 14 insertions(+), 16 deletions(-) delete mode 100644 llama_internal.h diff --git a/CMakeLists.txt b/CMakeLists.txt index affff3ea1..d5715d92a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -253,7 +253,6 @@ endif() add_library(llama llama.cpp llama.h - llama_internal.h llama_util.h) target_include_directories(llama PUBLIC .) diff --git a/Makefile b/Makefile index c7ccf462d..7db246650 100644 --- a/Makefile +++ b/Makefile @@ -142,7 +142,7 @@ default: main quantize perplexity embedding ggml.o: ggml.c ggml.h $(CC) $(CFLAGS) -c ggml.c -o ggml.o -llama.o: llama.cpp llama.h llama_util.h llama_internal.h +llama.o: llama.cpp llama.h llama_util.h $(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o common.o: examples/common.cpp examples/common.h diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 203bfe8cc..c786fe208 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -1,6 +1,7 @@ #include "ggml.h" + +#define LLAMA_API_INTERNAL #include "llama.h" -#include "llama_internal.h" #include #include diff --git a/llama.cpp b/llama.cpp index 6d8b706b9..c72295684 100644 --- a/llama.cpp +++ b/llama.cpp @@ -5,7 +5,6 @@ #include "llama_util.h" #include "llama.h" -#include "llama_internal.h" #include "ggml.h" diff --git a/llama.h b/llama.h index 7a258a1e1..192217593 100644 --- a/llama.h +++ b/llama.h @@ -179,4 +179,15 @@ extern "C" { } #endif +// Internal API to be implemented by llama.cpp and used by tests/benchmarks only +#ifdef LLAMA_API_INTERNAL + +#include +#include +struct ggml_tensor; + +std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); + +#endif + #endif // LLAMA_H diff --git a/llama_internal.h b/llama_internal.h deleted file mode 100644 index 543eed996..000000000 --- a/llama_internal.h +++ /dev/null @@ -1,12 +0,0 @@ -// Internal header to be included by llama.cpp and tests/benchmarks only. - -#ifndef LLAMA_INTERNAL_H -#define LLAMA_INTERNAL_H - -#include -#include -struct ggml_tensor; - -std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); - -#endif // LLAMA_INTERNAL_H From d990e3fffc5b0f5448e90a16c79a4f2675100af0 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 13 Apr 2023 18:32:36 +0300 Subject: [PATCH 22/49] ggml : speed-up ggml_vec_dot_q4_1() ARM_NEON + 32-bit ARM support (#900) * ggml : speed-up q4_1 ARM_NEON by ~5% * ggml : implement vaddvq when missing * ggml : implement vminvq and vmaxvq when missing * ggml : implement vzip when missing * ggml : fix comment * ggml : try to use correct ifdef --- ggml.c | 170 ++++++++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 125 insertions(+), 45 deletions(-) diff --git a/ggml.c b/ggml.c index eb47d8298..b6a24b40c 100644 --- a/ggml.c +++ b/ggml.c @@ -491,6 +491,77 @@ static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) } #endif +#if __ARM_NEON + +#if !defined(__aarch64__) + +inline static uint16_t vaddvq_u8(uint8x16_t v) { + return + (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) + + (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) + + (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) + + (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) + + (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) + + (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) + + (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) + + (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15); +} + +inline static int32_t vaddvq_s16(int16x8_t v) { + return + (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +} + +inline static uint32_t vaddvq_u16(uint16x8_t v) { + return + (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) + + (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) + + (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) + + (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7); +} + +inline static int32_t vaddvq_s32(int32x4_t v) { + return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); +} + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +inline float vminvq_f32(float32x4_t v) { + return + MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +inline float vmaxvq_f32(float32x4_t v) { + return + MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +inline int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { + return vget_low_s8(vcombine_s8(a, b)); +} + +inline int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { + return vget_high_s8(vcombine_s8(a, b)); +} + +inline uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { + return vget_low_u8(vcombine_u8(a, b)); +} + +inline uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { + return vget_high_u8(vcombine_u8(a, b)); +} + +#endif +#endif + // method 5 // blocks of QK elements // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors) @@ -1218,15 +1289,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c) #define GGML_F32x4_ADD vaddq_f32 #define GGML_F32x4_MUL vmulq_f32 -#if defined(__ARM_FEATURE_QRDMX) - #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) -#else - #define GGML_F32x4_REDUCE_ONE(x) \ - (vgetq_lane_f32(x, 0) + \ - vgetq_lane_f32(x, 1) + \ - vgetq_lane_f32(x, 2) + \ - vgetq_lane_f32(x, 3)) -#endif +#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) #define GGML_F32x4_REDUCE(res, x) \ { \ for (int i = 0; i < GGML_F32_ARR/2; ++i) { \ @@ -1849,55 +1912,43 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest // 4-bit -> 8-bit const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b)); const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b)); - const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4)); const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b)); const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b)); - const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4)); // sub 8 const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b); - const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b); const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b); - const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b); #if defined(__ARM_FEATURE_DOTPROD) - // dot product into int16x8_t + // dot product into int32x4_t int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls); int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls); p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs); p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs); - // scalar -#if defined(__ARM_FEATURE_QRDMX) - sum0 += x0->d * y0->d * vaddvq_s32(p_0); - sum1 += x1->d * y1->d * vaddvq_s32(p_1); -#else - sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3)); - sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3)); -#endif + sum0 += x0->d*y0->d*vaddvq_s32(p_0); + sum1 += x1->d*y1->d*vaddvq_s32(p_1); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls)); - const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs)); const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs)); const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls)); const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls)); - const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs)); const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs)); @@ -1910,14 +1961,8 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const int16x8_t p_0 = vaddq_s16(pl_0, ph_0); const int16x8_t p_1 = vaddq_s16(pl_1, ph_1); - // scalar -#if defined(__ARM_FEATURE_QRDMX) - sum0 += x0->d * y0->d * vaddvq_s16(p_0); - sum1 += x1->d * y1->d * vaddvq_s16(p_1); -#else - sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7)); - sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7)); -#endif + sum0 += x0->d*y0->d*vaddvq_s16(p_0); + sum1 += x1->d*y1->d*vaddvq_s16(p_1); #endif } @@ -2265,36 +2310,71 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest float sum10 = 0.0f; float sum11 = 0.0f; - for (int i = 0; i < nb; ++i) { + for (int i = 0; i < nb; i += 2) { const block_q4_1 * restrict x0 = &x[i + 0]; const block_q4_1 * restrict y0 = &y[i + 0]; + const block_q4_1 * restrict x1 = &x[i + 1]; + const block_q4_1 * restrict y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t v0_0 = vld1q_u8(x0->qs); const uint8x16_t v1_0 = vld1q_u8(y0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + const uint8x16_t v1_1 = vld1q_u8(y1->qs); - // and with 0xf + // 4-bit -> 8-bit const uint8x16_t v0_0l = vandq_u8(v0_0, m4b); const uint8x16_t v1_0l = vandq_u8(v1_0, m4b); - const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4); const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4); - // dot product into uint16x8_t - const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l)); - const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l)); - - const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h)); - const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h)); - - const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h); - const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h); + const uint8x16_t v0_1l = vandq_u8(v0_1, m4b); + const uint8x16_t v1_1l = vandq_u8(v1_1, m4b); + const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4); + const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4); sum00 += x0->m*y0->m; sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h)); sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h)); - sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0)); + + sum00 += x1->m*y1->m; + sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h)); + sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h)); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l); + int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l); + + p_0 = vdotq_s32(p_0, v0_0h, v1_0h); + p_1 = vdotq_s32(p_1, v0_1h, v1_1h); + + sum11 += x0->d*y0->d*vaddvq_s32(p_0); + sum11 += x1->d*y1->d*vaddvq_s32(p_1); +#else + const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l)); + const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l)); + const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h)); + const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h)); + + const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l)); + const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l)); + const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h)); + const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h)); + + const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h); + const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h); + + const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h); + const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h); + + const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0); + const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1); + + sum11 += x0->d*y0->d*vaddvq_u16(p_0); + sum11 += x1->d*y1->d*vaddvq_u16(p_1); +#endif } sumf = QK*sum00 + sum01 + sum10 + sum11; From a3a2a0eda8828b60436e9f69d9ac2c1060d03e7a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 13 Apr 2023 18:36:40 +0300 Subject: [PATCH 23/49] ggml : add GGML_DEFAULT_N_THREADS --- ggml.c | 6 +++--- ggml.h | 11 ++++++----- 2 files changed, 9 insertions(+), 8 deletions(-) diff --git a/ggml.c b/ggml.c index b6a24b40c..42e3ee314 100644 --- a/ggml.c +++ b/ggml.c @@ -9363,7 +9363,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { struct ggml_cgraph result = { /*.n_nodes =*/ 0, /*.n_leafs =*/ 0, - /*.n_threads =*/ 0, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, /*.work_size =*/ 0, /*.work =*/ NULL, /*.nodes =*/ { NULL }, @@ -9983,8 +9983,8 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { GGML_PRINT("=== GRAPH ===\n"); - GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); - GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size); + GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); + GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size); GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); for (int i = 0; i < cgraph->n_nodes; i++) { diff --git a/ggml.h b/ggml.h index 7d8b7a182..c06c09e06 100644 --- a/ggml.h +++ b/ggml.h @@ -177,11 +177,12 @@ extern "C" { #include #include -#define GGML_MAX_DIMS 4 -#define GGML_MAX_NODES 4096 -#define GGML_MAX_PARAMS 16 -#define GGML_MAX_CONTEXTS 64 -#define GGML_MAX_OPT 4 +#define GGML_MAX_DIMS 4 +#define GGML_MAX_NODES 4096 +#define GGML_MAX_PARAMS 16 +#define GGML_MAX_CONTEXTS 64 +#define GGML_MAX_OPT 4 +#define GGML_DEFAULT_N_THREADS 4 #ifdef __ARM_NEON // we use the built-in 16-bit float type From 0e07e6a8399fd993739a3ba3c6f95f92bfab6f58 Mon Sep 17 00:00:00 2001 From: CRD716 Date: Thu, 13 Apr 2023 10:39:25 -0500 Subject: [PATCH 24/49] common : remove unnecessary includes (#947) --- examples/common.cpp | 6 ------ 1 file changed, 6 deletions(-) diff --git a/examples/common.cpp b/examples/common.cpp index 91d96efae..0772dbfe1 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -7,12 +7,6 @@ #include #include -#if defined(_MSC_VER) || defined(__MINGW32__) -#include // using malloc.h with MSC/MINGW -#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) -#include -#endif - #if defined (_WIN32) #include #include From be87b6ed20a5f7528bf491a83e759a9fc6a24fea Mon Sep 17 00:00:00 2001 From: Gary Linscott Date: Thu, 13 Apr 2023 14:50:42 -0700 Subject: [PATCH 25/49] perplexity : add support for batch size to `--perplexity` (#407) * Add support to batch size for perplexity * Revert "Fix memory allocation issues and seg faults" This reverts commit 4870e455b3653f7d7769fa5772b2c90ffad088df. * update from merge * Remove perplexity from main * updates * Update batch size for efficiency --- examples/perplexity/perplexity.cpp | 36 +++++++++++++++++------------- 1 file changed, 21 insertions(+), 15 deletions(-) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index b62f00d0c..38e3643b1 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -27,20 +27,27 @@ void perplexity(llama_context * ctx, const gpt_params & params) { int count = 0; int seq_count = tokens.size() / params.n_ctx; + int n_vocab = llama_n_vocab(ctx); double nll = 0.0; - - fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count); + fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch); for (int i = 0; i < seq_count; ++i) { int start = i * params.n_ctx; - int end = start + params.n_ctx - 1; // TODO: this is not optimal, e.g. it makes the batch 511 instead of 512 - // it is better to always be power of 2 for better performance - std::vector embd(tokens.begin() + start, tokens.begin() + end); + int end = start + params.n_ctx; + + std::vector logits; + int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch; auto start_t = std::chrono::high_resolution_clock::now(); - if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return; + for (int j = 0; j < num_batches; ++j) { + int batch_start = start + j * params.n_batch; + int batch_size = std::min(end - batch_start, params.n_batch); + if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + auto batch_logits = llama_get_logits(ctx); + logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } auto end_t = std::chrono::high_resolution_clock::now(); if (i == 0) { @@ -59,15 +66,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) { // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. - - auto logits = llama_get_logits(ctx); - for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) { + for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. - int n_vocab = llama_n_vocab(ctx); std::vector tok_logits( - logits + j * n_vocab, - logits + (j + 1) * n_vocab); - const float prob = softmax(tok_logits)[tokens[start + j + 1]]; + logits.begin() + j * n_vocab, + logits.begin() + (j + 1) * n_vocab); + float prob = softmax(tok_logits)[tokens[start + j + 1]]; nll += -std::log(prob); ++count; } @@ -82,11 +86,13 @@ int main(int argc, char ** argv) { gpt_params params; params.model = "models/llama-7B/ggml-model.bin"; + params.n_batch = 512; if (gpt_params_parse(argc, argv, params) == false) { return 1; } params.perplexity = true; + params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" From c5d70f5c9ea5a8f0f6b0d6aa741455978a1dabfd Mon Sep 17 00:00:00 2001 From: Howard Su Date: Fri, 14 Apr 2023 14:24:52 +0800 Subject: [PATCH 26/49] ggml : optimize rope function to avoid call powf in the tight loop (#807) --- ggml.c | 22 ++++++++++++---------- 1 file changed, 12 insertions(+), 10 deletions(-) diff --git a/ggml.c b/ggml.c index 42e3ee314..e2ebc9e4b 100644 --- a/ggml.c +++ b/ggml.c @@ -7507,19 +7507,20 @@ static void ggml_compute_forward_rope_f32( // row index used to determine which thread to use int ir = 0; + const float theta_scale = powf(10000.0, ((float)-2)/n_dims); + for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; - + float theta = (float)p; for (int i0 = 0; i0 < n_dims; i0 += 2) { - const float theta = powf(10000.0, ((float)-i0)/n_dims); - - const float cos_theta = cosf(p*theta); - const float sin_theta = sinf(p*theta); + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + theta *= theta_scale; const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -7580,19 +7581,20 @@ static void ggml_compute_forward_rope_f16( // row index used to determine which thread to use int ir = 0; + const float theta_scale = powf(10000.0, ((float)-2)/n_dims); + for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { const int p = (mode == 0 ? n_past + i2 : i2); for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; - + float theta = (float)p; for (int i0 = 0; i0 < n_dims; i0 += 2) { - const float theta = powf(10000.0, ((float)-i0)/n_dims); - - const float cos_theta = cosf(p*theta); - const float sin_theta = sinf(p*theta); + const float cos_theta = cosf(theta); + const float sin_theta = sinf(theta); + theta *= theta_scale; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); From 0f07cacb05f49704d35a39aa27cfd4b419eb6f8d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 14 Apr 2023 09:45:42 +0300 Subject: [PATCH 27/49] ggml : fix q4_1 dot product types --- ggml.c | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/ggml.c b/ggml.c index e2ebc9e4b..d620cd11f 100644 --- a/ggml.c +++ b/ggml.c @@ -2344,14 +2344,14 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest #if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t - int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l); - int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l); + uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l); + uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l); - p_0 = vdotq_s32(p_0, v0_0h, v1_0h); - p_1 = vdotq_s32(p_1, v0_1h, v1_1h); + p_0 = vdotq_u32(p_0, v0_0h, v1_0h); + p_1 = vdotq_u32(p_1, v0_1h, v1_1h); - sum11 += x0->d*y0->d*vaddvq_s32(p_0); - sum11 += x1->d*y1->d*vaddvq_s32(p_1); + sum11 += x0->d*y0->d*vaddvq_u32(p_0); + sum11 += x1->d*y1->d*vaddvq_u32(p_1); #else const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l)); const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l)); From 723dac55fa2ba7adc6e3fc8609781d1ad0378906 Mon Sep 17 00:00:00 2001 From: comex Date: Fri, 14 Apr 2023 00:03:03 -0700 Subject: [PATCH 28/49] py : new conversion script (#545) Current status: Working, except for the latest GPTQ-for-LLaMa format that includes `g_idx`. This turns out to require changes to GGML, so for now it only works if you use the `--outtype` option to dequantize it back to f16 (which is pointless except for debugging). I also included some cleanup for the C++ code. This script is meant to replace all the existing conversion scripts (including the ones that convert from older GGML formats), while also adding support for some new formats. Specifically, I've tested with: - [x] `LLaMA` (original) - [x] `llama-65b-4bit` - [x] `alpaca-native` - [x] `alpaca-native-4bit` - [x] LLaMA converted to 'transformers' format using `convert_llama_weights_to_hf.py` - [x] `alpaca-native` quantized with `--true-sequential --act-order --groupsize 128` (dequantized only) - [x] same as above plus `--save_safetensors` - [x] GPT4All - [x] stock unversioned ggml - [x] ggmh There's enough overlap in the logic needed to handle these different cases that it seemed best to move to a single script. I haven't tried this with Alpaca-LoRA because I don't know where to find it. Useful features: - Uses multiple threads for a speedup in some cases (though the Python GIL limits the gain, and sometimes it's disk-bound anyway). - Combines split models into a single file (both the intra-tensor split of the original and the inter-tensor split of 'transformers' format files). Single files are more convenient to work with and more friendly to future changes to use memory mapping on the C++ side. To accomplish this without increasing memory requirements, it has some custom loading code which avoids loading whole input files into memory at once. - Because of the custom loading code, it no longer depends in PyTorch, which might make installing dependencies slightly easier or faster... although it still depends on NumPy and sentencepiece, so I don't know if there's any meaningful difference. In any case, I also added a requirements.txt file to lock the dependency versions in case of any future breaking changes. - Type annotations checked with mypy. - Some attempts to be extra user-friendly: - The script tries to be forgiving with arguments, e.g. you can specify either the model file itself or the directory containing it. - The script doesn't depend on config.json / params.json, just in case the user downloaded files individually and doesn't have those handy. But you still need tokenizer.model and, for Alpaca, added_tokens.json. - The script tries to give a helpful error message if added_tokens.json is missing. --- README.md | 4 +- convert-ggml-to-pth.py | 299 ------- convert-gpt4all-to-ggml.py | 107 --- convert-gptq-to-ggml.py | 172 ---- convert-pth-to-ggml.py | 277 +------ convert-unversioned-ggml-to-ggml.py | 100 --- convert.py | 1143 +++++++++++++++++++++++++++ migrate-ggml-2023-03-30-pr613.py | 311 -------- requirements.txt | 2 + 9 files changed, 1154 insertions(+), 1261 deletions(-) delete mode 100644 convert-ggml-to-pth.py delete mode 100644 convert-gpt4all-to-ggml.py delete mode 100644 convert-gptq-to-ggml.py delete mode 100644 convert-unversioned-ggml-to-ggml.py create mode 100644 convert.py delete mode 100644 migrate-ggml-2023-03-30-pr613.py create mode 100644 requirements.txt diff --git a/README.md b/README.md index c88e0de28..78215c9ce 100644 --- a/README.md +++ b/README.md @@ -192,10 +192,10 @@ ls ./models 65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model # install Python dependencies -python3 -m pip install torch numpy sentencepiece +python3 -m pip install -r requirements.txt # convert the 7B model to ggml FP16 format -python3 convert-pth-to-ggml.py models/7B/ 1 +python3 convert.py models/7B/ # quantize the model to 4-bits (using method 2 = q4_0) ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2 diff --git a/convert-ggml-to-pth.py b/convert-ggml-to-pth.py deleted file mode 100644 index 25a44237a..000000000 --- a/convert-ggml-to-pth.py +++ /dev/null @@ -1,299 +0,0 @@ -# Author: github.com/ductai199x -import argparse -import os -import struct - -import numpy as np -import torch -from numba import njit -from tqdm.auto import tqdm - - -def read_header(fin): - values = struct.unpack("i" * 9, fin.read(4 * 9)) - _, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values - return { - "vocab_size": vocab_size, - "dim": dim, - "multiple_of": multiple_of, - "n_heads": n_heads, - "n_layers": n_layers, - }, ftype - - -def read_tokens(fin, vocab_size): - tokens = [] - for _ in range(vocab_size): - text_len = struct.unpack("i", fin.read(4))[0] - text_bytes = fin.read(text_len) - try: - text = text_bytes.decode() - except UnicodeDecodeError: - text = text_bytes.decode(errors="replace") - score = struct.unpack("f", fin.read(4))[0] - tokens.append((text, score)) - return tokens - - -@njit -def dequantize_weights_numba(fin_data, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - bs = 4 + (qk // 2) - - weights = np.zeros((n_rows, n_cols), dtype=np.float32) - data_pos = 0 - - for row in range(n_rows): - for block in range(nb): - d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0] - data_pos += 4 - packed_values = fin_data[data_pos : data_pos + (qk // 2)] - data_pos += qk // 2 - - for i in range(qk // 2): - packed_value = packed_values[i] - v0 = np.float32((packed_value & 0b00001111) - 8) * d - v1 = np.float32((packed_value >> 4) - 8) * d - - weights[row, block * qk + 2 * i] = v0 - weights[row, block * qk + 2 * i + 1] = v1 - - return weights - - -def dequantize_weights(fin, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - data_size = n_rows * n_cols // 2 + n_rows * nb * 4 - fin_data = fin.read(data_size) - return dequantize_weights_numba(fin_data, n_rows, n_cols) - - -def read_variables(fin): - model = {} - pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables") - while True: - start_pos = fin.tell() - try: - n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3)) - except struct.error: - break - - shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims))) - shape = shape[::-1] - name = fin.read(name_length).decode() - - # ensure tensor data is aligned - tensor_data_offset = fin.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fin.seek(tensor_data_offset) - - if ftype_cur == 2: - # 4-bit quantized weights - dtype = np.uint8 - data = dequantize_weights(fin, shape[0], shape[1]) - data = data.reshape(shape) - elif ftype_cur == 0: - dtype = np.float32 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - elif ftype_cur == 1: - dtype = np.float16 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - - model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16) - - pbar.update(fin.tell() - start_pos) - - return model - - -def convert_to_hf_format(model, hparams): - # This works for llama 7B, need to test with other models - n_layers = hparams["n_layers"] - n_heads = hparams["n_heads"] - dim = hparams["dim"] - dims_per_head = dim // n_heads - base = 10000.0 - inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) - - # permute for sliced rotary - def permute(w): - return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) - - state_dict = {} - for layer_i in range(n_layers): - state_dict.update( - { - f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( - model[f"layers.{layer_i}.attention.wq.weight"] - ), - f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( - model[f"layers.{layer_i}.attention.wk.weight"] - ), - f"model.layers.{layer_i}.self_attn.v_proj.weight": model[ - f"layers.{layer_i}.attention.wv.weight" - ], - f"model.layers.{layer_i}.self_attn.o_proj.weight": model[ - f"layers.{layer_i}.attention.wo.weight" - ], - f"model.layers.{layer_i}.mlp.gate_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w1.weight" - ], - f"model.layers.{layer_i}.mlp.down_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w2.weight" - ], - f"model.layers.{layer_i}.mlp.up_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w3.weight" - ], - f"model.layers.{layer_i}.input_layernorm.weight": model[ - f"layers.{layer_i}.attention_norm.weight" - ], - f"model.layers.{layer_i}.post_attention_layernorm.weight": model[ - f"layers.{layer_i}.ffn_norm.weight" - ], - } - ) - state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq - state_dict.update( - { - "model.embed_tokens.weight": model["tok_embeddings.weight"], - "model.norm.weight": model["norm.weight"], - "lm_head.weight": model["output.weight"], - } - ) - - return state_dict - - -def chat(model, hparams, llama_dir): - from transformers import (GenerationConfig, LlamaForCausalLM, - LlamaTokenizer, StoppingCriteria, - StoppingCriteriaList) - from transformers.models.llama.configuration_llama import LlamaConfig - - class StoppingCriteriaSub(StoppingCriteria): - def __init__(self): - super().__init__() - - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]): - print(tokenizer.decode(input_ids[0]), end="", flush=True) - if input_ids[0][-1] == 13: - return True - - return False - - config = LlamaConfig( - vocab_size=hparams["vocab_size"], - dim=hparams["dim"], - num_hidden_layers=hparams["n_layers"], - num_attention_heads=hparams["n_heads"], - ) - - llama = LlamaForCausalLM(config=config) - llama.load_state_dict(state_dict=model, strict=True) - tokenizer = LlamaTokenizer.from_pretrained(llama_dir) - - device = torch.device("cpu") - llama = llama.to(device) - - ctx = """You are AI. -This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself. -User: Hello, AI. -AI: Hello! How can I assist you today? -""" - print(ctx.rstrip("\n")) - while True: - print("-" * 60) - prompt = input("User: ") - if ctx != "": - ctx = f"{ctx}User: {prompt}\n" - else: - ctx = f"{prompt}\nAI:" - - ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx - - print("-" * 60) - if len(ctx.strip()) > 0: - input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device) - generation_config = GenerationConfig( - temperature=0.8, - top_p=0.95, - top_k=50, - repetition_penalty=1.1764, - ) - with torch.no_grad(): - generation_output = llama.generate( - input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_length=2048, - do_sample=True, - stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]), - ) - s = generation_output.sequences[0] - decoded = tokenizer.decode(s) - ctx = f"{decoded}\n" - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files." - ) - parser.add_argument( - "--prefix", - "-p", - type=str, - required=True, - help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).", - ) - parser.add_argument( - "--hf", - action="store_true", - help="Whether to save the model in the Hugging Face format. (default: False)", - ) - parser.add_argument( - "--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)" - ) - args = parser.parse_args() - - llama_dir = os.path.abspath(f"{args.input_dir}/../") - - ggml_files = sorted( - [f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)] - ) - - fin = open(ggml_files[0], "rb") - hparams, ftype = read_header(fin) - tokens = read_tokens(fin, hparams["vocab_size"]) - model = read_variables(fin) - - for f in tqdm(ggml_files[1:]): - fin = open(f, "rb") - read_header(fin) - read_tokens(fin, hparams["vocab_size"]) - model.update(read_variables(fin)) - - if args.hf: - model = convert_to_hf_format(model, hparams) - - pth_ckpt = { - "state_dict": model, - "hparams": hparams, - "tokens": tokens, - } - - torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth") - - if args.chat: - if not args.hf: - model = convert_to_hf_format(model, hparams) - chat(model, hparams, llama_dir) - - -if __name__ == "__main__": - main() diff --git a/convert-gpt4all-to-ggml.py b/convert-gpt4all-to-ggml.py deleted file mode 100644 index b1a5e0560..000000000 --- a/convert-gpt4all-to-ggml.py +++ /dev/null @@ -1,107 +0,0 @@ -#!/usr/bin/env python3 - -# -# TODO: deduplicate GPT4All with convert-unversioned-ggml-to-ggml.py -# - -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade a GPT4All model to the current format') - parser.add_argument('gpt4all_model', help='path to gpt4all-lora-quantized.bin') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - - # TODO: GPT4All - add extra token - text = "".encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", 0.0)) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - convert_one_file(args.gpt4all_model, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert-gptq-to-ggml.py b/convert-gptq-to-ggml.py deleted file mode 100644 index 42e99c2ff..000000000 --- a/convert-gptq-to-ggml.py +++ /dev/null @@ -1,172 +0,0 @@ -# Convert a GPTQ quantized LLaMA model to a ggml compatible file -# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa -# -import os -import re -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor - -if len(sys.argv) != 4: - print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n") - sys.exit(1) - -fname_model = sys.argv[1] -fname_tokenizer = sys.argv[2] -dir_out = sys.argv[3] - -model = torch.load(fname_model, map_location="cpu") - -n_vocab, n_embd = model['model.embed_tokens.weight'].shape -n_layer = 1 + max(int(m.group(1)) for name in model - if (m := re.match(r'model\.layers\.([0-9]+)', name))) - -# hardcoded: -n_mult = 256 -n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer] - -tokenizer = SentencePieceProcessor(fname_tokenizer) - -assert tokenizer.vocab_size() == n_vocab - -fname_out = sys.argv[3] - -fout = open(fname_out, "wb") - -fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex -fout.write(struct.pack("i", 1)) # file version -fout.write(struct.pack("i", n_vocab)) -fout.write(struct.pack("i", n_embd)) -fout.write(struct.pack("i", n_mult)) -fout.write(struct.pack("i", n_head)) -fout.write(struct.pack("i", n_layer)) -fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete) -fout.write(struct.pack("i", 4)) - - -# This loop unchanged from convert-pth-to-ggml.py: -for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def write_header(shape, dst_name, ftype_cur): - sname = dst_name.encode() - fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur)) - fout.write(struct.pack("i" * len(shape), *shape[::-1])) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fout.seek(tensor_data_offset) - -def convert_non_q4(src_name, dst_name): - v = model[src_name] - shape = v.shape - print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}") - if len(shape) == 1: - print(" Converting to float32") - v = v.to(torch.float32) - - ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype] - - # header - write_header(shape, dst_name, ftype_cur) - - # data - v.numpy().tofile(fout) - -def convert_q4(src_name, dst_name, permute=False): - zeros = model[f"{src_name}.zeros"].numpy() - scales = model[f"{src_name}.scales"].numpy() - bias = model[f"{src_name}.bias"].numpy() - qweight = model[f"{src_name}.qweight"].numpy().T # transpose - - # Q4_1 does not support bias; good thing the bias is always all zeros. - assert not np.any(bias) - - # Each int32 item is actually 8 int4 items packed together, and it's transposed. - shape = (qweight.shape[0], qweight.shape[1] * 8) - - print(f"Processing Q4 variable: {src_name} with shape: {shape}") - - # The output format has the int4 weights in groups of 32 rather than 8. - # It looks like this: - # For each row: - # For each group of 32 columns: - # - addend (float32, 4 bytes) - # - scale (float32, 4 bytes) - # - weights (int4 * 32, 16 bytes) - # Note that in the input, the scales and addends are shared between all - # the columns in a row, so we end up wasting quite a bit of memory with - # repeated scales and addends. - - addends = -zeros # flip sign - - # Since the output format is mixed between integers and floats, we have - # to hackily view the floats as int32s just so numpy will let us - # concatenate them. - addends_view = addends.view(dtype=np.int32) - scales_view = scales.view(dtype=np.int32) - - # Split into groups of 4 columns (i.e. 32 columns of quantized data): - grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4]) - - # Repeat addends and scales: - addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1) - scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1) - - blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no') - - if permute: - # Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py. - # This can be done after the above conversion because it doesn't affect column order/layout. - blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:]) - .swapaxes(1, 2) - .reshape(blob.shape)) - - # header - write_header(shape, dst_name, 3) # ftype = Q4_1 - - # data - blob.tofile(fout) - -convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight") -convert_non_q4("model.norm.weight", "norm.weight") -convert_non_q4("lm_head.weight", "output.weight") - -for i in range(n_layer): - convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight") - convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight") - - convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight") - convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight") - convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight") - - convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight") - convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight") - - -fout.close() - -print(f"Done. Output file: {fname_out}") -print() diff --git a/convert-pth-to-ggml.py b/convert-pth-to-ggml.py index dcef2f6a3..f87ac270c 100644 --- a/convert-pth-to-ggml.py +++ b/convert-pth-to-ggml.py @@ -1,274 +1,11 @@ -# Convert a LLaMA model checkpoint to a ggjt compatible file -# -# Load the model using Torch -# Iterate over all variables and write them to a binary file. -# -# For each variable, write the following: -# - Number of dimensions (int) -# - Name length (int) -# - Dimensions (int[n_dims]) -# - Name (char[name_length]) -# - Data (float[n_dims]) -# -# At the start of the ggml file we write the model parameters -# and vocabulary. -# +# Compatibility stub import argparse -import os -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor +import convert -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def parse_args(): - parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') - parser.add_argument('dir_model', help='directory containing the model checkpoint') - parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) - parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?') - return parser.parse_args() - -def get_n_parts(dim): - mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8} - n_parts = mappings.get(dim) - if n_parts is None: - print(f"Invalid dim: {dim}") - sys.exit(1) - - print(f"n_parts = {n_parts}\n") - return n_parts - -def load_hparams_and_tokenizer(dir_model): - # `dir_model` is something like `models/7B` or `models/7B/`. - # "tokenizer.model" is expected under model's parent dir. - # When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found. - # Let's use the model's parent dir directly. - model_parent_dir = os.path.dirname(os.path.normpath(dir_model)) - fname_hparams = f"{dir_model}/params.json" - fname_tokenizer = f"{model_parent_dir}/tokenizer.model" - with open(fname_hparams, "r") as f: - hparams = json.load(f) - print(hparams) - tokenizer = SentencePieceProcessor(fname_tokenizer) - hparams.update({"vocab_size": tokenizer.vocab_size()}) - return hparams, tokenizer - -def write_header(fout, hparams, ftype): - keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - values = [ - 0x67676a74, # magic: ggjt in hex - 1, # file version - *[hparams[key] for key in keys], - hparams["dim"] // hparams["n_heads"], # rot (obsolete) - ftype - ] - fout.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def process_and_write_variables(fout, model, ftype, part_id, n_parts): - for name, datao in model.items(): - if name.endswith("freqs"): - continue - - # remove dimensions with a single element - data = datao.numpy().squeeze() - partshape = data.shape - n_dims = len(data.shape) - assert n_dims in (1, 2) - - print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}") - - # coerce single-dimensional tensors from float16 to float32 - ftype_cur = 1 - if ftype == 0 or n_dims == 1: - print(" Converting to float32") - data = data.astype(np.float32) - ftype_cur = 0 - blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]] - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if "tok_embeddings" in name: - split_dim = 1 - elif "layers" in name: - if "attention.wo.weight" in name: - split_dim = 1 - elif "feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif "output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - sname = name.encode() - fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - data.tofile(fout) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - data.tofile(fout) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - data[row].tofile(fout) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur)) - -def main(): - args = parse_args() - dir_model = args.dir_model - ftype = args.ftype - ftype_str = ["f32", "f16"] - hparams, tokenizer = load_hparams_and_tokenizer(dir_model) - - print(args) - - # if only writing vocab to file - if args.vocab_only: - fname_model = f"{dir_model}/consolidated.00.pth" - fname_out = f"{dir_model}/ggml-vocab.bin" - print(f"Extracting only the vocab from '{fname_model}'\n") - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - print(f"Done. Output file: {fname_out}\n") - return - - n_parts = get_n_parts(hparams["dim"]) - fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin" - - # we output a single file for ggml - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fname_model = f"{dir_model}/consolidated.0{part_id}.pth" - model = torch.load(fname_model, map_location="cpu") - process_and_write_variables(fout, model, ftype, part_id, n_parts) - del model - - print(f"Done. Output file: {fname_out}\n") - -if __name__ == "__main__": - main() +parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') +parser.add_argument('dir_model', help='directory containing the model checkpoint') +parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) +args = parser.parse_args() +convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model]) diff --git a/convert-unversioned-ggml-to-ggml.py b/convert-unversioned-ggml-to-ggml.py deleted file mode 100644 index 5151d9081..000000000 --- a/convert-unversioned-ggml-to-ggml.py +++ /dev/null @@ -1,100 +0,0 @@ -#!/usr/bin/env python3 -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format') - parser.add_argument('dir_model', help='directory containing ggml .bin files') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - files = [] - files.extend(glob.glob(f"{args.dir_model}/*.bin")) - files.extend(glob.glob(f"{args.dir_model}/*.bin.*")) - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - for file in files: - convert_one_file(file, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert.py b/convert.py new file mode 100644 index 000000000..f35163f67 --- /dev/null +++ b/convert.py @@ -0,0 +1,1143 @@ +import argparse +import concurrent.futures +import copy +import enum +import faulthandler +import functools +import io +import itertools +import json +import math +import mmap +import pickle +import re +import signal +import struct +import sys +import zipfile +from abc import ABCMeta, abstractmethod +from dataclasses import dataclass +from pathlib import Path +import numpy as np +from sentencepiece import SentencePieceProcessor # type: ignore +from typing import (IO, Any, Callable, Iterable, Literal, Optional, Sequence, + TypeVar, Union, List, Dict, Tuple, TYPE_CHECKING) +if TYPE_CHECKING: + from typing_extensions import TypeAlias + +if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): + faulthandler.register(signal.SIGUSR1) + +NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' + + +@dataclass(frozen=True) +class UnquantizedDataType: + name: str + + +DT_F16 = UnquantizedDataType('F16') +DT_F32 = UnquantizedDataType('F32') +DT_I32 = UnquantizedDataType('I32') +DT_BF16 = UnquantizedDataType('BF16') + + +@dataclass(frozen=True) +class QuantizedDataType: + groupsize: int + have_addends: bool + have_g_idx: bool + + +DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False) +DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False) + +DataType = Union[UnquantizedDataType, QuantizedDataType] + +DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { + DT_F32: 0, + DT_F16: 1, + DT_Q4_0: 2, + DT_Q4_1: 3, +} + +FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ + {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} + +DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { + DT_F16: np.dtype(np.float16), + DT_F32: np.dtype(np.float32), + DT_I32: np.dtype(np.int32), +} + +NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ + {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} + + +class GGMLFileType(enum.Enum): + AllF32 = 0 + MostlyF16 = 1 # except 1d tensors + MostlyQ4_0 = 2 # except 1d tensors + MostlyQ4_1 = 3 # except 1d tensors + PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16 + + def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: + if len(tensor.shape) == 1: + # 1D tensors are always F32. + return DT_F32 + elif self == GGMLFileType.AllF32: + return DT_F32 + elif self == GGMLFileType.MostlyF16: + return DT_F16 + elif self == GGMLFileType.MostlyQ4_0: + return DT_Q4_0 + elif self == GGMLFileType.MostlyQ4_1: + return DT_Q4_1 + elif self == GGMLFileType.PerLayerIsQ4_1: + if name in ('output.weight', 'tok_embeddings.weight'): + return DT_F16 + else: + return DT_Q4_1 + else: + raise ValueError(self) + + +def make_tensors_list() -> List[str]: + ret = [ + 'tok_embeddings.weight', + 'norm.weight', + 'output.weight', + ] + for i in range(80): # maximum number of layer + ret += [ + f'layers.{i}.attention.wq.weight', + f'layers.{i}.attention.wk.weight', + f'layers.{i}.attention.wv.weight', + f'layers.{i}.attention.wo.weight', + f'layers.{i}.attention_norm.weight', + f'layers.{i}.feed_forward.w1.weight', + f'layers.{i}.feed_forward.w2.weight', + f'layers.{i}.feed_forward.w3.weight', + f'layers.{i}.atttention_norm.weight', + f'layers.{i}.ffn_norm.weight', + ] + return ret + + +TENSORS_LIST = make_tensors_list() +TENSORS_SET = set(TENSORS_LIST) + + +@dataclass +class Params: + n_vocab: int + n_embd: int + n_mult: int + n_head: int + n_layer: int + file_type: GGMLFileType + + @staticmethod + def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': + n_vocab, n_embd = model["tok_embeddings.weight"].shape + + return Params( + n_vocab=n_vocab, + n_embd=n_embd, + n_mult=256, + n_head=n_embd // 128, + n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), + file_type=file_type, + ) + + +class SentencePieceVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: + self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) + added_tokens: Dict[str, int] + if fname_added_tokens is not None: + added_tokens = json.load(open(fname_added_tokens)) + else: + added_tokens = {} + vocab_size: int = self.sentencepiece_tokenizer.vocab_size() + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base: int = vocab_size + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens + + def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: + tokenizer = self.sentencepiece_tokenizer + for i in range(tokenizer.vocab_size()): + text: bytes + if tokenizer.is_unknown(i): + text = " \u2047 ".encode("utf-8") + elif tokenizer.is_control(i): + text = b"" + elif tokenizer.is_byte(i): + piece = tokenizer.id_to_piece(i) + if len(piece) != 6: + raise Exception(f"Invalid token: {piece}") + byte_value = int(piece[3:-1], 16) + text = struct.pack("B", byte_value) + else: + text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") + score: float = tokenizer.get_score(i) + yield text, score + + def added_tokens(self) -> Iterable[Tuple[bytes, float]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + yield from self.sentencepiece_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class GGMLVocab: + def __init__(self, tokens: List[Tuple[bytes, float]]): + self.tokens = tokens + self.vocab_size = len(tokens) + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + return self.tokens + + def __repr__(self) -> str: + return f"" + + +Vocab = Union[SentencePieceVocab, GGMLVocab] + + +def permute(weights: NDArray, n_head: int) -> NDArray: + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + +def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray: + # First reinterpret each row from a list of int32s containing 8 values each + # to a list of uint8s containing 2 values each. + qvalues_pack8 = qvalues_pack32.view(np.uint8) + + # Then split out the two values per int8 (which requires an actual + # conversion because numpy doesn't natively support int4s). + qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8) + qvalues[:, 0::2] = qvalues_pack8 & 0xf + qvalues[:, 1::2] = qvalues_pack8 >> 4 + + assert addends is None or addends.shape == scales.shape + assert qvalues.shape[0] == scales.shape[0] + assert qvalues.shape[1] % scales.shape[1] == 0 + if g_idx is None: + repeat_count = qvalues.shape[1] // scales.shape[1] + scales = scales[:, :, np.newaxis] + if addends is not None: + addends = addends[:, :, np.newaxis] + # Reshape so that the below computation broadcasts over scales and addends: + qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count)) + else: + # In this case the scale and addend is selected for each column by g_idx: + assert addends is not None + scales = scales[:, g_idx] + addends = addends[:, g_idx] + if addends is None: + # Q4_0 + qvalues = qvalues.view(np.int8) + qvalues -= 8 + # And do the actual 'value = scale * qvalue + addend' computation. + values = scales * qvalues + if addends is not None: + values += addends + if g_idx is None: + values.shape = (values.shape[0], values.shape[1] * values.shape[2]) + return values + + +class Tensor(metaclass=ABCMeta): + data_type: DataType + + @abstractmethod + def astype(self, data_type: DataType) -> 'Tensor': ... + @abstractmethod + def permute(self, n_head: int) -> 'Tensor': ... + @abstractmethod + def to_ggml(self) -> 'GGMLCompatibleTensor': ... + + +class UnquantizedTensor(Tensor): + def __init__(self, ndarray: NDArray) -> None: + assert isinstance(ndarray, np.ndarray) + self.ndarray = ndarray + self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] + + def astype(self, data_type: DataType) -> Tensor: + dtype = DATA_TYPE_TO_NUMPY[data_type] + return UnquantizedTensor(self.ndarray.astype(dtype)) + + def to_ggml(self) -> 'UnquantizedTensor': + return self + + def permute(self, n_head: int) -> 'UnquantizedTensor': + return UnquantizedTensor(permute(self.ndarray, n_head)) + + +def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: + tensor = lazy_tensor.load() + assert isinstance(tensor, UnquantizedTensor) + + # double-check: + actual_shape = list(tensor.ndarray.shape) + assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) + if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: + if convert: + tensor.ndarray = tensor.ndarray.astype(expected_dtype) + else: + raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') + + return tensor.ndarray + + +class GGMLQuantizedTensor(Tensor): + data_type: QuantizedDataType + + def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None: + rows, columns = shape + assert data_type in (DT_Q4_1, DT_Q4_0) # for now + assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this + assert columns % data_type.groupsize == 0 + words_in_block = 6 if data_type == DT_Q4_1 else 5 + self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block)) + self.shape = shape[:] + self.data_type = data_type + + def astype(self, data_type: DataType) -> Tensor: + if data_type == self.data_type: + return self + scales = self.ndarray[:, :, 0].view(np.float32) + if self.data_type.have_addends: + addends = self.ndarray[:, :, 1].view(np.float32) + else: + addends = None + qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8]) + + dq = dequantize_q4(qweights, scales, addends, g_idx=None) + return UnquantizedTensor(dq).astype(data_type) + + def to_ggml(self) -> 'GGMLQuantizedTensor': + return self + + def permute(self, n_head: int) -> 'GGMLQuantizedTensor': + return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type) + + +GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor] + + +class DeferredPermutedTensor(Tensor): + def __init__(self, base: Tensor, n_head: int) -> None: + self.base = base + self.n_head = n_head + self.data_type = self.base.data_type + + def astype(self, data_type: DataType) -> Tensor: + return self.base.astype(data_type).permute(self.n_head) + + def to_ggml(self) -> GGMLCompatibleTensor: + return self.base.to_ggml().permute(self.n_head) + + def permute(self, n_head: int) -> Tensor: + raise Exception("shouldn't permute twice") + + +class GPTQForLLaMaQuantizedTensor(Tensor): + def __init__(self, model: 'LazyModel', namebase: str) -> None: + qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32) + scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True) + + bias = model.get(f"{namebase}.bias") + if bias is not None: + # Q4_1 does not support bias; good thing the bias is always all zeros. + assert not np.any(load_unquantized(bias)) + + if f"{namebase}.zeros" in model: + zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32) + else: + qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32) + assert qzeros.dtype == np.int32 + zeros = dequantize_q4(qzeros, scales, scales, g_idx=None) + assert zeros.dtype == np.float32 + + assert zeros.shape == scales.shape + + # Output is transposed compared to the input, and addends have their sign flipped. + # Scales and zeros similarly must be transposed but only for newer + # versions of GPTQ-for-LLaMa; the older versions can be identified by + # having shape (n_embd, 1). + qweight = qweight.T + if scales.shape[1] != 1: + scales = scales.T + zeros = zeros.T + + # Output also has signs flipped for the addends. + self.qweight = qweight + self.scales = scales + self.addends = -zeros + + self.g_idx: Optional[NDArray] + if f"{namebase}.g_idx" in model: + self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32) + assert self.g_idx.shape == (qweight.shape[1] * 8,) + else: + self.g_idx = None + + self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8] + self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True, + have_g_idx=(self.g_idx is not None)) + + def inspect(self, row: int, col: int) -> None: + '''For debugging.''' + qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf + if self.g_idx is not None: + group = self.g_idx[col] + else: + group = int(col // self.groupsize()) + scale = self.scales[row, group] + addend = self.addends[row, group] + with np.printoptions(precision=None, suppress=True): + print(f'scale:{scale} addend:{addend} qweight:{qweight}') + print('possible values:', np.arange(16) * scale + addend) + print('actual value:', qweight * scale + addend) + + def astype(self, data_type: DataType) -> Tensor: + if isinstance(data_type, QuantizedDataType): + assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False + return self.regroup(data_type.groupsize) + + dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx) + return UnquantizedTensor(dequantized).astype(data_type) + + def groupsize(self) -> int: + assert self.addends.shape == self.scales.shape + assert self.shape[1] % self.scales.shape[1] == 0 + return self.shape[1] // self.scales.shape[1] + + def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor': + # Old versions of GPTQ-for-LLaMa shared scales and addends between all the + # columns in a row. Newer versions share them between every set of N + # columns in a row, where N is the `groupsize` parameter, usually 128. The + # output format shares them between every set of 32 columns. To handle + # this, duplicate scales and addends for every smaller group. + # (In the above, 'row' and 'column' are in the sense of the output.) + assert self.g_idx is None + old_groupsize = self.groupsize() + assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize + ret = copy.copy(self) + ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1) + ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1) + ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False) + return ret + + def permute(self, n_head: int) -> Tensor: + return DeferredPermutedTensor(self, n_head) + + def to_ggml(self) -> GGMLQuantizedTensor: + # The output format looks like this: + # For each row: + # For each group of 32 columns: + # - addend (float32, 4 bytes) + # - scale (float32, 4 bytes) + # - weights (int4 * 32, 16 bytes) + + if self.groupsize() != 32: + raise Exception("should have been regrouped before converting to ggml") + + # Since the output format is mixed between integers and floats, we have + # to hackily view the floats as int32s just so numpy will let us + # concatenate them. + addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis] + scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis] + + # Split into groups of 4 columns (i.e. 32 columns of quantized data): + grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4]) + + # And concatenate: + grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no') + + return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1) + + +@dataclass +class LazyTensor: + _load: Callable[[], Tensor] + shape: List[int] + data_type: DataType + description: str + + def load(self) -> Tensor: + ret = self._load() + assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) + return ret + + def astype(self, data_type: DataType) -> 'LazyTensor': + self.validate_conversion_to(data_type) + + def load() -> Tensor: + return self.load().astype(data_type) + return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') + + def validate_conversion_to(self, data_type: DataType) -> None: + if data_type == self.data_type: + return + if isinstance(data_type, QuantizedDataType): + if not isinstance(self.data_type, QuantizedDataType): + raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") + if self.data_type.have_g_idx: + sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), which is not yet natively supported by GGML. For now you can still convert this model by passing `--outtype f16` to dequantize, but that will result in a much larger output file for no quality benefit.\n") + sys.exit(1) + assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends + + +LazyModel = Dict[str, LazyTensor] + + +@dataclass +class ModelPlus: + model: LazyModel + paths: List[Path] # Where this was read from. + format: Literal['ggml', 'torch', 'safetensors'] + vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab. + + +def merge_sharded(models: List[LazyModel]) -> LazyModel: + # Original LLaMA models have each file contain one part of each tensor. + # Use a dict instead of a set to preserve order. + names = {name: None for model in models for name in model} + + def convert(name: str) -> LazyTensor: + lazy_tensors: List[LazyTensor] = [model[name] for model in models] + if len(lazy_tensors) == 1: + # only one file; don't go through this procedure since there might + # be quantized tensors + return lazy_tensors[0] + if len(lazy_tensors[0].shape) == 1: + # the tensor is just duplicated in every file + return lazy_tensors[0] + if name.startswith('tok_embeddings.') or \ + name.endswith('.attention.wo.weight') or \ + name.endswith('.feed_forward.w2.weight'): + # split by columns + axis = 1 + else: + # split by rows + axis = 0 + concatenated_shape = list(lazy_tensors[0].shape) + concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) + + def load() -> UnquantizedTensor: + ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] + concatenated: NDArray = np.concatenate(ndarrays, axis=axis) + return UnquantizedTensor(concatenated) + description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' + return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) + return {name: convert(name) for name in names} + + +def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: + formats = set(mp.format for mp in models_plus) + assert len(formats) == 1, "different formats?" + format = formats.pop() + paths = [path for mp in models_plus for path in mp.paths] + # Use the first non-None vocab, if any. + try: + vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) + except StopIteration: + vocab = None + + if any("model.embed_tokens.weight" in mp.model for mp in models_plus): + # Transformers models put different tensors in different files, but + # don't split indivdual tensors between files. + model: LazyModel = {} + for mp in models_plus: + model.update(mp.model) + else: + model = merge_sharded([mp.model for mp in models_plus]) + + return ModelPlus(model, paths, format, vocab) + + +def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: + def load() -> Tensor: + return lazy_tensor.load().permute(n_head) + return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) + + +def convert_transformers_to_orig(model: LazyModel) -> LazyModel: + out: LazyModel = {} + out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] + out["norm.weight"] = model["model.norm.weight"] + out["output.weight"] = model["lm_head.weight"] + + n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 + for i in itertools.count(): + if f"model.layers.{i}.self_attn.q_proj.weight" not in model: + break + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) + out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] + out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] + + out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] + out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] + out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] + + out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] + out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"] + return out + + +def handle_quantization(model: LazyModel) -> LazyModel: + '''Convert a model with entries for 'foo.qweight', 'foo.scales', etc. + (which resolve to UnquantizedTensors with the raw data) to one with entries + for 'foo.weight' (which resolve to QuantizedTensors). + ''' + def convert(name: str) -> Tuple[str, LazyTensor]: + if name.endswith(".qweight"): + namebase = name.rsplit('.', 1)[0] + orig_name = namebase + ".weight" + + lazy_tensor = model[name] + assert len(lazy_tensor.shape) == 2 + real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8] + + # Calculate type. This replicates the logic in + # GPTQForLLaMaQuantizedTensor (which is executed when the modelis + # actually loaded). + lazy_scales = model[f"{namebase}.scales"] + scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0] + assert real_shape[1] % scales_width == 0 + groupsize = real_shape[1] // scales_width + have_g_idx = f"{namebase}.g_idx" in model + data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx) + + def load() -> Tensor: + return GPTQForLLaMaQuantizedTensor(model, namebase) + + return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]')) + else: + return (name, model[name]) + return dict(convert(name) for name in model) + +# Functionality that simulates `torch.load` but where individual tensors are +# only loaded into memory on demand, not all at once. +# PyTorch can't do this natively as of time of writing: +# - https://github.com/pytorch/pytorch/issues/64327 +# This allows us to de-shard without multiplying RAM usage, and also +# conveniently drops the PyTorch dependency (though we still need numpy). + + +@dataclass +class LazyStorageKind: + data_type: DataType + + +@dataclass +class LazyStorage: + load: Callable[[int, int], NDArray] + kind: LazyStorageKind + description: str + + +class LazyUnpickler(pickle.Unpickler): + def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): + super().__init__(fp) + self.data_base_path = data_base_path + self.zip_file = zip_file + + def persistent_load(self, pid: Any) -> Any: + assert pid[0] == 'storage' + assert isinstance(pid[1], LazyStorageKind) + data_type = pid[1].data_type + filename_stem = pid[2] + filename = self.data_base_path + '/' + filename_stem + info = self.zip_file.getinfo(filename) + + def load(offset: int, elm_count: int) -> NDArray: + dtype = DATA_TYPE_TO_NUMPY.get(data_type) + if dtype is None: + raise Exception("tensor stored in unsupported format") + fp = self.zip_file.open(info) + fp.seek(offset * dtype.itemsize) + size = elm_count * dtype.itemsize + data = fp.read(size) + assert len(data) == size + return np.frombuffer(data, dtype) + description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' + return LazyStorage(load=load, kind=pid[1], description=description) + + def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] + requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: + assert isinstance(storage, LazyStorage) + + def load() -> UnquantizedTensor: + elm_count = stride[0] * size[0] + return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) + description = f'pickled storage_offset={storage_offset} in {storage.description}' + return LazyTensor(load, list(size), storage.kind.data_type, description) + + CLASSES: Dict[Any, Any] = { + ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, + ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), + ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), + ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), + ('torch', 'IntStorage'): LazyStorageKind(DT_I32), + } + + def find_class(self, module: str, name: str) -> Any: + if not module.startswith('torch'): + return super().find_class(module, name) + return self.CLASSES[(module, name)] + + +def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: + zf = zipfile.ZipFile(outer_fp) + pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] + assert len(pickle_paths) == 1, pickle_paths + pickle_fp = zf.open(pickle_paths[0], 'r') + unpickler = LazyUnpickler(pickle_fp, + data_base_path=pickle_paths[0][:-4], + zip_file=zf) + model = unpickler.load() + as_dict = dict(model.items()) + return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) + + +SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { + 'F16': DT_F16, + 'F32': DT_F32, + 'I32': DT_I32, +} + + +def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: + header_size, = struct.unpack(' LazyTensor: + data_type = SAFETENSORS_DATA_TYPES[info['dtype']] + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + shape: List[int] = info['shape'] + begin, end = info['data_offsets'] + assert 0 <= begin <= end <= len(byte_buf) + assert end - begin == math.prod(shape) * numpy_dtype.itemsize + buf = byte_buf[begin:end] + + def load() -> UnquantizedTensor: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'safetensors begin={begin} end={end} type={data_type} path={path}' + return LazyTensor(load, shape, data_type, description) + model = {name: convert(info) for (name, info) in header.items()} + return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) + + +def must_read(fp: IO[bytes], length: int) -> bytes: + ret = fp.read(length) + if len(ret) < length: + raise Exception("unexpectedly reached end of file") + return ret + + +def lazy_load_ggml_file(fp: IO[bytes], path: Path) -> ModelPlus: + magic = must_read(fp, 4)[::-1] + if magic in (b'ggmf', b'ggjt'): + version, = struct.unpack("i", must_read(fp, 4)) + assert version == 1 + else: + assert magic == b'ggml' + version = None + n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28)) + + tokens: List[Tuple[bytes, float]] = [] + for i in range(n_vocab): + if i == 32000: + # HACK: GPT4All messed with the format without changing the magic + # number. Specifically, they changed the vocab section to contain + # `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the + # extra pad token). Try to detect if we're reading a file like + # this. + orig_pos = fp.tell() + fp.seek(20, io.SEEK_CUR) + is_gpt4all = fp.read(21) == b'tok_embeddings.weight' + fp.seek(orig_pos) + if is_gpt4all: + break + + length, = struct.unpack("i", must_read(fp, 4)) + text = must_read(fp, length) + if magic != b'ggml': + score, = struct.unpack("f", must_read(fp, 4)) + tokens.append((text, score)) + vocab = GGMLVocab(tokens) if magic != b'ggml' else None + + model: LazyModel = {} + # Use mmap for the actual data to avoid race conditions with the file offset. + mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) + + def read_tensor() -> None: # this is a function so that variables captured in `load` don't change + shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) + assert 0 <= shape_len <= 3 + shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len))) + shape = shape[::-1] + name = must_read(fp, name_len).decode('utf-8') + data_type = FTYPE_TO_DATA_TYPE[ftype] + + if magic == b'ggjt': + fp.seek((fp.tell() + 31) & -32) + + if data_type == DT_Q4_1: + # See GPTQForLLaMaQuantizedTensor.ggml_ndarray() + size = 24 * (shape[1] // 32) * shape[0] + elif data_type == DT_Q4_0: + size = 20 * (shape[1] // 32) * shape[0] + else: + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + elm_count = math.prod(shape) + size = elm_count * numpy_dtype.itemsize + offset = fp.tell() + buf = mapped[offset:offset+size] + fp.seek(size, io.SEEK_CUR) + + def load() -> Tensor: + if isinstance(data_type, QuantizedDataType): + ndarray = np.frombuffer(buf, dtype=np.uint32) + return GGMLQuantizedTensor(ndarray, shape, data_type) + else: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'ggml offset={offset} type={data_type} path={path}' + model[name] = LazyTensor(load, shape, data_type, description) + + while fp.read(1) != b'': + fp.seek(-1, io.SEEK_CUR) + read_tensor() + + return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab) + + +@functools.lru_cache(maxsize=None) +def lazy_load_file(path: Path) -> ModelPlus: + fp = open(path, 'rb') + first8 = fp.read(8) + fp.seek(0) + if first8[:2] == b'PK': + # A zip file, i.e. PyTorch format + return lazy_load_torch_file(fp, path) + elif first8[2:4] == b'gg': + # GGML format + return lazy_load_ggml_file(fp, path) + elif struct.unpack(' Iterable[Out]: + '''Parallel map, but with backpressure. If the caller doesn't call `next` + fast enough, this will stop calling `func` at some point rather than + letting results pile up in memory. Specifically, there is a max of one + output value buffered per thread.''' + with concurrent.futures.ThreadPoolExecutor() as executor: + futures: List[concurrent.futures.Future[Out]] = [] + items_rev = list(iterable)[::-1] + for i in range(min(concurrency, len(items_rev))): + futures.append(executor.submit(func, items_rev.pop())) + while futures: + result = futures.pop(0).result() + if items_rev: + futures.append(executor.submit(func, items_rev.pop())) + yield result + + +def check_vocab_size(params: Params, vocab: Vocab) -> None: + if params.n_vocab != vocab.vocab_size: + # GGMLVocab comes from the same file as the model so shouldn't mismatch: + assert isinstance(vocab, SentencePieceVocab) + if params.n_vocab == vocab.vocab_size_base: + print("Ignoring added_tokens.json since model matches vocab size without it.") + vocab.added_tokens_list = [] + vocab.vocab_size = vocab.vocab_size_base + return + msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" + if vocab.fname_added_tokens is not None: + msg += f" combined with {vocab.fname_added_tokens}" + msg += f" has {vocab.vocab_size})." + if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: + msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." + raise Exception(msg) + + +class OutputFile: + def __init__(self, fname_out: Path) -> None: + self.fout = open(fname_out, "wb") + + def write_file_header(self, params: Params) -> None: + self.fout.write(b"ggjt"[::-1]) # magic + values = [ + 1, # file version + params.n_vocab, + params.n_embd, + params.n_mult, + params.n_head, + params.n_layer, + params.n_embd // params.n_head, # rot (obsolete) + params.file_type.value, + ] + self.fout.write(struct.pack("i" * len(values), *values)) + + def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: + sname = name.encode('utf-8') + self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) + self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) + self.fout.write(sname) + self.fout.seek((self.fout.tell() + 31) & -32) + + def write_vocab(self, vocab: Vocab) -> None: + for text, score in vocab.all_tokens(): + self.fout.write(struct.pack("i", len(text))) + self.fout.write(text) + self.fout.write(struct.pack("f", score)) + + @staticmethod + def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: + of = OutputFile(fname_out) + params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, + n_head=1, n_layer=0, file_type=GGMLFileType.AllF32) + of = OutputFile(fname_out) + of.write_file_header(params) + of.write_vocab(vocab) + of.fout.close() + + @staticmethod + def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: + check_vocab_size(params, vocab) + of = OutputFile(fname_out) + of.write_file_header(params) + print("Writing vocab...") + of.write_vocab(vocab) + + def do_item(item: Tuple[str, LazyTensor]) -> NDArray: + name, lazy_tensor = item + return lazy_tensor.load().to_ggml().ndarray + + ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) + for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): + size = ' x '.join(map(str, lazy_tensor.shape)) + print(f"[{i+1}/{len(model)}] Writing tensor {name}, size {size}...") + of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) + ndarray.tofile(of.fout) + of.fout.close() + + +def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: + wq_type = model["layers.0.attention.wq.weight"].data_type + if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): + return GGMLFileType.AllF32 + if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): + return GGMLFileType.MostlyF16 + if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and + wq_type.have_addends): + if isinstance(model["output.weight"].data_type, QuantizedDataType): + return GGMLFileType.MostlyQ4_1 + else: + return GGMLFileType.PerLayerIsQ4_1 + if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)): + return GGMLFileType.MostlyQ4_0 + name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} + raise Exception(f"Unexpected combination of types: {name_to_type}") + + +def do_necessary_conversions(model: LazyModel) -> LazyModel: + model = handle_quantization(model) + + if "lm_head.weight" in model: + model = convert_transformers_to_orig(model) + model = filter_and_sort_tensors(model) + + return model + + +def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: + return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) + for (name, tensor) in model.items()} + + +def nth_multifile_path(path: Path, n: int) -> Optional[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the nth path in the model. + ''' + # Support the following patterns: + patterns: List[Tuple[str, str]] = [ + # - x.00.pth, x.01.pth, etc. + (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), + # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. + (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), + # x.bin, x.bin.1, etc. + (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') + ] + for regex, replacement in patterns: + if re.search(regex, path.name): + new_path = path.with_name(re.sub(regex, replacement, path.name)) + if new_path.exists(): + return new_path + return None + + +def find_multifile_paths(path: Path) -> List[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the whole list of paths in the model. + ''' + ret: List[Path] = [] + for i in itertools.count(): + nth_path = nth_multifile_path(path, i) + if nth_path is None: + break + ret.append(nth_path) + if not ret: + # No matches. This should only happen if the file was named, e.g., + # foo.0, and there was no file named foo. Oh well, try to process it + # as a single file. + return [path] + return ret + + +def load_some_model(path: Path) -> ModelPlus: + '''Load a model of any supported format.''' + # Be extra-friendly and accept either a file or a directory: + if path.is_dir(): + globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"] + files = [file for glob in globs for file in path.glob(glob)] + if not files: + # Try GGML too, but with lower priority, since if both a non-GGML + # model and a GGML model exist in the same directory, we assume the + # latter was converted from the former. + files = list(path.glob("ggml-model*.bin*")) + if not files: + raise Exception(f"Can't find model in directory {path}") + if len(files) > 1: + raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") + path = files[0] + + paths = find_multifile_paths(path) + models_plus: List[ModelPlus] = [] + for path in paths: + print(f"Loading model file {path}") + models_plus.append(lazy_load_file(path)) + + model_plus = merge_multifile_models(models_plus) + return model_plus + + +def filter_and_sort_tensors(model: LazyModel) -> LazyModel: + return {name: model[name] for name in TENSORS_LIST if name in model} + + +def load_vocab(path: Path) -> SentencePieceVocab: + # Be extra-friendly and accept either a file or a directory. Also, if it's + # a directory, it might be the model directory, and tokenizer.model might + # be in the parent of that. + if path.is_dir(): + path2 = path / "tokenizer.model" + # Use `.parent` instead of /.. to handle the symlink case better. + path3 = path.parent / "tokenizer.model" + if path2.exists(): + path = path2 + elif path3.exists(): + path = path3 + else: + raise FileNotFoundError(f"Could not find tokenizer.model in {path} or its parent; if it's in another directory, pass the directory as --vocab-dir") + added_tokens_path = path.parent / "added_tokens.json" + print(f"Loading vocab file {path}") + return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) + + +def default_outfile(model_paths: List[Path], params: Params) -> Path: + namestr = { + GGMLFileType.AllF32: "f32", + GGMLFileType.MostlyF16: "f16", + GGMLFileType.MostlyQ4_1: "q4_1", + GGMLFileType.PerLayerIsQ4_1: "q4_1", + }[params.file_type] + ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" + if ret in model_paths: + sys.stderr.write(f"Error: Default output path ({ret}) would overwrite the input. Please explicitly specify a path using --outfile.\n") + sys.exit(1) + return ret + + +def do_dump_model(model_plus: ModelPlus) -> None: + print(f"model_plus.paths = {model_plus.paths!r}") + print(f"model_plus.format = {model_plus.format!r}") + print(f"model_plus.vocab = {model_plus.vocab!r}") + for name, lazy_tensor in model_plus.model.items(): + print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") + + +def main(args_in: Optional[List[str]] = None) -> None: + parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") + parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outtype", choices=["f32", "f16", "q4_1"], help="output format (default: based on input)") + parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") + args = parser.parse_args(args_in) + + vocab: Vocab + if args.dump_single: + model_plus = lazy_load_file(args.model) + do_dump_model(model_plus) + elif args.vocab_only: + vocab = load_vocab(args.vocab_dir or args.model) + assert args.outfile, "need --outfile if using --vocab-only" + outfile = args.outfile + OutputFile.write_vocab_only(outfile, vocab) + print(f"Wrote {outfile}") + else: + model_plus = load_some_model(args.model) + if args.dump: + do_dump_model(model_plus) + return + if model_plus.vocab is not None and args.vocab_dir is None: + vocab = model_plus.vocab + else: + vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent + vocab = load_vocab(vocab_dir) + model = model_plus.model + model = do_necessary_conversions(model) + output_type = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, output_type) + params = Params.guessed(model, output_type) + outfile = args.outfile or default_outfile(model_plus.paths, params) + OutputFile.write_all(outfile, params, model, vocab) + print(f"Wrote {outfile}") + + +if __name__ == '__main__': + main() diff --git a/migrate-ggml-2023-03-30-pr613.py b/migrate-ggml-2023-03-30-pr613.py deleted file mode 100644 index b6ef2476e..000000000 --- a/migrate-ggml-2023-03-30-pr613.py +++ /dev/null @@ -1,311 +0,0 @@ -# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic -# -# We caused a breaking change to the file format on 2023-03-30 in: -# https://github.com/ggerganov/llama.cpp/pull/613 -# -# (1) If you still have the Meta LLaMA .pth files, then close this -# file now; you can just run `convert-pth-to-ggml.py` again to -# migrate to the new format. The tool is easier to use too. It -# isn't necessary anymore to manage split output files because -# the new format always combines things into a single file. -# -# (2) If you deleted the Meta LLaMA .pth files due to save on disk -# space, then this tool is intended to help you. Please check -# out the instructions below. -# -# USAGE -# -# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT -# -# PREREQUISITES -# -# pip install numpy -# cd llama.cpp -# make -j4 -# -# EXAMPLE (7B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/7B/ggml-model-f16.bin -# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin -# -# EXAMPLE (13B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/13B/ggml-model-f16.bin* -# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin -# - -import argparse -import os -import sys -import json -import struct -import numpy as np - -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPE_NAMES = { - 0: "F32", - 1: "F16", - 2: "Q4_0", - 3: "Q4_1", -} - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -HPARAMS = [ - 'magic', # int32 - 'version', # int32 - 'n_vocab', # int32 - 'n_embd', # int32 - 'n_mult', # int32 - 'n_head', # int32 - 'n_layer', # int32 - 'n_rot', # int32 - 'f16', # int32 -] - -def read_hparams(fin): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - buf = fin.read(struct_size) - ints = struct.unpack(struct_fmt, buf) - hparams = dict(zip(HPARAMS, ints)) - return hparams - -def write_hparams(fout, hparams): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - ints = [hparams[h] for h in HPARAMS] - fout.write(struct.pack(struct_fmt, *ints)) - -def read_tokens(fin, hparams): - tokens = [] - for i in range(hparams['n_vocab']): - len_b = fin.read(4) - (length,) = struct.unpack("i", len_b) - word = fin.read(length) - score_b = fin.read(4) - (score,) = struct.unpack("f", score_b) - tokens.append((word, score)) - return tokens - -def write_tokens(fout, tokens): - for word, score in tokens: - fout.write(struct.pack("i", len(word))) - fout.write(word) - fout.write(struct.pack("f", score)) - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def copy_tensors(fin, fout, part_id, n_parts): - while True: - - b = fin.read(4) - if not b: break - (n_dims,) = struct.unpack("i", b) - b = fin.read(4) - (length,) = struct.unpack("i", b) - b = fin.read(4) - (ftype,) = struct.unpack("i", b) - - assert n_dims in (1, 2) - - partshape = list(range(n_dims)) - for i in range(n_dims): - b = fin.read(4) - partshape[i] = struct.unpack("i", b)[0] - partshape = list(reversed(partshape)) - - name = fin.read(length) - data = fin.read(ggml_nbytes(partshape, ftype)) - - blck_size = GGML_BLCK_SIZE[WTYPES[ftype]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype]] - - print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}") - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if b"tok_embeddings" in name: - split_dim = 1 - elif b"layers" in name: - if b"attention.wo.weight" in name: - split_dim = 1 - elif b"feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif b"output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - fout.write(struct.pack("iii", n_dims, len(name), ftype)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(name) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - fout.write(data) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - fout.write(data) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bpr = partshape[1] // blck_size * type_size - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - fout.write(data[row * bpr:row * bpr + bpr]) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype)) - -def parse_args(): - parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format') - parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)') - parser.add_argument('fout_path', help='your new ggjt file name') - return parser.parse_args() - -def main(): - args = parse_args() - assert args.fin_path - assert args.fout_path - assert args.fin_path != args.fout_path - - with open(args.fin_path, "rb") as fin: - hparams = read_hparams(fin) - tokens = read_tokens(fin, hparams) - - if hparams['magic'] == 0x67676a74: # ggjt - print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n") - sys.exit(1) - - if hparams['magic'] != 0x67676d66: # ggmf - print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n") - sys.exit(1) - - hparams['magic'] = 0x67676a74 # ggjt - - # count number of multipart files by convention - n_parts = 1 - while True: - if os.path.exists(f"{args.fin_path}.{n_parts}"): - n_parts += 1 - else: - break - - # we output a single file for ggml - with open(args.fout_path, "wb") as fout: - write_hparams(fout, hparams) - write_tokens(fout, tokens) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fin_path = args.fin_path - if part_id > 0: - fin_path += f".{part_id}" - with open(fin_path, "rb") as fin: - read_tokens(fin, read_hparams(fin)) - copy_tensors(fin, fout, part_id, n_parts) - - print(f"Done. Output file: {args.fout_path}\n") - -if __name__ == "__main__": - main() diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 000000000..f3944951a --- /dev/null +++ b/requirements.txt @@ -0,0 +1,2 @@ +numpy==1.24 +sentencepiece==0.1.97 From c14e0d2f23e6d1e785255f4da8c253c1b4723659 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 14 Apr 2023 13:31:15 +0300 Subject: [PATCH 29/49] ggml : always allocate buffers with size multiple of GGML_MEM_ALIGN --- ggml.c | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/ggml.c b/ggml.c index d620cd11f..76694a617 100644 --- a/ggml.c +++ b/ggml.c @@ -3054,9 +3054,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { return NULL; } + const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1); + *ctx = (struct ggml_context) { - /*.mem_size =*/ params.mem_size, - /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size), + /*.mem_size =*/ mem_size, + /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, /*.no_alloc =*/ params.no_alloc, /*.n_objects =*/ 0, @@ -3066,7 +3068,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { /*.scratch_save =*/ { 0, 0, NULL, }, }; - GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure + GGML_ASSERT(ctx->mem_buffer != NULL); ggml_assert_aligned(ctx->mem_buffer); From 1623a6e9b46453bff30afd7d0f6c3fd188499c2f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 14 Apr 2023 13:31:29 +0300 Subject: [PATCH 30/49] ggml : minor --- ggml.c | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/ggml.c b/ggml.c index 76694a617..d99aca21a 100644 --- a/ggml.c +++ b/ggml.c @@ -7509,7 +7509,7 @@ static void ggml_compute_forward_rope_f32( // row index used to determine which thread to use int ir = 0; - const float theta_scale = powf(10000.0, ((float)-2)/n_dims); + const float theta_scale = powf(10000.0, -2.0f/n_dims); for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { @@ -7517,12 +7517,15 @@ static void ggml_compute_forward_rope_f32( for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; + float theta = (float)p; + for (int i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); theta *= theta_scale; + const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -7583,7 +7586,7 @@ static void ggml_compute_forward_rope_f16( // row index used to determine which thread to use int ir = 0; - const float theta_scale = powf(10000.0, ((float)-2)/n_dims); + const float theta_scale = powf(10000.0, -2.0f/n_dims); for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { @@ -7591,12 +7594,15 @@ static void ggml_compute_forward_rope_f16( for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; + float theta = (float)p; + for (int i0 = 0; i0 < n_dims; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); theta *= theta_scale; + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); From 43ffdefb7424f79a3d510c199e2ea86684b4f824 Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Fri, 14 Apr 2023 14:23:21 +0200 Subject: [PATCH 31/49] py : fix flake8 and isort nitpicks (#960) --- convert.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/convert.py b/convert.py index f35163f67..056dc618d 100644 --- a/convert.py +++ b/convert.py @@ -18,10 +18,12 @@ import zipfile from abc import ABCMeta, abstractmethod from dataclasses import dataclass from pathlib import Path +from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, + Literal, Optional, Sequence, Tuple, TypeVar, Union) + import numpy as np from sentencepiece import SentencePieceProcessor # type: ignore -from typing import (IO, Any, Callable, Iterable, Literal, Optional, Sequence, - TypeVar, Union, List, Dict, Tuple, TYPE_CHECKING) + if TYPE_CHECKING: from typing_extensions import TypeAlias @@ -684,7 +686,7 @@ class LazyUnpickler(pickle.Unpickler): description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' return LazyStorage(load=load, kind=pid[1], description=description) - def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] + def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: assert isinstance(storage, LazyStorage) From a32f7acc9f54dba1c728cb1e596bd00bf3b4eb5f Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Fri, 14 Apr 2023 15:37:11 +0200 Subject: [PATCH 32/49] py : cleanup dependencies (#962) after #545 we do not need torch, tqdm and requests in the dependencies --- .devops/full.Dockerfile | 5 +++-- flake.nix | 1 - 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile index a75bc976f..491d67676 100644 --- a/.devops/full.Dockerfile +++ b/.devops/full.Dockerfile @@ -5,9 +5,10 @@ FROM ubuntu:$UBUNTU_VERSION as build RUN apt-get update && \ apt-get install -y build-essential python3 python3-pip +COPY requirements.txt requirements.txt + RUN pip install --upgrade pip setuptools wheel \ - && pip install numpy requests sentencepiece tqdm \ - && pip install torch --index-url https://download.pytorch.org/whl/cpu + && pip install -r requirements.txt WORKDIR /app diff --git a/flake.nix b/flake.nix index 91d2edd79..5363052b1 100644 --- a/flake.nix +++ b/flake.nix @@ -10,7 +10,6 @@ inherit system; }; llama-python = pkgs.python310.withPackages (ps: with ps; [ - torch numpy sentencepiece ]); From c9a59b70a54e0bc05777df287feaea3dbe0310c4 Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Fri, 14 Apr 2023 08:43:55 -0600 Subject: [PATCH 33/49] ggml : add unary and binary map operations (#874) * GGML map ops proof of concept. * Various cleanups. Add handling for task setting. Add handling for ggml_compute_backward. Rename functions to ggml_map_unary_f32 and ggml_map_binary_f32 Fix compiler warnings related to casting function pointers and `void *` Reorder functions and definitions based on the GGML op number. Use typedefs for map op function pointer types. * Fix position of map ops cases in ggml_compute_forward --- ggml.c | 221 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++- ggml.h | 18 +++++ 2 files changed, 237 insertions(+), 2 deletions(-) diff --git a/ggml.c b/ggml.c index d99aca21a..ce48b78ad 100644 --- a/ggml.c +++ b/ggml.c @@ -2712,9 +2712,12 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "FLASH_ATTN", "FLASH_FF", + + "MAP_UNARY", + "MAP_BINARY", }; -static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); +static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -2757,9 +2760,12 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "flash_attn(x)", "flash_ff(x)", + + "f(x)", + "f(x,y)", }; -static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); +static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -4907,6 +4913,90 @@ struct ggml_tensor * ggml_flash_ff( return result; } +// ggml_map_unary + +struct ggml_tensor * ggml_map_unary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_UNARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, true); +} + +// ggml_map_binary + +struct ggml_tensor * ggml_map_binary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t)); + *((void (**)(void))addr_tensor->data) = (void (*)(void))fun; + struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MAP_BINARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = b; + result->opt[0] = addr_tensor; + + return result; +} + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, true); +} + //////////////////////////////////////////////////////////////////////////////// void ggml_set_param( @@ -8875,6 +8965,111 @@ static void ggml_compute_forward_flash_ff( } } +// ggml_compute_forward_map_unary + +static void ggml_compute_forward_map_unary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + + +static void ggml_compute_forward_map_unary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_unary_f32(params, src0, dst, fun); + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_binary + +static void ggml_compute_forward_map_binary_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + + +static void ggml_compute_forward_map_binary( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_F16: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + ///////////////////////////////// static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { @@ -9024,6 +9219,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); } break; + case GGML_OP_MAP_UNARY: + { + const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun); + } + break; + case GGML_OP_MAP_BINARY: + { + const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data); + ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun); + } + break; case GGML_OP_NONE: { // nop @@ -9283,6 +9490,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // not supported } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + GGML_ASSERT(false); // not supported + } break; case GGML_OP_NONE: { // nop @@ -9775,6 +9987,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) work_size = MAX(work_size, cur); } break; + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + { + node->n_tasks = 1; + } break; case GGML_OP_NONE: { node->n_tasks = 1; diff --git a/ggml.h b/ggml.h index c06c09e06..bdff0b4de 100644 --- a/ggml.h +++ b/ggml.h @@ -253,6 +253,9 @@ enum ggml_op { GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, + GGML_OP_MAP_UNARY, + GGML_OP_MAP_BINARY, + GGML_OP_COUNT, }; @@ -652,6 +655,21 @@ struct ggml_tensor * ggml_flash_ff( struct ggml_tensor * c0, struct ggml_tensor * c1); +// Mapping operations +typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *); +typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun); + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun); + // // automatic differentiation // From f4d277ae17247ee51129ef1a9ff74d377cc90b1b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tom=C3=A1=C5=A1=20Pazdiora?= Date: Fri, 14 Apr 2023 17:19:17 +0200 Subject: [PATCH 34/49] main : alternative instruct mode (Vicuna support, etc.) (#863) * Add support for configs, add configurable prefixes / suffixes, deprecate instruct mode, add stop prompt * Add multiline mode, update text input. * bugfix * update implementation * typos * Change --multiline implementation to be toggled by EOF. * bugfix * default multiline mode * add more configs * update formating * update formatting * apply suggestions --- configs/alpaca-native-enhanced.txt | 21 +++ configs/alpaca.txt | 9 + configs/chat-with-bob.txt | 15 ++ configs/llama.txt | 3 + configs/vicuna-simple.txt | 7 + configs/vicuna-stop.txt | 8 + configs/vicuna.txt | 9 + examples/common.cpp | 284 +++++++++++++++++++++++------ examples/common.h | 30 ++- examples/main/main.cpp | 172 +++++++++++------ prompts/alpaca.txt | 1 - prompts/chat-with-bob.txt | 7 - 12 files changed, 445 insertions(+), 121 deletions(-) create mode 100644 configs/alpaca-native-enhanced.txt create mode 100644 configs/alpaca.txt create mode 100644 configs/chat-with-bob.txt create mode 100644 configs/llama.txt create mode 100644 configs/vicuna-simple.txt create mode 100644 configs/vicuna-stop.txt create mode 100644 configs/vicuna.txt delete mode 100644 prompts/alpaca.txt delete mode 100644 prompts/chat-with-bob.txt diff --git a/configs/alpaca-native-enhanced.txt b/configs/alpaca-native-enhanced.txt new file mode 100644 index 000000000..109d31592 --- /dev/null +++ b/configs/alpaca-native-enhanced.txt @@ -0,0 +1,21 @@ +--ctx_size 2048 +--batch_size 16 +--repeat_penalty 1.15 +--temp 0.4 +--top_k 30 +--top_p 0.18 + +--interactive-first +--keep -1 + +--ins-prefix-bos +--ins-prefix "\n\nUser: " +--ins-suffix "\n\nAssistant: " +--reverse-prompt "User: " + +-p "You are an AI language model designed to assist the User by answering their questions, offering advice, and engaging in casual conversation in a friendly, helpful, and informative manner. You respond clearly, coherently, and you consider the conversation history. + +User: Hey, how's it going? + +Assistant: Hey there! I'm doing great, thank you. What can I help you with today? Let's have a fun chat!" + diff --git a/configs/alpaca.txt b/configs/alpaca.txt new file mode 100644 index 000000000..99a3ab47e --- /dev/null +++ b/configs/alpaca.txt @@ -0,0 +1,9 @@ +--clean-interface +--interactive-first +--keep -1 +--ins-prefix-bos +--ins-prefix "\n\n### Instruction:\n\n" +--ins-suffix "\n\n### Response:\n\n" +--reverse-prompt "### Instruction:\n\n" + +-p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n" diff --git a/configs/chat-with-bob.txt b/configs/chat-with-bob.txt new file mode 100644 index 000000000..0caa749a3 --- /dev/null +++ b/configs/chat-with-bob.txt @@ -0,0 +1,15 @@ +--interactive-first +--keep -1 +--ins-prefix-bos +--ins-prefix "\nUser: " +--ins-suffix "\nBob: " +--reverse-prompt "User: " +--rm-trailing-space-workaround + +-p "Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. + +User: Hello, Bob. +Bob: Hello. How may I help you today? +User: Please tell me the largest city in Europe. +Bob: Sure. The largest city in Europe is Moscow, the capital of Russia." + diff --git a/configs/llama.txt b/configs/llama.txt new file mode 100644 index 000000000..9d23e75ac --- /dev/null +++ b/configs/llama.txt @@ -0,0 +1,3 @@ +--interactive-first +--keep -1 +--temp 0.1 diff --git a/configs/vicuna-simple.txt b/configs/vicuna-simple.txt new file mode 100644 index 000000000..efa60d96a --- /dev/null +++ b/configs/vicuna-simple.txt @@ -0,0 +1,7 @@ +--interactive-first +--keep -1 +--ins-prefix-bos +--ins-prefix "\n### Human: " +--ins-suffix "\n### Assistant: " +--reverse-prompt "### Human: " +--rm-trailing-space-workaround diff --git a/configs/vicuna-stop.txt b/configs/vicuna-stop.txt new file mode 100644 index 000000000..911d067ef --- /dev/null +++ b/configs/vicuna-stop.txt @@ -0,0 +1,8 @@ +--interactive-first +--keep -1 +--ins-prefix-bos +--ins-prefix "\n### Human: " +--ins-suffix "\n### Assistant: " +--reverse-prompt "### Human: " +--stop-prompt "### Assistant: " +--rm-trailing-space-workaround diff --git a/configs/vicuna.txt b/configs/vicuna.txt new file mode 100644 index 000000000..6d811410a --- /dev/null +++ b/configs/vicuna.txt @@ -0,0 +1,9 @@ +--interactive-first +--keep -1 +--ins-prefix-bos +--ins-prefix "\n### Human: " +--ins-suffix "\n### Assistant: " +--reverse-prompt "### Human: " +--rm-trailing-space-workaround + +-p "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions." diff --git a/examples/common.cpp b/examples/common.cpp index 0772dbfe1..eaa5aceea 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -2,10 +2,13 @@ #include #include +#include #include +#include #include #include #include +#include #if defined (_WIN32) #include @@ -23,6 +26,43 @@ extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int #define CP_UTF8 65001 #endif +void split_args(const std::string & args_string, std::vector & output_args) +{ + std::string current_arg = ""; + bool in_quotes = false; + char quote_type; + + for (char c : args_string) { + if (c == '"' || c == '\'') { + if (!in_quotes) { + in_quotes = true; + quote_type = c; + } else if (quote_type == c) { + in_quotes = false; + } else { + current_arg += c; + } + } else if (in_quotes) { + current_arg += c; + } else if (std::isspace(c)) { + if (current_arg != "") { + output_args.push_back(current_arg); + current_arg = ""; + } + } else { + current_arg += c; + } + } + + if (current_arg != "") { + output_args.push_back(current_arg); + } +} + +std::string unescape(const std::string & str) { + return std::regex_replace(str, std::regex("\\\\n"), "\n"); +} + bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { // determine sensible default number of threads. // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0. @@ -40,28 +80,11 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string arg; gpt_params default_params; + // get additional arguments from config files + std::vector args; for (int i = 1; i < argc; i++) { arg = argv[i]; - - if (arg == "-s" || arg == "--seed") { - if (++i >= argc) { - invalid_param = true; - break; - } - params.seed = std::stoi(argv[i]); - } else if (arg == "-t" || arg == "--threads") { - if (++i >= argc) { - invalid_param = true; - break; - } - params.n_threads = std::stoi(argv[i]); - } else if (arg == "-p" || arg == "--prompt") { - if (++i >= argc) { - invalid_param = true; - break; - } - params.prompt = argv[i]; - } else if (arg == "-f" || arg == "--file") { + if (arg == "--config") { if (++i >= argc) { invalid_param = true; break; @@ -72,85 +95,153 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } + std::string args_string; + std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(args_string)); + if (args_string.back() == '\n') { + args_string.pop_back(); + } + split_args(args_string, args); + for (int j = 0; j < args.size(); j++) { + args[j] = unescape(args[j]); + } + } else { + args.emplace_back(argv[i]); + } + } + + // parse args + int args_c = static_cast(args.size()); + for (int i = 0; i < args_c && !invalid_param; i++) { + arg = args[i]; + + if (arg == "-s" || arg == "--seed") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.seed = std::stoi(args[i]); + } else if (arg == "-t" || arg == "--threads") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.n_threads = std::stoi(args[i]); + } else if (arg == "-p" || arg == "--prompt") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.prompt = args[i]; + } else if (arg == "-f" || arg == "--file") { + if (++i >= args_c) { + invalid_param = true; + break; + } + std::ifstream file(args[i]); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", args[i].c_str()); + invalid_param = true; + break; + } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n_predict") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.n_predict = std::stoi(argv[i]); + params.n_predict = std::stoi(args[i]); } else if (arg == "--top_k") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.top_k = std::stoi(argv[i]); + params.top_k = std::stoi(args[i]); } else if (arg == "-c" || arg == "--ctx_size") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.n_ctx = std::stoi(argv[i]); + params.n_ctx = std::stoi(args[i]); } else if (arg == "--memory_f32") { params.memory_f16 = false; } else if (arg == "--top_p") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.top_p = std::stof(argv[i]); + params.top_p = std::stof(args[i]); } else if (arg == "--temp") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.temp = std::stof(argv[i]); + params.temp = std::stof(args[i]); } else if (arg == "--repeat_last_n") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.repeat_last_n = std::stoi(argv[i]); + params.repeat_last_n = std::stoi(args[i]); } else if (arg == "--repeat_penalty") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.repeat_penalty = std::stof(argv[i]); + params.repeat_penalty = std::stof(args[i]); } else if (arg == "-b" || arg == "--batch_size") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.n_batch = std::stoi(argv[i]); + params.n_batch = std::stoi(args[i]); params.n_batch = std::min(512, params.n_batch); } else if (arg == "--keep") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.n_keep = std::stoi(argv[i]); + params.n_keep = std::stoi(args[i]); } else if (arg == "-m" || arg == "--model") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.model = argv[i]; + params.model = args[i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--embedding") { params.embedding = true; + } else if (arg == "--clean-interface") { + params.clean_interface = true; } else if (arg == "--interactive-start") { params.interactive = true; } else if (arg == "--interactive-first") { params.interactive_start = true; } else if (arg == "-ins" || arg == "--instruct") { - params.instruct = true; + fprintf(stderr, "\n\nWarning: instruct mode is deprecated! Use: \n" + "--clean-interface " + "--interactive-first " + "--keep -1 " + "--ins-prefix-bos " + "--ins-prefix \"\\n\\n### Instruction:\\n\\n\" " + "--ins-suffix \"\\n\\n### Response:\\n\\n\" " + "-r \"### Instruction:\\n\\n\" " + "\n\n"); + // params.instruct = true; + params.clean_interface = true; + params.interactive_start = true; + params.n_keep = -1; + params.instruct_prefix_bos = true; + params.instruct_prefix = "\n\n### Instruction:\n\n"; + params.instruct_suffix = "\n\n### Response:\n\n"; + params.antiprompt.push_back("### Instruction:\n\n"); } else if (arg == "--color") { params.use_color = true; + } else if (arg == "--disable-multiline") { + params.multiline_mode = false; } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--no-mmap") { @@ -160,65 +251,94 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "-r" || arg == "--reverse-prompt") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.antiprompt.push_back(argv[i]); + params.antiprompt.push_back(args[i]); + } else if (arg == "--stop-prompt") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.stopprompt.push_back(args[i]); + } else if (arg == "--rm-trailing-space-workaround") { + params.rm_trailing_space_workaround = true; } else if (arg == "--perplexity") { params.perplexity = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--n_parts") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.n_parts = std::stoi(argv[i]); + params.n_parts = std::stoi(args[i]); } else if (arg == "-h" || arg == "--help") { - gpt_print_usage(argc, argv, default_params); + gpt_print_usage(argv[0], default_params); exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; } else if (arg == "--in-prefix") { - if (++i >= argc) { + if (++i >= args_c) { invalid_param = true; break; } - params.input_prefix = argv[i]; + params.input_prefix = args[i]; + } else if (arg == "--ins-prefix-bos") { + params.instruct_prefix_bos = true; + } else if (arg == "--ins-prefix") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.instruct_prefix = args[i]; + } else if (arg == "--ins-suffix-bos") { + params.instruct_suffix_bos = true; + } else if (arg == "--ins-suffix") { + if (++i >= args_c) { + invalid_param = true; + break; + } + params.instruct_suffix = args[i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - gpt_print_usage(argc, argv, default_params); + gpt_print_usage(argv[0], default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); - gpt_print_usage(argc, argv, default_params); + gpt_print_usage(argv[0], default_params); exit(1); } return true; } -void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { - fprintf(stderr, "usage: %s [options]\n", argv[0]); +void gpt_print_usage(char * argv_0, const gpt_params & params) { + fprintf(stderr, "usage: %s [options]\n", argv_0); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -i, --interactive run in interactive mode\n"); fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n"); - fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n"); + fprintf(stderr, " --clean-interface hides input prefix & suffix and displays '>' instead\n"); fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n"); fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n"); fprintf(stderr, " specified more than once for multiple prompts).\n"); fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n"); + fprintf(stderr, " --disable-multiline disable multiline mode (use Ctrl+D on Linux/Mac and Ctrl+Z then Return on Windows to toggle multiline)\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for <= 0)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: empty)\n"); fprintf(stderr, " --random-prompt start with a randomized prompt.\n"); fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); + fprintf(stderr, " --ins-prefix STRING (instruct) prefix user inputs with tokenized string (default: empty)\n"); + fprintf(stderr, " --ins-prefix-bos (instruct) prepend bos token to instruct prefix.\n"); + fprintf(stderr, " --ins-suffix STRING (instruct) suffix user inputs with tokenized string (default: empty)\n"); + fprintf(stderr, " --ins-suffix-bos (instruct) prepend bos token to instruct suffix.\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " prompt file to start generation.\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict); @@ -328,3 +448,61 @@ void win32_utf8_encode(const std::wstring & wstr, std::string & str) { str = strTo; } #endif + +bool get_input_text(std::string & input_text, bool eof_toggled_multiline_mode) { + bool another_line = true; + bool is_eof_multiline_toggled = false; + do { + std::string line; +#if defined(_WIN32) + auto & stdcin = std::wcin; + std::wstring wline; + if (!std::getline(stdcin, wline)) { + // input stream is bad or EOF received + if (stdcin.bad()) { + fprintf(stderr, "%s: error: input stream bad\n", __func__); + return 1; + } + } + win32_utf8_encode(wline, line); +#else + auto & stdcin = std::cin; + if (!std::getline(stdcin, line)) { + // input stream is bad or EOF received + if (stdcin.bad()) { + fprintf(stderr, "%s: error: input stream bad\n", __func__); + return 1; + } + } +#endif + if (stdcin.eof()) { + stdcin.clear(); + stdcin.seekg(0, std::ios::beg); + if (!eof_toggled_multiline_mode) { + another_line = false; + } else { + is_eof_multiline_toggled = !is_eof_multiline_toggled; + if (is_eof_multiline_toggled) { + input_text += line; + continue; + } + } + } + if (!eof_toggled_multiline_mode) { + if (line.empty() || line.back() != '\\') { + another_line = false; + } else { + line.pop_back(); // Remove the continue character + } + } else { + if (!is_eof_multiline_toggled) { + another_line = false; + } + } + input_text += line; + if (another_line) { + input_text += '\n'; // Append the line to the result + } + } while (another_line); + return true; +} diff --git a/examples/common.h b/examples/common.h index 1ea6f7445..df8e4c6cc 100644 --- a/examples/common.h +++ b/examples/common.h @@ -14,14 +14,14 @@ // struct gpt_params { - int32_t seed = -1; // RNG seed - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t n_predict = 128; // new tokens to predict - int32_t repeat_last_n = 64; // last n tokens to penalize - int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) - int32_t n_ctx = 512; // context size - int32_t n_batch = 8; // batch size for prompt processing - int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t seed = -1; // RNG seed + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); // max 4 threads (default) + int32_t n_predict = 128; // new tokens to predict + int32_t repeat_last_n = 64; // last n tokens to penalize + int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) + int32_t n_ctx = 512; // context size + int32_t n_batch = 8; // batch size for prompt processing + int32_t n_keep = 0; // number of tokens to keep from initial prompt (-1 for all) // sampling parameters int32_t top_k = 40; @@ -33,8 +33,15 @@ struct gpt_params { std::string prompt = ""; std::string input_prefix = ""; // string to prefix user inputs with + std::string instruct_prefix = ""; // prefix user inputs with tokenized string + bool instruct_prefix_bos = false; // prepend bos token to instruct prefix + std::string instruct_suffix = ""; // suffix user inputs with tokenized string + bool instruct_suffix_bos = false; // prepend bos token to instruct suffix std::vector antiprompt; // string upon seeing which more user input is prompted + std::vector stopprompt; // string upon seeing which more user input is prompted (without adding instruct prefixes and suffixes) + + bool rm_trailing_space_workaround = false; // workaround for removing trailing space from reverse/stop prompts bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided @@ -51,11 +58,14 @@ struct gpt_params { bool use_mlock = false; // use mlock to keep model in memory bool mem_test = false; // compute maximum memory usage bool verbose_prompt = false; // print prompt tokens before generation + + bool clean_interface = false; // hides input prefix & suffix and displays '>' + bool multiline_mode = true; // enables multi-line mode, to send input press CTRL+D on Linux/Max, Ctrl+Z then Return on Windows }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); -void gpt_print_usage(int argc, char ** argv, const gpt_params & params); +void gpt_print_usage(char * argv_0, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); @@ -95,3 +105,5 @@ void set_console_color(console_state & con_st, console_color_t color); void win32_console_init(bool enable_color); void win32_utf8_encode(const std::wstring & wstr, std::string & str); #endif + +bool get_input_text(std::string & input_text, bool escape_newline_mode); diff --git a/examples/main/main.cpp b/examples/main/main.cpp index ba153cb82..68b4b2840 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -30,7 +30,8 @@ static bool is_interacting = false; #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) void sigint_handler(int signo) { set_console_color(con_st, CONSOLE_COLOR_DEFAULT); - printf("\n"); // this also force flush stdout. + fflush(stdout); + fflush(stderr); if (signo == SIGINT) { if (!is_interacting) { is_interacting=true; @@ -89,6 +90,8 @@ int main(int argc, char ** argv) { params.prompt = gpt_random_prompt(rng); } + bool instruct_mode = !params.instruct_prefix.empty() || !params.instruct_suffix.empty(); + // params.prompt = R"(// this function checks if the number n is prime //bool is_prime(int n) {)"; @@ -153,22 +156,20 @@ int main(int argc, char ** argv) { } // number of tokens to keep when resetting context - if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) { + if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) { params.n_keep = (int)embd_inp.size(); } // prefix & suffix for instruct mode - const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true); - const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); - - // in instruct mode, we inject a prefix and a suffix to each input by the user - if (params.instruct) { - params.interactive_start = true; - params.antiprompt.push_back("### Instruction:\n\n"); + const auto inp_pfx = ::llama_tokenize(ctx, params.instruct_prefix, params.instruct_prefix_bos); + std::string instruct_suffix = params.instruct_suffix; + if (params.rm_trailing_space_workaround) { + if (instruct_suffix.back() == ' ') { instruct_suffix.pop_back(); } } + const auto inp_sfx = ::llama_tokenize(ctx, instruct_suffix, params.instruct_suffix_bos); // enable interactive mode if reverse prompt or interactive start is specified - if (params.antiprompt.size() != 0 || params.interactive_start) { + if (params.antiprompt.size() != 0 || params.stopprompt.size() != 0 || params.interactive_start) { params.interactive = true; } @@ -210,10 +211,21 @@ int main(int argc, char ** argv) { fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str()); } } + if (params.stopprompt.size()) { + for (auto stopprompt : params.stopprompt) { + fprintf(stderr, "Stop prompt: '%s'\n", stopprompt.c_str()); + } + } if (!params.input_prefix.empty()) { fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str()); } + if (!params.instruct_prefix.empty()) { + fprintf(stderr, "Instruct prefix %s: '%s'\n", params.instruct_prefix_bos ? "(with bos token)" : "", params.instruct_prefix.c_str()); + } + if (!params.instruct_suffix.empty()) { + fprintf(stderr, "Instruct suffix %s: '%s'\n", params.instruct_suffix_bos ? "(with bos token)" : "", params.instruct_suffix.c_str()); + } } fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); @@ -229,12 +241,29 @@ int main(int argc, char ** argv) { #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) " - Press Ctrl+C to interject at any time.\n" #endif - " - Press Return to return control to LLaMa.\n" - " - If you want to submit another line, end your input in '\\'.\n\n"); + ); + if (params.multiline_mode) { + fprintf(stderr, " - Press Return to return control to LLaMa.\n" +#if defined (_WIN32) + " - [MULTILINE MODE] Press Ctrl+Z then Return (EOF) to toggle.\n\n"); +#else + " - [MULTILINE MODE] Press Ctrl+D (EOF) to toggle.\n\n"); +#endif + } + else { + fprintf(stderr, " - Press Return to return control to LLaMa.\n" + " - If you want to submit another line, end your input in '\\'.\n\n"); + } is_interacting = params.interactive_start; } - bool is_antiprompt = false; + struct Antiprompt { + bool any = false; + bool trailing_space = false; + size_t len; + bool is_stop_prompt = false; + } antiprompt; + bool input_noecho = false; int n_past = 0; @@ -304,7 +333,7 @@ int main(int argc, char ** argv) { } // replace end of text token with newline token when in interactive mode - if (id == llama_token_eos() && params.interactive && !params.instruct) { + if (id == llama_token_eos() && params.interactive && !instruct_mode) { id = llama_token_newline.front(); if (params.antiprompt.size() != 0) { // tokenize and inject first reverse prompt @@ -350,27 +379,72 @@ int main(int argc, char ** argv) { // check if we should prompt the user for more if (params.interactive && (int) embd_inp.size() <= n_consumed) { - // check for reverse prompt - if (params.antiprompt.size()) { + // check for reverse prompt or stop prompt + if (params.antiprompt.size() || params.stopprompt.size()) { std::string last_output; for (auto id : last_n_tokens) { last_output += llama_token_to_str(ctx, id); } - is_antiprompt = false; + antiprompt.any = false; + antiprompt.is_stop_prompt = false; // Check if each of the reverse prompts appears at the end of the output. - for (std::string & antiprompt : params.antiprompt) { - if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { + for (std::string & prompt : params.antiprompt) { + if (params.rm_trailing_space_workaround) { + antiprompt.trailing_space = prompt.back() == ' '; + antiprompt.len = prompt.length() - (antiprompt.trailing_space ? 1 : 0); + } + if (last_output.find(prompt.c_str(), last_output.length() - antiprompt.len, antiprompt.len) != std::string::npos) { is_interacting = true; - is_antiprompt = true; + antiprompt.any = true; set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); fflush(stdout); break; } } + if (!antiprompt.any) { + for (std::string & prompt : params.stopprompt) { + if (params.rm_trailing_space_workaround) { + antiprompt.trailing_space = prompt.back() == ' '; + antiprompt.len = prompt.length() - (antiprompt.trailing_space ? 1 : 0); + } + if (last_output.find(prompt.c_str(), last_output.length() - antiprompt.len, antiprompt.len) != std::string::npos) { + is_interacting = true; + antiprompt.any = true; + antiprompt.is_stop_prompt = true; + set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); + fflush(stdout); + break; + } + } + } } - if (n_past > 0 && is_interacting) { + if (n_past > 0 && is_interacting) + { + std::string buffer; + if (!params.clean_interface && !params.instruct_prefix.empty() && !antiprompt.any) { + // avoid printing again user's new line (TODO: try to revert enter press and print newline) + int i = params.instruct_prefix.front() == '\n' ? 1 : 0; + for (; i < inp_pfx.size(); i++) { + printf("%s", llama_token_to_str(ctx, inp_pfx[i])); + } + fflush(stdout); + } + if (params.rm_trailing_space_workaround) { + // add only if not stopprompt (as stopprompt could be used to pause + // assistant and then continue without input - adding back trailing + // space may mess it up.) + if (!antiprompt.is_stop_prompt && antiprompt.any && antiprompt.trailing_space) { + // add back removed trailing space to buffer(workaround) + buffer += ' '; + if (!params.clean_interface) { + printf("%s", buffer.c_str()); + } + fflush(stdout); + } + } + // potentially set color to indicate we are taking user input set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); @@ -379,49 +453,45 @@ int main(int argc, char ** argv) { signal(SIGINT, sigint_handler); #endif - if (params.instruct) { + if (params.clean_interface) { printf("\n> "); } - std::string buffer; if (!params.input_prefix.empty()) { buffer += params.input_prefix; printf("%s", buffer.c_str()); } - std::string line; - bool another_line = true; - do { -#if defined(_WIN32) - std::wstring wline; - if (!std::getline(std::wcin, wline)) { - // input stream is bad or EOF received - return 0; - } - win32_utf8_encode(wline, line); -#else - if (!std::getline(std::cin, line)) { - // input stream is bad or EOF received - return 0; - } -#endif - if (line.empty() || line.back() != '\\') { - another_line = false; - } else { - line.pop_back(); // Remove the continue character - } - buffer += line + '\n'; // Append the line to the result - } while (another_line); + if (!get_input_text(buffer, params.multiline_mode)) { + // input stream is bad + return 1; + } + if (!antiprompt.is_stop_prompt) { + buffer += "\n"; + } // done taking input, reset color set_console_color(con_st, CONSOLE_COLOR_DEFAULT); + if (!params.clean_interface && !params.instruct_suffix.empty() && !antiprompt.is_stop_prompt) { + // avoid printing again user's new line (TODO: try to revert enter press and print newline) + int i = params.instruct_suffix.front() == '\n' ? 1 : 0; + for (; i < inp_sfx.size(); i++) { + printf("%s", llama_token_to_str(ctx, inp_sfx[i])); + } + // if (remove trailing space workaround) { + // We won't add back removed trailing space here, because assistant continues here, + // and it may mess up it's output (remove trailing space workaround). + // } + fflush(stdout); + } + // Add tokens to embd only if the input buffer is non-empty // Entering a empty line lets the user pass control back if (buffer.length() > 1) { - // instruct mode: insert instruction prefix - if (params.instruct && !is_antiprompt) { + // insert input prefix + if (!params.instruct_prefix.empty() && !antiprompt.any) { n_consumed = embd_inp.size(); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); } @@ -429,8 +499,8 @@ int main(int argc, char ** argv) { auto line_inp = ::llama_tokenize(ctx, buffer, false); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); - // instruct mode: insert response suffix - if (params.instruct) { + // insert response suffix + if (!params.instruct_suffix.empty() && !antiprompt.is_stop_prompt) { embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); } @@ -447,7 +517,7 @@ int main(int argc, char ** argv) { // end of text token if (!embd.empty() && embd.back() == llama_token_eos()) { - if (params.instruct) { + if (instruct_mode) { is_interacting = true; } else { fprintf(stderr, " [end of text]\n"); diff --git a/prompts/alpaca.txt b/prompts/alpaca.txt deleted file mode 100644 index 2224bdeb0..000000000 --- a/prompts/alpaca.txt +++ /dev/null @@ -1 +0,0 @@ -Below is an instruction that describes a task. Write a response that appropriately completes the request. diff --git a/prompts/chat-with-bob.txt b/prompts/chat-with-bob.txt deleted file mode 100644 index ad494d831..000000000 --- a/prompts/chat-with-bob.txt +++ /dev/null @@ -1,7 +0,0 @@ -Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. - -User: Hello, Bob. -Bob: Hello. How may I help you today? -User: Please tell me the largest city in Europe. -Bob: Sure. The largest city in Europe is Moscow, the capital of Russia. -User: \ No newline at end of file From c56b7152690ca25cfd66b20210b3629e6c1e739b Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Fri, 14 Apr 2023 20:05:37 +0200 Subject: [PATCH 35/49] Expose type name from ggml (#970) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Avoid duplication of type names in utils Co-authored-by: HÃ¥kon H. Hitland --- examples/quantize-stats/quantize-stats.cpp | 14 ++++++-------- ggml.c | 17 +++++++++++++++++ ggml.h | 2 ++ llama.cpp | 14 ++------------ 4 files changed, 27 insertions(+), 20 deletions(-) diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index c786fe208..050300931 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -16,9 +16,6 @@ #include #include -static const char * type_strs[] = { "q4_0", "q4_1", "i8", "i16", "i32", "f16", "f32" }; -static_assert(sizeof(type_strs) == GGML_TYPE_COUNT * sizeof(char *), "Incomplete type list"); - struct quantize_stats_params { std::string model = "models/7B/ggml-model-f16.bin"; bool verbose = false; @@ -224,7 +221,7 @@ int main(int argc, char ** argv) { break; } int j; - for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], type_strs[j]) != 0; j++) { + for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) i)) != 0; j++) { // find match } if (j < GGML_TYPE_COUNT) { @@ -279,7 +276,7 @@ int main(int argc, char ** argv) { continue; } if (params.verbose) { - printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), type_strs[kv_tensor.second->type], ggml_nelements(kv_tensor.second)); + printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second)); } if (kv_tensor.second->type == GGML_TYPE_F16) { is_f16 = true; @@ -304,13 +301,14 @@ int main(int argc, char ** argv) { // loop throught quantization types for (int i = 0; i < GGML_TYPE_COUNT; i++) { + const ggml_type type = (ggml_type) i; if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { continue; } quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (params.verbose) { - printf("testing %s ...\n", type_strs[i]); + printf("testing %s ...\n", ggml_type_name(type)); } error_stats global_stats {}; @@ -322,7 +320,7 @@ int main(int argc, char ** argv) { if (params.verbose) { printf(" %s ...\n", kv_tensor.first.c_str()); } - std::string layer_name { type_strs[i] }; + std::string layer_name { ggml_type_name(type) }; layer_name += "::" + kv_tensor.first; test_roundtrip_on_layer( layer_name, @@ -337,7 +335,7 @@ int main(int argc, char ** argv) { ); } - print_error_stats(type_strs[i], global_stats, params.print_histogram); + print_error_stats(ggml_type_name(type), global_stats, params.print_histogram); } } diff --git a/ggml.c b/ggml.c index ce48b78ad..1574d6498 100644 --- a/ggml.c +++ b/ggml.c @@ -2671,6 +2671,18 @@ static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { }; static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated"); + +static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { + [GGML_TYPE_F32] = "f32", + [GGML_TYPE_F16] = "f16", + [GGML_TYPE_Q4_0] = "q4_0", + [GGML_TYPE_Q4_1] = "q4_1", + [GGML_TYPE_I8] = "i8", + [GGML_TYPE_I16] = "i16", + [GGML_TYPE_I32] = "i32", +}; +static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_NAME is outdated"); + static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -2895,6 +2907,11 @@ float ggml_type_sizef(enum ggml_type type) { return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type]; } +const char * ggml_type_name(enum ggml_type type) { + return GGML_TYPE_NAME[type]; +} + + size_t ggml_element_size(const struct ggml_tensor * tensor) { return GGML_TYPE_SIZE[tensor->type]; } diff --git a/ggml.h b/ggml.h index bdff0b4de..617298a95 100644 --- a/ggml.h +++ b/ggml.h @@ -354,6 +354,8 @@ int ggml_blck_size (enum ggml_type type); size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float +const char * ggml_type_name(enum ggml_type type); + size_t ggml_element_size(const struct ggml_tensor * tensor); struct ggml_context * ggml_init(struct ggml_init_params params); diff --git a/llama.cpp b/llama.cpp index c72295684..be8c4cdc1 100644 --- a/llama.cpp +++ b/llama.cpp @@ -269,16 +269,6 @@ static std::string llama_format_tensor_shape(const std::vector & ne) { return ret; } -static const char * llama_format_type(enum ggml_type type) { - switch (type) { - case GGML_TYPE_F32: return "f32"; - case GGML_TYPE_F16: return "f16"; - case GGML_TYPE_Q4_0: return "q4_0"; - case GGML_TYPE_Q4_1: return "q4_1"; - default: LLAMA_ASSERT(false); - } -} - static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { size_t size = ggml_type_size(type); for (uint32_t dim : ne) { @@ -1582,7 +1572,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s printf("[%zu/%zu] %36s - %s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), - llama_format_type(tensor.type)); + ggml_type_name(tensor.type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? @@ -1615,7 +1605,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s f32_data[i] = ggml_fp16_to_fp32(f16_data[i]); } } else { - throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type)); + throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type)); } printf("quantizing .. "); From 93265e988af32b8be314bfed334f795a3037555d Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Fri, 14 Apr 2023 19:39:48 +0000 Subject: [PATCH 36/49] make : fix dependencies, use auto variables (#983) --- Makefile | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/Makefile b/Makefile index 7db246650..a1b99c6f9 100644 --- a/Makefile +++ b/Makefile @@ -140,44 +140,44 @@ default: main quantize perplexity embedding # ggml.o: ggml.c ggml.h - $(CC) $(CFLAGS) -c ggml.c -o ggml.o + $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp llama.h llama_util.h - $(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o +llama.o: llama.cpp ggml.h llama.h llama_util.h + $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h - $(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o + $(CXX) $(CXXFLAGS) -c $< -o $@ clean: rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult main: examples/main/main.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) @echo @echo '==== Run ./main -h for help. ====' @echo quantize: examples/quantize/quantize.cpp ggml.o llama.o - $(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o - $(CXX) $(CXXFLAGS) examples/quantize-stats/quantize-stats.cpp ggml.o llama.o -o quantize-stats $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o - $(CXX) $(CXXFLAGS) examples/embedding/embedding.cpp ggml.o llama.o common.o -o embedding $(LDFLAGS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) libllama.so: llama.o ggml.o - $(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS) + $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) # # Tests # -benchmark: ggml.o - $(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS) +benchmark: examples/benchmark/benchmark-q4_0-matmult.c ggml.o + $(CXX) $(CXXFLAGS) $^ -o benchmark-q4_0-matmult $(LDFLAGS) ./benchmark-q4_0-matmult .PHONY: tests From 489093548c89c67520109ab25c4df4a4614a32a0 Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Fri, 14 Apr 2023 21:46:49 +0200 Subject: [PATCH 37/49] py : bump sentencepiece to 0.1.98 to support Python 3.11 (#976) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index f3944951a..6c32cbd04 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ numpy==1.24 -sentencepiece==0.1.97 +sentencepiece==0.1.98 From c85e03d12e4b8af22cb13aa9c618dcd5935862fd Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Fri, 14 Apr 2023 21:58:43 +0200 Subject: [PATCH 38/49] Revert "main : alternative instruct mode (Vicuna support, etc.) (#863)" (#982) This reverts commit f4d277ae17247ee51129ef1a9ff74d377cc90b1b. --- configs/alpaca-native-enhanced.txt | 21 --- configs/alpaca.txt | 9 - configs/chat-with-bob.txt | 15 -- configs/llama.txt | 3 - configs/vicuna-simple.txt | 7 - configs/vicuna-stop.txt | 8 - configs/vicuna.txt | 9 - examples/common.cpp | 284 ++++++----------------------- examples/common.h | 30 +-- examples/main/main.cpp | 172 ++++++----------- prompts/alpaca.txt | 1 + prompts/chat-with-bob.txt | 7 + 12 files changed, 121 insertions(+), 445 deletions(-) delete mode 100644 configs/alpaca-native-enhanced.txt delete mode 100644 configs/alpaca.txt delete mode 100644 configs/chat-with-bob.txt delete mode 100644 configs/llama.txt delete mode 100644 configs/vicuna-simple.txt delete mode 100644 configs/vicuna-stop.txt delete mode 100644 configs/vicuna.txt create mode 100644 prompts/alpaca.txt create mode 100644 prompts/chat-with-bob.txt diff --git a/configs/alpaca-native-enhanced.txt b/configs/alpaca-native-enhanced.txt deleted file mode 100644 index 109d31592..000000000 --- a/configs/alpaca-native-enhanced.txt +++ /dev/null @@ -1,21 +0,0 @@ ---ctx_size 2048 ---batch_size 16 ---repeat_penalty 1.15 ---temp 0.4 ---top_k 30 ---top_p 0.18 - ---interactive-first ---keep -1 - ---ins-prefix-bos ---ins-prefix "\n\nUser: " ---ins-suffix "\n\nAssistant: " ---reverse-prompt "User: " - --p "You are an AI language model designed to assist the User by answering their questions, offering advice, and engaging in casual conversation in a friendly, helpful, and informative manner. You respond clearly, coherently, and you consider the conversation history. - -User: Hey, how's it going? - -Assistant: Hey there! I'm doing great, thank you. What can I help you with today? Let's have a fun chat!" - diff --git a/configs/alpaca.txt b/configs/alpaca.txt deleted file mode 100644 index 99a3ab47e..000000000 --- a/configs/alpaca.txt +++ /dev/null @@ -1,9 +0,0 @@ ---clean-interface ---interactive-first ---keep -1 ---ins-prefix-bos ---ins-prefix "\n\n### Instruction:\n\n" ---ins-suffix "\n\n### Response:\n\n" ---reverse-prompt "### Instruction:\n\n" - --p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n" diff --git a/configs/chat-with-bob.txt b/configs/chat-with-bob.txt deleted file mode 100644 index 0caa749a3..000000000 --- a/configs/chat-with-bob.txt +++ /dev/null @@ -1,15 +0,0 @@ ---interactive-first ---keep -1 ---ins-prefix-bos ---ins-prefix "\nUser: " ---ins-suffix "\nBob: " ---reverse-prompt "User: " ---rm-trailing-space-workaround - --p "Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. - -User: Hello, Bob. -Bob: Hello. How may I help you today? -User: Please tell me the largest city in Europe. -Bob: Sure. The largest city in Europe is Moscow, the capital of Russia." - diff --git a/configs/llama.txt b/configs/llama.txt deleted file mode 100644 index 9d23e75ac..000000000 --- a/configs/llama.txt +++ /dev/null @@ -1,3 +0,0 @@ ---interactive-first ---keep -1 ---temp 0.1 diff --git a/configs/vicuna-simple.txt b/configs/vicuna-simple.txt deleted file mode 100644 index efa60d96a..000000000 --- a/configs/vicuna-simple.txt +++ /dev/null @@ -1,7 +0,0 @@ ---interactive-first ---keep -1 ---ins-prefix-bos ---ins-prefix "\n### Human: " ---ins-suffix "\n### Assistant: " ---reverse-prompt "### Human: " ---rm-trailing-space-workaround diff --git a/configs/vicuna-stop.txt b/configs/vicuna-stop.txt deleted file mode 100644 index 911d067ef..000000000 --- a/configs/vicuna-stop.txt +++ /dev/null @@ -1,8 +0,0 @@ ---interactive-first ---keep -1 ---ins-prefix-bos ---ins-prefix "\n### Human: " ---ins-suffix "\n### Assistant: " ---reverse-prompt "### Human: " ---stop-prompt "### Assistant: " ---rm-trailing-space-workaround diff --git a/configs/vicuna.txt b/configs/vicuna.txt deleted file mode 100644 index 6d811410a..000000000 --- a/configs/vicuna.txt +++ /dev/null @@ -1,9 +0,0 @@ ---interactive-first ---keep -1 ---ins-prefix-bos ---ins-prefix "\n### Human: " ---ins-suffix "\n### Assistant: " ---reverse-prompt "### Human: " ---rm-trailing-space-workaround - --p "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions." diff --git a/examples/common.cpp b/examples/common.cpp index eaa5aceea..0772dbfe1 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -2,13 +2,10 @@ #include #include -#include #include -#include #include #include #include -#include #if defined (_WIN32) #include @@ -26,43 +23,6 @@ extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int #define CP_UTF8 65001 #endif -void split_args(const std::string & args_string, std::vector & output_args) -{ - std::string current_arg = ""; - bool in_quotes = false; - char quote_type; - - for (char c : args_string) { - if (c == '"' || c == '\'') { - if (!in_quotes) { - in_quotes = true; - quote_type = c; - } else if (quote_type == c) { - in_quotes = false; - } else { - current_arg += c; - } - } else if (in_quotes) { - current_arg += c; - } else if (std::isspace(c)) { - if (current_arg != "") { - output_args.push_back(current_arg); - current_arg = ""; - } - } else { - current_arg += c; - } - } - - if (current_arg != "") { - output_args.push_back(current_arg); - } -} - -std::string unescape(const std::string & str) { - return std::regex_replace(str, std::regex("\\\\n"), "\n"); -} - bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { // determine sensible default number of threads. // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0. @@ -80,11 +40,28 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { std::string arg; gpt_params default_params; - // get additional arguments from config files - std::vector args; for (int i = 1; i < argc; i++) { arg = argv[i]; - if (arg == "--config") { + + if (arg == "-s" || arg == "--seed") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.seed = std::stoi(argv[i]); + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads = std::stoi(argv[i]); + } else if (arg == "-p" || arg == "--prompt") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.prompt = argv[i]; + } else if (arg == "-f" || arg == "--file") { if (++i >= argc) { invalid_param = true; break; @@ -95,153 +72,85 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - std::string args_string; - std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(args_string)); - if (args_string.back() == '\n') { - args_string.pop_back(); - } - split_args(args_string, args); - for (int j = 0; j < args.size(); j++) { - args[j] = unescape(args[j]); - } - } else { - args.emplace_back(argv[i]); - } - } - - // parse args - int args_c = static_cast(args.size()); - for (int i = 0; i < args_c && !invalid_param; i++) { - arg = args[i]; - - if (arg == "-s" || arg == "--seed") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.seed = std::stoi(args[i]); - } else if (arg == "-t" || arg == "--threads") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.n_threads = std::stoi(args[i]); - } else if (arg == "-p" || arg == "--prompt") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.prompt = args[i]; - } else if (arg == "-f" || arg == "--file") { - if (++i >= args_c) { - invalid_param = true; - break; - } - std::ifstream file(args[i]); - if (!file) { - fprintf(stderr, "error: failed to open file '%s'\n", args[i].c_str()); - invalid_param = true; - break; - } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n_predict") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.n_predict = std::stoi(args[i]); + params.n_predict = std::stoi(argv[i]); } else if (arg == "--top_k") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.top_k = std::stoi(args[i]); + params.top_k = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx_size") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.n_ctx = std::stoi(args[i]); + params.n_ctx = std::stoi(argv[i]); } else if (arg == "--memory_f32") { params.memory_f16 = false; } else if (arg == "--top_p") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.top_p = std::stof(args[i]); + params.top_p = std::stof(argv[i]); } else if (arg == "--temp") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.temp = std::stof(args[i]); + params.temp = std::stof(argv[i]); } else if (arg == "--repeat_last_n") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.repeat_last_n = std::stoi(args[i]); + params.repeat_last_n = std::stoi(argv[i]); } else if (arg == "--repeat_penalty") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.repeat_penalty = std::stof(args[i]); + params.repeat_penalty = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch_size") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.n_batch = std::stoi(args[i]); + params.n_batch = std::stoi(argv[i]); params.n_batch = std::min(512, params.n_batch); } else if (arg == "--keep") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.n_keep = std::stoi(args[i]); + params.n_keep = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.model = args[i]; + params.model = argv[i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--embedding") { params.embedding = true; - } else if (arg == "--clean-interface") { - params.clean_interface = true; } else if (arg == "--interactive-start") { params.interactive = true; } else if (arg == "--interactive-first") { params.interactive_start = true; } else if (arg == "-ins" || arg == "--instruct") { - fprintf(stderr, "\n\nWarning: instruct mode is deprecated! Use: \n" - "--clean-interface " - "--interactive-first " - "--keep -1 " - "--ins-prefix-bos " - "--ins-prefix \"\\n\\n### Instruction:\\n\\n\" " - "--ins-suffix \"\\n\\n### Response:\\n\\n\" " - "-r \"### Instruction:\\n\\n\" " - "\n\n"); - // params.instruct = true; - params.clean_interface = true; - params.interactive_start = true; - params.n_keep = -1; - params.instruct_prefix_bos = true; - params.instruct_prefix = "\n\n### Instruction:\n\n"; - params.instruct_suffix = "\n\n### Response:\n\n"; - params.antiprompt.push_back("### Instruction:\n\n"); + params.instruct = true; } else if (arg == "--color") { params.use_color = true; - } else if (arg == "--disable-multiline") { - params.multiline_mode = false; } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--no-mmap") { @@ -251,94 +160,65 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { } else if (arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "-r" || arg == "--reverse-prompt") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.antiprompt.push_back(args[i]); - } else if (arg == "--stop-prompt") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.stopprompt.push_back(args[i]); - } else if (arg == "--rm-trailing-space-workaround") { - params.rm_trailing_space_workaround = true; + params.antiprompt.push_back(argv[i]); } else if (arg == "--perplexity") { params.perplexity = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--n_parts") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.n_parts = std::stoi(args[i]); + params.n_parts = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { - gpt_print_usage(argv[0], default_params); + gpt_print_usage(argc, argv, default_params); exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; } else if (arg == "--in-prefix") { - if (++i >= args_c) { + if (++i >= argc) { invalid_param = true; break; } - params.input_prefix = args[i]; - } else if (arg == "--ins-prefix-bos") { - params.instruct_prefix_bos = true; - } else if (arg == "--ins-prefix") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.instruct_prefix = args[i]; - } else if (arg == "--ins-suffix-bos") { - params.instruct_suffix_bos = true; - } else if (arg == "--ins-suffix") { - if (++i >= args_c) { - invalid_param = true; - break; - } - params.instruct_suffix = args[i]; + params.input_prefix = argv[i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - gpt_print_usage(argv[0], default_params); + gpt_print_usage(argc, argv, default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); - gpt_print_usage(argv[0], default_params); + gpt_print_usage(argc, argv, default_params); exit(1); } return true; } -void gpt_print_usage(char * argv_0, const gpt_params & params) { - fprintf(stderr, "usage: %s [options]\n", argv_0); +void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -i, --interactive run in interactive mode\n"); fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n"); - fprintf(stderr, " --clean-interface hides input prefix & suffix and displays '>' instead\n"); + fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n"); fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n"); fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n"); fprintf(stderr, " specified more than once for multiple prompts).\n"); fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n"); - fprintf(stderr, " --disable-multiline disable multiline mode (use Ctrl+D on Linux/Mac and Ctrl+Z then Return on Windows to toggle multiline)\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for <= 0)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: empty)\n"); fprintf(stderr, " --random-prompt start with a randomized prompt.\n"); fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); - fprintf(stderr, " --ins-prefix STRING (instruct) prefix user inputs with tokenized string (default: empty)\n"); - fprintf(stderr, " --ins-prefix-bos (instruct) prepend bos token to instruct prefix.\n"); - fprintf(stderr, " --ins-suffix STRING (instruct) suffix user inputs with tokenized string (default: empty)\n"); - fprintf(stderr, " --ins-suffix-bos (instruct) prepend bos token to instruct suffix.\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " prompt file to start generation.\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict); @@ -448,61 +328,3 @@ void win32_utf8_encode(const std::wstring & wstr, std::string & str) { str = strTo; } #endif - -bool get_input_text(std::string & input_text, bool eof_toggled_multiline_mode) { - bool another_line = true; - bool is_eof_multiline_toggled = false; - do { - std::string line; -#if defined(_WIN32) - auto & stdcin = std::wcin; - std::wstring wline; - if (!std::getline(stdcin, wline)) { - // input stream is bad or EOF received - if (stdcin.bad()) { - fprintf(stderr, "%s: error: input stream bad\n", __func__); - return 1; - } - } - win32_utf8_encode(wline, line); -#else - auto & stdcin = std::cin; - if (!std::getline(stdcin, line)) { - // input stream is bad or EOF received - if (stdcin.bad()) { - fprintf(stderr, "%s: error: input stream bad\n", __func__); - return 1; - } - } -#endif - if (stdcin.eof()) { - stdcin.clear(); - stdcin.seekg(0, std::ios::beg); - if (!eof_toggled_multiline_mode) { - another_line = false; - } else { - is_eof_multiline_toggled = !is_eof_multiline_toggled; - if (is_eof_multiline_toggled) { - input_text += line; - continue; - } - } - } - if (!eof_toggled_multiline_mode) { - if (line.empty() || line.back() != '\\') { - another_line = false; - } else { - line.pop_back(); // Remove the continue character - } - } else { - if (!is_eof_multiline_toggled) { - another_line = false; - } - } - input_text += line; - if (another_line) { - input_text += '\n'; // Append the line to the result - } - } while (another_line); - return true; -} diff --git a/examples/common.h b/examples/common.h index df8e4c6cc..1ea6f7445 100644 --- a/examples/common.h +++ b/examples/common.h @@ -14,14 +14,14 @@ // struct gpt_params { - int32_t seed = -1; // RNG seed - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); // max 4 threads (default) - int32_t n_predict = 128; // new tokens to predict - int32_t repeat_last_n = 64; // last n tokens to penalize - int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) - int32_t n_ctx = 512; // context size - int32_t n_batch = 8; // batch size for prompt processing - int32_t n_keep = 0; // number of tokens to keep from initial prompt (-1 for all) + int32_t seed = -1; // RNG seed + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); + int32_t n_predict = 128; // new tokens to predict + int32_t repeat_last_n = 64; // last n tokens to penalize + int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) + int32_t n_ctx = 512; // context size + int32_t n_batch = 8; // batch size for prompt processing + int32_t n_keep = 0; // number of tokens to keep from initial prompt // sampling parameters int32_t top_k = 40; @@ -33,15 +33,8 @@ struct gpt_params { std::string prompt = ""; std::string input_prefix = ""; // string to prefix user inputs with - std::string instruct_prefix = ""; // prefix user inputs with tokenized string - bool instruct_prefix_bos = false; // prepend bos token to instruct prefix - std::string instruct_suffix = ""; // suffix user inputs with tokenized string - bool instruct_suffix_bos = false; // prepend bos token to instruct suffix std::vector antiprompt; // string upon seeing which more user input is prompted - std::vector stopprompt; // string upon seeing which more user input is prompted (without adding instruct prefixes and suffixes) - - bool rm_trailing_space_workaround = false; // workaround for removing trailing space from reverse/stop prompts bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided @@ -58,14 +51,11 @@ struct gpt_params { bool use_mlock = false; // use mlock to keep model in memory bool mem_test = false; // compute maximum memory usage bool verbose_prompt = false; // print prompt tokens before generation - - bool clean_interface = false; // hides input prefix & suffix and displays '>' - bool multiline_mode = true; // enables multi-line mode, to send input press CTRL+D on Linux/Max, Ctrl+Z then Return on Windows }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); -void gpt_print_usage(char * argv_0, const gpt_params & params); +void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); @@ -105,5 +95,3 @@ void set_console_color(console_state & con_st, console_color_t color); void win32_console_init(bool enable_color); void win32_utf8_encode(const std::wstring & wstr, std::string & str); #endif - -bool get_input_text(std::string & input_text, bool escape_newline_mode); diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 68b4b2840..ba153cb82 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -30,8 +30,7 @@ static bool is_interacting = false; #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) void sigint_handler(int signo) { set_console_color(con_st, CONSOLE_COLOR_DEFAULT); - fflush(stdout); - fflush(stderr); + printf("\n"); // this also force flush stdout. if (signo == SIGINT) { if (!is_interacting) { is_interacting=true; @@ -90,8 +89,6 @@ int main(int argc, char ** argv) { params.prompt = gpt_random_prompt(rng); } - bool instruct_mode = !params.instruct_prefix.empty() || !params.instruct_suffix.empty(); - // params.prompt = R"(// this function checks if the number n is prime //bool is_prime(int n) {)"; @@ -156,20 +153,22 @@ int main(int argc, char ** argv) { } // number of tokens to keep when resetting context - if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) { + if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) { params.n_keep = (int)embd_inp.size(); } // prefix & suffix for instruct mode - const auto inp_pfx = ::llama_tokenize(ctx, params.instruct_prefix, params.instruct_prefix_bos); - std::string instruct_suffix = params.instruct_suffix; - if (params.rm_trailing_space_workaround) { - if (instruct_suffix.back() == ' ') { instruct_suffix.pop_back(); } + const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true); + const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); + + // in instruct mode, we inject a prefix and a suffix to each input by the user + if (params.instruct) { + params.interactive_start = true; + params.antiprompt.push_back("### Instruction:\n\n"); } - const auto inp_sfx = ::llama_tokenize(ctx, instruct_suffix, params.instruct_suffix_bos); // enable interactive mode if reverse prompt or interactive start is specified - if (params.antiprompt.size() != 0 || params.stopprompt.size() != 0 || params.interactive_start) { + if (params.antiprompt.size() != 0 || params.interactive_start) { params.interactive = true; } @@ -211,21 +210,10 @@ int main(int argc, char ** argv) { fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str()); } } - if (params.stopprompt.size()) { - for (auto stopprompt : params.stopprompt) { - fprintf(stderr, "Stop prompt: '%s'\n", stopprompt.c_str()); - } - } if (!params.input_prefix.empty()) { fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str()); } - if (!params.instruct_prefix.empty()) { - fprintf(stderr, "Instruct prefix %s: '%s'\n", params.instruct_prefix_bos ? "(with bos token)" : "", params.instruct_prefix.c_str()); - } - if (!params.instruct_suffix.empty()) { - fprintf(stderr, "Instruct suffix %s: '%s'\n", params.instruct_suffix_bos ? "(with bos token)" : "", params.instruct_suffix.c_str()); - } } fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); @@ -241,29 +229,12 @@ int main(int argc, char ** argv) { #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) " - Press Ctrl+C to interject at any time.\n" #endif - ); - if (params.multiline_mode) { - fprintf(stderr, " - Press Return to return control to LLaMa.\n" -#if defined (_WIN32) - " - [MULTILINE MODE] Press Ctrl+Z then Return (EOF) to toggle.\n\n"); -#else - " - [MULTILINE MODE] Press Ctrl+D (EOF) to toggle.\n\n"); -#endif - } - else { - fprintf(stderr, " - Press Return to return control to LLaMa.\n" - " - If you want to submit another line, end your input in '\\'.\n\n"); - } + " - Press Return to return control to LLaMa.\n" + " - If you want to submit another line, end your input in '\\'.\n\n"); is_interacting = params.interactive_start; } - struct Antiprompt { - bool any = false; - bool trailing_space = false; - size_t len; - bool is_stop_prompt = false; - } antiprompt; - + bool is_antiprompt = false; bool input_noecho = false; int n_past = 0; @@ -333,7 +304,7 @@ int main(int argc, char ** argv) { } // replace end of text token with newline token when in interactive mode - if (id == llama_token_eos() && params.interactive && !instruct_mode) { + if (id == llama_token_eos() && params.interactive && !params.instruct) { id = llama_token_newline.front(); if (params.antiprompt.size() != 0) { // tokenize and inject first reverse prompt @@ -379,72 +350,27 @@ int main(int argc, char ** argv) { // check if we should prompt the user for more if (params.interactive && (int) embd_inp.size() <= n_consumed) { - // check for reverse prompt or stop prompt - if (params.antiprompt.size() || params.stopprompt.size()) { + // check for reverse prompt + if (params.antiprompt.size()) { std::string last_output; for (auto id : last_n_tokens) { last_output += llama_token_to_str(ctx, id); } - antiprompt.any = false; - antiprompt.is_stop_prompt = false; + is_antiprompt = false; // Check if each of the reverse prompts appears at the end of the output. - for (std::string & prompt : params.antiprompt) { - if (params.rm_trailing_space_workaround) { - antiprompt.trailing_space = prompt.back() == ' '; - antiprompt.len = prompt.length() - (antiprompt.trailing_space ? 1 : 0); - } - if (last_output.find(prompt.c_str(), last_output.length() - antiprompt.len, antiprompt.len) != std::string::npos) { + for (std::string & antiprompt : params.antiprompt) { + if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { is_interacting = true; - antiprompt.any = true; + is_antiprompt = true; set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); fflush(stdout); break; } } - if (!antiprompt.any) { - for (std::string & prompt : params.stopprompt) { - if (params.rm_trailing_space_workaround) { - antiprompt.trailing_space = prompt.back() == ' '; - antiprompt.len = prompt.length() - (antiprompt.trailing_space ? 1 : 0); - } - if (last_output.find(prompt.c_str(), last_output.length() - antiprompt.len, antiprompt.len) != std::string::npos) { - is_interacting = true; - antiprompt.any = true; - antiprompt.is_stop_prompt = true; - set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); - fflush(stdout); - break; - } - } - } } - if (n_past > 0 && is_interacting) - { - std::string buffer; - if (!params.clean_interface && !params.instruct_prefix.empty() && !antiprompt.any) { - // avoid printing again user's new line (TODO: try to revert enter press and print newline) - int i = params.instruct_prefix.front() == '\n' ? 1 : 0; - for (; i < inp_pfx.size(); i++) { - printf("%s", llama_token_to_str(ctx, inp_pfx[i])); - } - fflush(stdout); - } - if (params.rm_trailing_space_workaround) { - // add only if not stopprompt (as stopprompt could be used to pause - // assistant and then continue without input - adding back trailing - // space may mess it up.) - if (!antiprompt.is_stop_prompt && antiprompt.any && antiprompt.trailing_space) { - // add back removed trailing space to buffer(workaround) - buffer += ' '; - if (!params.clean_interface) { - printf("%s", buffer.c_str()); - } - fflush(stdout); - } - } - + if (n_past > 0 && is_interacting) { // potentially set color to indicate we are taking user input set_console_color(con_st, CONSOLE_COLOR_USER_INPUT); @@ -453,45 +379,49 @@ int main(int argc, char ** argv) { signal(SIGINT, sigint_handler); #endif - if (params.clean_interface) { + if (params.instruct) { printf("\n> "); } + std::string buffer; if (!params.input_prefix.empty()) { buffer += params.input_prefix; printf("%s", buffer.c_str()); } - if (!get_input_text(buffer, params.multiline_mode)) { - // input stream is bad - return 1; - } - if (!antiprompt.is_stop_prompt) { - buffer += "\n"; - } + std::string line; + bool another_line = true; + do { +#if defined(_WIN32) + std::wstring wline; + if (!std::getline(std::wcin, wline)) { + // input stream is bad or EOF received + return 0; + } + win32_utf8_encode(wline, line); +#else + if (!std::getline(std::cin, line)) { + // input stream is bad or EOF received + return 0; + } +#endif + if (line.empty() || line.back() != '\\') { + another_line = false; + } else { + line.pop_back(); // Remove the continue character + } + buffer += line + '\n'; // Append the line to the result + } while (another_line); // done taking input, reset color set_console_color(con_st, CONSOLE_COLOR_DEFAULT); - if (!params.clean_interface && !params.instruct_suffix.empty() && !antiprompt.is_stop_prompt) { - // avoid printing again user's new line (TODO: try to revert enter press and print newline) - int i = params.instruct_suffix.front() == '\n' ? 1 : 0; - for (; i < inp_sfx.size(); i++) { - printf("%s", llama_token_to_str(ctx, inp_sfx[i])); - } - // if (remove trailing space workaround) { - // We won't add back removed trailing space here, because assistant continues here, - // and it may mess up it's output (remove trailing space workaround). - // } - fflush(stdout); - } - // Add tokens to embd only if the input buffer is non-empty // Entering a empty line lets the user pass control back if (buffer.length() > 1) { - // insert input prefix - if (!params.instruct_prefix.empty() && !antiprompt.any) { + // instruct mode: insert instruction prefix + if (params.instruct && !is_antiprompt) { n_consumed = embd_inp.size(); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); } @@ -499,8 +429,8 @@ int main(int argc, char ** argv) { auto line_inp = ::llama_tokenize(ctx, buffer, false); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); - // insert response suffix - if (!params.instruct_suffix.empty() && !antiprompt.is_stop_prompt) { + // instruct mode: insert response suffix + if (params.instruct) { embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); } @@ -517,7 +447,7 @@ int main(int argc, char ** argv) { // end of text token if (!embd.empty() && embd.back() == llama_token_eos()) { - if (instruct_mode) { + if (params.instruct) { is_interacting = true; } else { fprintf(stderr, " [end of text]\n"); diff --git a/prompts/alpaca.txt b/prompts/alpaca.txt new file mode 100644 index 000000000..2224bdeb0 --- /dev/null +++ b/prompts/alpaca.txt @@ -0,0 +1 @@ +Below is an instruction that describes a task. Write a response that appropriately completes the request. diff --git a/prompts/chat-with-bob.txt b/prompts/chat-with-bob.txt new file mode 100644 index 000000000..ad494d831 --- /dev/null +++ b/prompts/chat-with-bob.txt @@ -0,0 +1,7 @@ +Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. + +User: Hello, Bob. +Bob: Hello. How may I help you today? +User: Please tell me the largest city in Europe. +Bob: Sure. The largest city in Europe is Moscow, the capital of Russia. +User: \ No newline at end of file From 106faaf2971d6c89d6010279a9a95737772470ef Mon Sep 17 00:00:00 2001 From: katsu560 <118887472+katsu560@users.noreply.github.com> Date: Sat, 15 Apr 2023 14:51:11 +0900 Subject: [PATCH 39/49] cmake : add finding the OpenBLAS header file (#992) --- CMakeLists.txt | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index d5715d92a..5a20de3a2 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -120,6 +120,21 @@ if (LLAMA_OPENBLAS) add_compile_definitions(GGML_USE_OPENBLAS) add_link_options(${BLAS_LIBRARIES}) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas) + + # find header file + set(OPENBLAS_INCLUDE_SEARCH_PATHS + /usr/include + /usr/include/openblas + /usr/include/openblas-base + /usr/local/include + /usr/local/include/openblas + /usr/local/include/openblas-base + /opt/OpenBLAS/include + $ENV{OpenBLAS_HOME} + $ENV{OpenBLAS_HOME}/include + ) + find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS}) + add_compile_options(-I${OPENBLAS_INC}) else() message(WARNING "OpenBLAS not found") endif() From c12b14b77fced0ce9a0e2d81f670c3a746dec251 Mon Sep 17 00:00:00 2001 From: Ivan Komarov Date: Sat, 15 Apr 2023 07:51:54 +0200 Subject: [PATCH 40/49] benchmark : fix result validation in benchmark-q4_0-matmult (#987) --- examples/benchmark/benchmark-q4_0-matmult.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/benchmark/benchmark-q4_0-matmult.c b/examples/benchmark/benchmark-q4_0-matmult.c index 90f537fd8..84b06766c 100644 --- a/examples/benchmark/benchmark-q4_0-matmult.c +++ b/examples/benchmark/benchmark-q4_0-matmult.c @@ -24,7 +24,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { float sum = 0; - if (tensor->type==6) { + if (tensor->type==GGML_TYPE_F32) { for (int j = 0; j < tensor->ne[1]; j++) { for (int k = 0; k < tensor->ne[0]; k++) { sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; From aa485cee334e84437e21681c14b6f80b65876d8b Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 15 Apr 2023 14:25:45 +0300 Subject: [PATCH 41/49] ggml : use posix_memalign on non-Windows env --- ggml.c | 23 ++++++++++++++++------- 1 file changed, 16 insertions(+), 7 deletions(-) diff --git a/ggml.c b/ggml.c index 1574d6498..cf6a81f43 100644 --- a/ggml.c +++ b/ggml.c @@ -118,7 +118,16 @@ typedef void* thread_ret_t; #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) #else -#define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size) +inline static void* ggml_aligned_malloc(size_t size) { + void* aligned_memory = NULL; + int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size); + if (result != 0) { + // Handle allocation failure + return NULL; + } + return aligned_memory; +} +#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) #define GGML_ALIGNED_FREE(ptr) free(ptr) #endif @@ -531,31 +540,31 @@ inline static float vaddvq_f32(float32x4_t v) { return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); } -inline float vminvq_f32(float32x4_t v) { +float vminvq_f32(float32x4_t v) { return MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); } -inline float vmaxvq_f32(float32x4_t v) { +float vmaxvq_f32(float32x4_t v) { return MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); } -inline int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { +int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) { return vget_low_s8(vcombine_s8(a, b)); } -inline int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { +int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) { return vget_high_s8(vcombine_s8(a, b)); } -inline uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { +uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { return vget_low_u8(vcombine_u8(a, b)); } -inline uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { +uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { return vget_high_u8(vcombine_u8(a, b)); } From e95b6554b493e71a0275764342e09bd5784a7026 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 15 Apr 2023 17:53:22 +0300 Subject: [PATCH 42/49] ggml : add Q8_0 quantization for intermediate results (#951) * ggml : add Q8_0 quantization for intermediate results * quantize-stats : fix test + add it to Makefile default * Q8: use int8_t, AVX/AVX2 optimizations * ggml : fix quantize_row_q8_0() ARM_NEON rounding * minor : updates after rebase to latest master * quantize-stats : delete obsolete strings * ggml : fix q4_1 dot func --------- Co-authored-by: Stephan Walter --- Makefile | 2 +- ggml.c | 456 ++++++++++++++++++++++++++++++++++++++++++++++++++++--- ggml.h | 2 + 3 files changed, 442 insertions(+), 18 deletions(-) diff --git a/Makefile b/Makefile index a1b99c6f9..e7470d51a 100644 --- a/Makefile +++ b/Makefile @@ -133,7 +133,7 @@ $(info I CC: $(CCV)) $(info I CXX: $(CXXV)) $(info ) -default: main quantize perplexity embedding +default: main quantize quantize-stats perplexity embedding # # Build library diff --git a/ggml.c b/ggml.c index cf6a81f43..54b9f764f 100644 --- a/ggml.c +++ b/ggml.c @@ -575,7 +575,7 @@ uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { // blocks of QK elements // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors) typedef struct { - float d; // delta + float d; // delta uint8_t qs[QK / 2]; // nibbles / quants } block_q4_0; static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding"); @@ -584,12 +584,19 @@ static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block si // blocks of QK elements // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors) typedef struct { - float d; - float m; + float d; // delta + float m; // min uint8_t qs[QK / 2]; // nibbles / quants } block_q4_1; static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding"); +typedef struct { + float d; // delta + int8_t qs[QK]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(float) + QK, "wrong q8_0 block size/padding"); + + // reference implementation for deterministic creation of model files static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { assert(k % QK == 0); @@ -1042,6 +1049,157 @@ static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int #endif } +// reference implementation for deterministic creation of model files +static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { + assert(k % QK == 0); + const int nb = k / QK; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int l = 0; l < QK; l++) { + const float v = x[i*QK + l]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < QK; ++l) { + const float v = x[i*QK + l]*id; + y[i].qs[l] = roundf(v); + } + } +} + +static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { + assert(k % QK == 0); + const int nb = k / QK; + + block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l); + for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]); + + for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]); + for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]); + for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = d; + + for (int l = 0; l < 8; l++) { + const float32x4_t v = vmulq_n_f32(srcv[l], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3); + } + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = d; + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#else + // scalar + quantize_row_q8_0_reference(x, y, k); +#endif +} + static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) { assert(k % QK == 0); const int nb = k / QK; @@ -2344,12 +2502,12 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4); sum00 += x0->m*y0->m; - sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h)); - sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h)); + sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h)); + sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h)); sum00 += x1->m*y1->m; - sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h)); - sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h)); + sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h)); + sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h)); #if defined(__ARM_FEATURE_DOTPROD) // dot product into int32x4_t @@ -2417,6 +2575,209 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest *s = sumf; } +static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + const int nb = n / QK; + + assert(n % QK == 0); + assert(nb % 2 == 0); + + const block_q4_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + + float sumf = 0.0; + +#if defined(__ARM_NEON) + float sum0 = 0.0f; + float sum1 = 0.0f; + + for (int i = 0; i < nb; i += 2) { + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0xf); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + // interleave + const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h); + const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h); + const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h); + const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h); + +#if defined(__ARM_FEATURE_DOTPROD) + // dot product into int32x4_t + int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls); + int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls); + + p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs); + p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs); + + sum0 += x0->d*y0->d*vaddvq_s32(p_0); + sum1 += x1->d*y1->d*vaddvq_s32(p_1); +#else + const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls)); + const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls)); + const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs)); + const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs)); + + const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls)); + const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls)); + const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs)); + const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs)); + + const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h); + const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h); + + const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h); + const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h); + + const int16x8_t p_0 = vaddq_s16(pl_0, ph_0); + const int16x8_t p_1 = vaddq_s16(pl_1, ph_1); + + sum0 += x0->d*y0->d*vaddvq_s16(p_0); + sum1 += x1->d*y1->d*vaddvq_s16(p_1); +#endif + } + + sumf = sum0 + sum1; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m256i bx = bytesFromNibbles(x[i].qs); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8( 8 ); + bx = _mm256_sub_epi8( bx, off ); + + __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); + + // Get absolute values of x vectors + const __m256i ax = _mm256_sign_epi8(bx, bx); + + // Sign the values of the y vectors + const __m256i sy = _mm256_sign_epi8(by, bx); + + // Perform multiplication and create 16-bit values + const __m256i dot = _mm256_maddubs_epi16(ax, sy); + + const __m256i ones = _mm256_set1_epi16(1); + __m256i xy_q = _mm256_madd_epi16(ones, dot); + + /* Convert to vectore of 8 int32_t to 8 floats */ + __m256 q = _mm256_cvtepi32_ps( xy_q ); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( d, q, acc ); + } + + // Return horizontal sum of the acc vector + __m128 res = _mm256_extractf128_ps( acc, 1 ); + res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); + res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); + res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); + + sumf = _mm_cvtss_f32( res ); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) ); + + __m128i i32[2]; + for (int j = 0; j < 2; ++j) { + // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes + __m128i bx = bytesFromNibbles( x[i].qs + 8*j ); + __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j)); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m128i off = _mm_set1_epi8( 8 ); + bx = _mm_sub_epi8( bx, off ); + + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(bx, bx); + + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(by, bx); + + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); + + const __m128i ones = _mm_set1_epi16(1); + i32[j] = _mm_madd_epi16(ones, dot); + } + + // Convert int32_t to float + __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] )); + // Apply the scale, and accumulate + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); + } + + // Return horizontal sum of the acc vector + __m128 res = _mm256_extractf128_ps( acc, 1 ); + res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) ); + res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); + res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); + + sumf = _mm_cvtss_f32( res ); +#else + // scalar + for (int i = 0; i < nb; i++) { + const float d0 = x[i].d; + const float d1 = y[i].d; + + const uint8_t * restrict p0 = x[i].qs; + const int8_t * restrict p1 = y[i].qs; + + int sumi = 0; + for (int j = 0; j < QK/2; j++) { + const uint8_t v0 = p0[j]; + + const int i0 = (int8_t) (v0 & 0xf) - 8; + const int i1 = (int8_t) (v0 >> 4) - 8; + + const int i2 = p1[2*j + 0]; + const int i3 = p1[2*j + 1]; + + sumi += i0*i2 + i1*i3; + } + sumf += d0*d1*sumi; + } +#endif + + *s = sumf; +} + // compute GGML_VEC_DOT_UNROLL dot products at once // xs - x row stride in bytes inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { @@ -2663,22 +3024,24 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F16] = 1, [GGML_TYPE_Q4_0] = QK, [GGML_TYPE_Q4_1] = QK, + [GGML_TYPE_Q8_0] = QK, [GGML_TYPE_I8] = 1, [GGML_TYPE_I16] = 1, [GGML_TYPE_I32] = 1, }; -static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = sizeof(float), [GGML_TYPE_F16] = sizeof(ggml_fp16_t), [GGML_TYPE_Q4_0] = sizeof(block_q4_0), [GGML_TYPE_Q4_1] = sizeof(block_q4_1), + [GGML_TYPE_Q8_0] = sizeof(block_q8_0), [GGML_TYPE_I8] = sizeof(int8_t), [GGML_TYPE_I16] = sizeof(int16_t), [GGML_TYPE_I32] = sizeof(int32_t), }; -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated"); static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { @@ -2686,11 +3049,12 @@ static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { [GGML_TYPE_F16] = "f16", [GGML_TYPE_Q4_0] = "q4_0", [GGML_TYPE_Q4_1] = "q4_1", + [GGML_TYPE_Q8_0] = "q8_0", [GGML_TYPE_I8] = "i8", [GGML_TYPE_I16] = "i16", [GGML_TYPE_I32] = "i32", }; -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_NAME is outdated"); +static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -3371,6 +3735,10 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3431,6 +3799,10 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3485,6 +3857,10 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3529,6 +3905,10 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3571,6 +3951,10 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3615,6 +3999,10 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { { GGML_ASSERT(false); } break; + case GGML_TYPE_Q8_0: + { + GGML_ASSERT(false); + } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -5437,6 +5825,7 @@ static void ggml_compute_forward_dup( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5518,6 +5907,7 @@ static void ggml_compute_forward_add( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5570,6 +5960,7 @@ static void ggml_compute_forward_sub( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5622,6 +6013,7 @@ static void ggml_compute_forward_mul( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5674,6 +6066,7 @@ static void ggml_compute_forward_div( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5722,6 +6115,7 @@ static void ggml_compute_forward_sqr( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5770,6 +6164,7 @@ static void ggml_compute_forward_sqrt( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5828,6 +6223,7 @@ static void ggml_compute_forward_sum( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5905,6 +6301,7 @@ static void ggml_compute_forward_mean( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -5969,6 +6366,7 @@ static void ggml_compute_forward_repeat( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6017,6 +6415,7 @@ static void ggml_compute_forward_abs( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6065,6 +6464,7 @@ static void ggml_compute_forward_sgn( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6113,6 +6513,7 @@ static void ggml_compute_forward_neg( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6161,6 +6562,7 @@ static void ggml_compute_forward_step( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6209,6 +6611,7 @@ static void ggml_compute_forward_relu( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6274,6 +6677,7 @@ static void ggml_compute_forward_gelu( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6341,6 +6745,7 @@ static void ggml_compute_forward_silu( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6427,6 +6832,7 @@ static void ggml_compute_forward_norm( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6507,6 +6913,7 @@ static void ggml_compute_forward_rms_norm( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -6908,14 +7315,17 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { .dequantize_row_q = dequantize_row_q4_0, .quantize_row_q = quantize_row_q4_0, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, - .vec_dot_q = ggml_vec_dot_q4_0, + .quantize_row_q_dot = quantize_row_q8_0, + .vec_dot_q = ggml_vec_dot_q4_0_q8_0, }, [GGML_TYPE_Q4_1] = { .dequantize_row_q = dequantize_row_q4_1, .quantize_row_q = quantize_row_q4_1, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, + .quantize_row_q_dot = quantize_row_q4_1, .vec_dot_q = ggml_vec_dot_q4_1, }, + // TODO: GGML_TYPE_Q8_0 }; // For internal test use @@ -6971,8 +7381,8 @@ static void ggml_compute_forward_mul_mat_q_f32( GGML_ASSERT(ne3 == ne13); const enum ggml_type type = src0->type; - quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; - vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; + quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; + vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); @@ -7041,12 +7451,12 @@ static void ggml_compute_forward_mul_mat_q_f32( if (params->type == GGML_TASK_INIT) { char * wdata = params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; + const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { - quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); wdata += row_size; } } @@ -7072,7 +7482,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const int ir1 = MIN(ir0 + dr, nr); void * wdata = params->wdata; - const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type]; + const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; for (int ir = ir0; ir < ir1; ++ir) { // src0 indices @@ -7120,6 +7530,7 @@ static void ggml_compute_forward_mul_mat( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: { ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; @@ -7218,6 +7629,7 @@ static void ggml_compute_forward_scale( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -7383,6 +7795,7 @@ static void ggml_compute_forward_get_rows( switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -7472,6 +7885,7 @@ static void ggml_compute_forward_diag_mask_inf( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -7566,6 +7980,7 @@ static void ggml_compute_forward_soft_max( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -7749,6 +8164,7 @@ static void ggml_compute_forward_rope( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -8017,6 +8433,7 @@ static void ggml_compute_forward_conv_1d_1s( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -8285,6 +8702,7 @@ static void ggml_compute_forward_conv_1d_2s( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -8770,6 +9188,7 @@ static void ggml_compute_forward_flash_attn( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -8981,6 +9400,7 @@ static void ggml_compute_forward_flash_ff( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -9030,6 +9450,7 @@ static void ggml_compute_forward_map_unary( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -9085,6 +9506,7 @@ static void ggml_compute_forward_map_binary( } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: + case GGML_TYPE_Q8_0: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -9914,7 +10336,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) } else #endif { - cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type]; + cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0]; } } else { GGML_ASSERT(false); diff --git a/ggml.h b/ggml.h index 617298a95..241e96a19 100644 --- a/ggml.h +++ b/ggml.h @@ -204,6 +204,7 @@ enum ggml_type { GGML_TYPE_F16 = 1, GGML_TYPE_Q4_0 = 2, GGML_TYPE_Q4_1 = 3, + GGML_TYPE_Q8_0 = 4, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, @@ -836,6 +837,7 @@ typedef struct { dequantize_row_q_t dequantize_row_q; quantize_row_q_t quantize_row_q; quantize_row_q_t quantize_row_q_reference; + quantize_row_q_t quantize_row_q_dot; vec_dot_q_t vec_dot_q; } quantize_fns_t; From 0ad964631f9b3970f1936008fcfb1eadef59c7ed Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Sat, 15 Apr 2023 16:25:38 +0000 Subject: [PATCH 43/49] Refactor ggml.c for future tensor types (#1001) --- ggml.c | 537 ++++++++++++++------------------------------------------- 1 file changed, 129 insertions(+), 408 deletions(-) diff --git a/ggml.c b/ggml.c index 54b9f764f..ccad76e8c 100644 --- a/ggml.c +++ b/ggml.c @@ -427,8 +427,6 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); // quantization // -#define QK 32 - // AVX routines provided by GH user Const-me // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600 #if __AVX2__ || __AVX512F__ @@ -571,44 +569,42 @@ uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { #endif #endif -// method 5 -// blocks of QK elements -// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors) + +#define QK4_0 32 typedef struct { float d; // delta - uint8_t qs[QK / 2]; // nibbles / quants + uint8_t qs[QK4_0 / 2]; // nibbles / quants } block_q4_0; -static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding"); +static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); -// method 4 -// blocks of QK elements -// represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors) +#define QK4_1 32 typedef struct { float d; // delta float m; // min - uint8_t qs[QK / 2]; // nibbles / quants + uint8_t qs[QK4_1 / 2]; // nibbles / quants } block_q4_1; -static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding"); +static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); +#define QK8_0 32 typedef struct { - float d; // delta - int8_t qs[QK]; // quants + float d; // delta + int8_t qs[QK8_0]; // quants } block_q8_0; -static_assert(sizeof(block_q8_0) == sizeof(float) + QK, "wrong q8_0 block size/padding"); +static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); // reference implementation for deterministic creation of model files static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; - uint8_t pp[QK/2]; + uint8_t pp[QK4_0/2]; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max - for (int l = 0; l < QK; l++) { - const float v = x[i*QK + l]; + for (int l = 0; l < QK4_0; l++) { + const float v = x[i*QK4_0 + l]; amax = MAX(amax, fabsf(v)); } @@ -617,9 +613,9 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r y[i].d = d; - for (int l = 0; l < QK; l += 2) { - const float v0 = x[i*QK + l + 0]*id; - const float v1 = x[i*QK + l + 1]*id; + for (int l = 0; l < QK4_0; l += 2) { + const float v0 = x[i*QK4_0 + l + 0]*id; + const float v1 = x[i*QK4_0 + l + 1]*id; const uint8_t vi0 = (int8_t)roundf(v0) + 8; const uint8_t vi1 = (int8_t)roundf(v1) + 8; @@ -635,8 +631,8 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r } static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; block_q4_0 * restrict y = vy; @@ -886,19 +882,19 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int } static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; block_q4_1 * restrict y = vy; - uint8_t pp[QK/2]; + uint8_t pp[QK4_1/2]; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; - for (int l = 0; l < QK; l++) { - const float v = x[i*QK + l]; + for (int l = 0; l < QK4_1; l++) { + const float v = x[i*QK4_1 + l]; if (v < min) min = v; if (v > max) max = v; } @@ -909,9 +905,9 @@ static void quantize_row_q4_1_reference(const float * restrict x, void * restric y[i].d = d; y[i].m = min; - for (int l = 0; l < QK; l += 2) { - const float v0 = (x[i*QK + l + 0] - min)*id; - const float v1 = (x[i*QK + l + 1] - min)*id; + for (int l = 0; l < QK4_1; l += 2) { + const float v0 = (x[i*QK4_1 + l + 0] - min)*id; + const float v1 = (x[i*QK4_1 + l + 1] - min)*id; const uint8_t vi0 = roundf(v0); const uint8_t vi1 = roundf(v1); @@ -927,9 +923,9 @@ static void quantize_row_q4_1_reference(const float * restrict x, void * restric } static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); + assert(k % QK4_1 == 0); - const int nb = k / QK; + const int nb = k / QK4_1; block_q4_1 * restrict y = vy; @@ -1013,7 +1009,7 @@ static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int float32x4_t minv[8]; float32x4_t maxv[8]; - for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l); + for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l); for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]); for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]); @@ -1051,14 +1047,14 @@ static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int // reference implementation for deterministic creation of model files static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; for (int i = 0; i < nb; i++) { float amax = 0.0f; // absolute max - for (int l = 0; l < QK; l++) { - const float v = x[i*QK + l]; + for (int l = 0; l < QK8_0; l++) { + const float v = x[i*QK8_0 + l]; amax = MAX(amax, fabsf(v)); } @@ -1067,16 +1063,16 @@ static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * r y[i].d = d; - for (int l = 0; l < QK; ++l) { - const float v = x[i*QK + l]*id; + for (int l = 0; l < QK8_0; ++l) { + const float v = x[i*QK8_0 + l]*id; y[i].qs[l] = roundf(v); } } } static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; block_q8_0 * restrict y = vy; @@ -1201,8 +1197,8 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int } static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; const block_q4_0 * restrict x = vx; @@ -1213,7 +1209,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 32) { + for (int l = 0; l < QK4_0; l += 32) { // Load 32x4-bit integers into 32x8-bit integers __m256i vx8 = bytesFromNibbles(pp+l/2); @@ -1235,7 +1231,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in // Scale and store for (int j = 0; j < 4; j++) { const __m256 result = _mm256_mul_ps(vf[j], d_v); - _mm256_storeu_ps(y + i * QK + l + j*8, result); + _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result); } } } @@ -1245,7 +1241,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 16) { + for (int l = 0; l < QK4_0; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); @@ -1284,10 +1280,10 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const float32x4_t r3 = vmulq_f32(vf_3, vd); // Store - vst1q_f32(y + i*QK + l + 0, r0); - vst1q_f32(y + i*QK + l + 4, r1); - vst1q_f32(y + i*QK + l + 8, r2); - vst1q_f32(y + i*QK + l + 12, r3); + vst1q_f32(y + i*QK4_0 + l + 0, r0); + vst1q_f32(y + i*QK4_0 + l + 4, r1); + vst1q_f32(y + i*QK4_0 + l + 8, r2); + vst1q_f32(y + i*QK4_0 + l + 12, r3); } } #else @@ -1297,7 +1293,7 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_0; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; @@ -1308,19 +1304,19 @@ static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, in //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1); - y[i*QK + l + 0] = v0; - y[i*QK + l + 1] = v1; + y[i*QK4_0 + l + 0] = v0; + y[i*QK4_0 + l + 1] = v1; - assert(!isnan(y[i*QK + l + 0])); - assert(!isnan(y[i*QK + l + 1])); + assert(!isnan(y[i*QK4_0 + l + 0])); + assert(!isnan(y[i*QK4_0 + l + 1])); } } #endif } static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; const block_q4_1 * restrict x = vx; @@ -1331,7 +1327,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 32) { + for (int l = 0; l < QK4_1; l += 32) { // Load 32x4-bit integers into 32x8-bit integers __m256i vx8 = bytesFromNibbles(pp+l/2); @@ -1350,7 +1346,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in // Scale, add m and store for (int j = 0; j < 4; j++) { const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m); - _mm256_storeu_ps(y + i * QK + l + j*8, result); + _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result); } } } @@ -1361,7 +1357,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 16) { + for (int l = 0; l < QK4_1; l += 16) { // Load 16x4-bit integers into 8x8-bit integers const uint8x8_t v8 = vld1_u8(pp + l/2); @@ -1392,10 +1388,10 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd); // Store - vst1q_f32(y + i*QK + l + 0, r0); - vst1q_f32(y + i*QK + l + 4, r1); - vst1q_f32(y + i*QK + l + 8, r2); - vst1q_f32(y + i*QK + l + 12, r3); + vst1q_f32(y + i*QK4_1 + l + 0, r0); + vst1q_f32(y + i*QK4_1 + l + 4, r1); + vst1q_f32(y + i*QK4_1 + l + 8, r2); + vst1q_f32(y + i*QK4_1 + l + 12, r3); } } #else @@ -1405,7 +1401,7 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const uint8_t * restrict pp = x[i].qs; - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi = pp[l/2]; const int8_t vi0 = vi & 0xf; @@ -1414,11 +1410,11 @@ static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, in const float v0 = vi0*d + m; const float v1 = vi1*d + m; - y[i*QK + l + 0] = v0; - y[i*QK + l + 1] = v1; + y[i*QK4_1 + l + 0] = v0; + y[i*QK4_1 + l + 1] = v1; - assert(!isnan(y[i*QK + l + 0])); - assert(!isnan(y[i*QK + l + 1])); + assert(!isnan(y[i*QK4_1 + l + 0])); + assert(!isnan(y[i*QK4_1 + l + 1])); } } #endif @@ -1980,7 +1976,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float *s = sumf; } -#if __AVX512F__ && QK == 32 +#if __AVX512F__ && QK4_0 == 32 static inline __m512 dot_q4_0_oneblock_avx512( __m512 acc, const block_q4_0 * restrict x, @@ -2048,9 +2044,9 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t } static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK; + const int nb = n / QK4_0; - assert(n % QK == 0); + assert(n % QK4_0 == 0); assert(nb % 2 == 0); const block_q4_0 * restrict x = vx; @@ -2373,7 +2369,7 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const uint8_t * restrict p1 = y[i].qs; int sumi = 0; - for (int j = 0; j < QK/2; j++) { + for (int j = 0; j < QK4_0/2; j++) { const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; @@ -2393,7 +2389,7 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest } static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK; + const int nb = n / QK4_1; const block_q4_1 * restrict x = vx; const block_q4_1 * restrict y = vy; @@ -2470,7 +2466,7 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest res = _mm_add_ps( res, _mm_movehl_ps( res, res ) ); res = _mm_add_ss( res, _mm_movehdup_ps( res ) ); - sumf = _mm_cvtss_f32( res ) + acc_offset * QK; + sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1; #elif defined(__ARM_NEON) float sum00 = 0.0f; float sum01 = 0.0f; @@ -2544,7 +2540,7 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest #endif } - sumf = QK*sum00 + sum01 + sum10 + sum11; + sumf = QK4_1*sum00 + sum01 + sum10 + sum11; #else // scalar for (int i = 0; i < nb; i++) { @@ -2557,7 +2553,7 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest const uint8_t * restrict p0 = x[i].qs; const uint8_t * restrict p1 = y[i].qs; - for (int j = 0; j < QK/2; j++) { + for (int j = 0; j < QK4_1/2; j++) { const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; @@ -2576,9 +2572,9 @@ static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * rest } static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { - const int nb = n / QK; + const int nb = n / QK8_0; - assert(n % QK == 0); + assert(n % QK8_0 == 0); assert(nb % 2 == 0); const block_q4_0 * restrict x = vx; @@ -2760,7 +2756,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * const int8_t * restrict p1 = y[i].qs; int sumi = 0; - for (int j = 0; j < QK/2; j++) { + for (int j = 0; j < QK8_0/2; j++) { const uint8_t v0 = p0[j]; const int i0 = (int8_t) (v0 & 0xf) - 8; @@ -3022,9 +3018,9 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = 1, [GGML_TYPE_F16] = 1, - [GGML_TYPE_Q4_0] = QK, - [GGML_TYPE_Q4_1] = QK, - [GGML_TYPE_Q8_0] = QK, + [GGML_TYPE_Q4_0] = QK4_0, + [GGML_TYPE_Q4_1] = QK4_1, + [GGML_TYPE_Q8_0] = QK8_0, [GGML_TYPE_I8] = 1, [GGML_TYPE_I16] = 1, [GGML_TYPE_I32] = 1, @@ -3727,18 +3723,6 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { char * const data = tensor->data; switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3774,7 +3758,7 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3791,18 +3775,6 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { char * const data = tensor->data; switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); @@ -3838,7 +3810,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3849,18 +3821,6 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3886,7 +3846,7 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3897,18 +3857,6 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3934,7 +3882,7 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); ((float *)(tensor->data))[i] = value; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3943,18 +3891,6 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -3980,7 +3916,7 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -3991,18 +3927,6 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { switch (tensor->type) { - case GGML_TYPE_Q4_0: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q4_1: - { - GGML_ASSERT(false); - } break; - case GGML_TYPE_Q8_0: - { - GGML_ASSERT(false); - } break; case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); @@ -4028,7 +3952,7 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { GGML_ASSERT(tensor->nb[0] == sizeof(float)); ((float *)(tensor->data))[i] = value; } break; - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5823,13 +5747,7 @@ static void ggml_compute_forward_dup( { ggml_compute_forward_dup_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5905,14 +5823,7 @@ static void ggml_compute_forward_add( { ggml_compute_forward_add_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -5958,14 +5869,7 @@ static void ggml_compute_forward_sub( { ggml_compute_forward_sub_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6011,14 +5915,7 @@ static void ggml_compute_forward_mul( { ggml_compute_forward_mul_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6064,14 +5961,7 @@ static void ggml_compute_forward_div( { ggml_compute_forward_div_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6113,14 +6003,7 @@ static void ggml_compute_forward_sqr( { ggml_compute_forward_sqr_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6162,14 +6045,7 @@ static void ggml_compute_forward_sqrt( { ggml_compute_forward_sqrt_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6221,14 +6097,7 @@ static void ggml_compute_forward_sum( { ggml_compute_forward_sum_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6299,14 +6168,7 @@ static void ggml_compute_forward_mean( { ggml_compute_forward_mean_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6364,14 +6226,7 @@ static void ggml_compute_forward_repeat( { ggml_compute_forward_repeat_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6413,14 +6268,7 @@ static void ggml_compute_forward_abs( { ggml_compute_forward_abs_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6462,14 +6310,7 @@ static void ggml_compute_forward_sgn( { ggml_compute_forward_sgn_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6511,14 +6352,7 @@ static void ggml_compute_forward_neg( { ggml_compute_forward_neg_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6560,14 +6394,7 @@ static void ggml_compute_forward_step( { ggml_compute_forward_step_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6609,14 +6436,7 @@ static void ggml_compute_forward_relu( { ggml_compute_forward_relu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6675,14 +6495,7 @@ static void ggml_compute_forward_gelu( { ggml_compute_forward_gelu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6743,14 +6556,7 @@ static void ggml_compute_forward_silu( { ggml_compute_forward_silu_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6830,14 +6636,7 @@ static void ggml_compute_forward_norm( { ggml_compute_forward_norm_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -6911,14 +6710,7 @@ static void ggml_compute_forward_rms_norm( { ggml_compute_forward_rms_norm_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7542,10 +7334,7 @@ static void ggml_compute_forward_mul_mat( { ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); } break; - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7627,14 +7416,7 @@ static void ggml_compute_forward_scale( { ggml_compute_forward_scale_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7807,10 +7589,7 @@ static void ggml_compute_forward_get_rows( { ggml_compute_forward_get_rows_f32(params, src0, src1, dst); } break; - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7883,14 +7662,7 @@ static void ggml_compute_forward_diag_mask_inf( { ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -7978,14 +7750,7 @@ static void ggml_compute_forward_soft_max( { ggml_compute_forward_soft_max_f32(params, src0, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8162,13 +7927,7 @@ static void ggml_compute_forward_rope( { ggml_compute_forward_rope_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8431,13 +8190,7 @@ static void ggml_compute_forward_conv_1d_1s( { ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -8700,13 +8453,7 @@ static void ggml_compute_forward_conv_1d_2s( { ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -9186,13 +8933,7 @@ static void ggml_compute_forward_flash_attn( { ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -9398,13 +9139,7 @@ static void ggml_compute_forward_flash_ff( { GGML_ASSERT(false); // TODO } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -9448,14 +9183,7 @@ static void ggml_compute_forward_map_unary( { ggml_compute_forward_map_unary_f32(params, src0, dst, fun); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -9504,14 +9232,7 @@ static void ggml_compute_forward_map_binary( { ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); } break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: - case GGML_TYPE_Q8_0: - case GGML_TYPE_I8: - case GGML_TYPE_I16: - case GGML_TYPE_I32: - case GGML_TYPE_F16: - case GGML_TYPE_COUNT: + default: { GGML_ASSERT(false); } break; @@ -11511,16 +11232,16 @@ enum ggml_opt_result ggml_opt( //////////////////////////////////////////////////////////////////////////////// size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_0 == 0); + const int nb = k / QK4_0; for (int j = 0; j < n; j += k) { - block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK; + block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0; quantize_row_q4_0_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_0; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0xF; const uint8_t vi1 = y[i].qs[l/2] >> 4; @@ -11530,20 +11251,20 @@ size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * } } - return (n/QK*sizeof(block_q4_0)); + return (n/QK4_0*sizeof(block_q4_0)); } size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK == 0); - const int nb = k / QK; + assert(k % QK4_1 == 0); + const int nb = k / QK4_1; for (int j = 0; j < n; j += k) { - block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK; + block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1; quantize_row_q4_1_reference(src + j, y, k); for (int i = 0; i < nb; i++) { - for (int l = 0; l < QK; l += 2) { + for (int l = 0; l < QK4_1; l += 2) { const uint8_t vi0 = y[i].qs[l/2] & 0xF; const uint8_t vi1 = y[i].qs[l/2] >> 4; @@ -11553,7 +11274,7 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * } } - return (n/QK*sizeof(block_q4_1)); + return (n/QK4_1*sizeof(block_q4_1)); } //////////////////////////////////////////////////////////////////////////////// From 2f7c8e014e3c0ceaf39688845c2ff6f919fb03b7 Mon Sep 17 00:00:00 2001 From: Stephan Walter Date: Sat, 15 Apr 2023 18:28:56 +0000 Subject: [PATCH 44/49] Fix potential int8 overflow in non-SIMD vec_dot (#986) --- ggml.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/ggml.c b/ggml.c index ccad76e8c..69974989c 100644 --- a/ggml.c +++ b/ggml.c @@ -2373,11 +2373,11 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest const uint8_t v0 = p0[j]; const uint8_t v1 = p1[j]; - const int8_t i0 = (int8_t) (v0 & 0xf) - 8; - const int8_t i1 = (int8_t) (v0 >> 4) - 8; + const int i0 = (v0 & 0xf) - 8; + const int i1 = (v0 >> 4) - 8; - const int8_t i2 = (int8_t) (v1 & 0xf) - 8; - const int8_t i3 = (int8_t) (v1 >> 4) - 8; + const int i2 = (v1 & 0xf) - 8; + const int i3 = (v1 >> 4) - 8; sumi += i0*i2 + i1*i3; } From 74f5899df4a6083fc467b620baa1cf821e37799d Mon Sep 17 00:00:00 2001 From: comex Date: Sat, 15 Apr 2023 14:53:21 -0700 Subject: [PATCH 45/49] convert.py: Fix loading safetensors and ggml format on Windows (#991) Calling `mmap.mmap` on Windows apparently resets the file offset of the raw file object (and makes the BufferedReader return a *negative* file offset). For safetensors, avoid using the file offset after calling mmap. For GGML format, explicitly save and restore the offset. Fixes #966. --- convert.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/convert.py b/convert.py index 056dc618d..4e28a45eb 100644 --- a/convert.py +++ b/convert.py @@ -735,7 +735,7 @@ def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size)) # Use mmap for the actual data to avoid race conditions with the file offset. mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) - byte_buf = mapped[fp.tell():] + byte_buf = mapped[8 + header_size:] def convert(info: Dict[str, Any]) -> LazyTensor: data_type = SAFETENSORS_DATA_TYPES[info['dtype']] @@ -761,7 +761,7 @@ def must_read(fp: IO[bytes], length: int) -> bytes: return ret -def lazy_load_ggml_file(fp: IO[bytes], path: Path) -> ModelPlus: +def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus: magic = must_read(fp, 4)[::-1] if magic in (b'ggmf', b'ggjt'): version, = struct.unpack("i", must_read(fp, 4)) @@ -795,7 +795,9 @@ def lazy_load_ggml_file(fp: IO[bytes], path: Path) -> ModelPlus: model: LazyModel = {} # Use mmap for the actual data to avoid race conditions with the file offset. + off = fp.raw.tell() mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) + fp.raw.seek(off) # needed on Windows def read_tensor() -> None: # this is a function so that variables captured in `load` don't change shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) From 2d3481c72125cd388258864c7ad8d7d36777bad7 Mon Sep 17 00:00:00 2001 From: nanahi <130121847+na-na-hi@users.noreply.github.com> Date: Sun, 16 Apr 2023 17:13:42 +0800 Subject: [PATCH 46/49] Fix msys2 build error and warnings (#1009) --- llama.cpp | 1 + llama_util.h | 6 +++++- 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index be8c4cdc1..a0d7e5137 100644 --- a/llama.cpp +++ b/llama.cpp @@ -9,6 +9,7 @@ #include "ggml.h" #include +#include #include #include #include diff --git a/llama_util.h b/llama_util.h index 653bf7138..d2110ebb4 100755 --- a/llama_util.h +++ b/llama_util.h @@ -43,8 +43,12 @@ } while (0) #ifdef __GNUC__ +#ifdef __MINGW32__ +__attribute__((format(gnu_printf, 1, 2))) +#else __attribute__((format(printf, 1, 2))) #endif +#endif static std::string format(const char * fmt, ...) { va_list ap, ap2; va_start(ap, fmt); @@ -57,7 +61,7 @@ static std::string format(const char * fmt, ...) { va_end(ap2); va_end(ap); return std::string(buf.data(), size); -}; +} struct llama_file { // use FILE * so we don't have to re-open the file to mmap From 489537e6cf6c93b74a029a11533dbcaa89791dcc Mon Sep 17 00:00:00 2001 From: Pavol Rusnak Date: Sun, 16 Apr 2023 12:13:00 +0200 Subject: [PATCH 47/49] examples: add missing include for time() (#1011) --- examples/embedding/embedding.cpp | 2 ++ examples/main/main.cpp | 1 + examples/perplexity/perplexity.cpp | 1 + 3 files changed, 4 insertions(+) diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 2eda3ac01..e10de619c 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -1,6 +1,8 @@ #include "common.h" #include "llama.h" +#include + int main(int argc, char ** argv) { gpt_params params; params.model = "models/llama-7B/ggml-model.bin"; diff --git a/examples/main/main.cpp b/examples/main/main.cpp index ba153cb82..3e4b0034e 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -11,6 +11,7 @@ #include #include #include +#include #include #include #include diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 38e3643b1..19449e16e 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -2,6 +2,7 @@ #include "llama.h" #include +#include std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); From 3173a62eb9f90b94fb3184131032c1c8b7aa8d86 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 16 Apr 2023 13:58:48 +0300 Subject: [PATCH 48/49] stdout : vertical align outputs for better readibility --- convert.py | 5 +++-- llama.cpp | 14 +++++++------- 2 files changed, 10 insertions(+), 9 deletions(-) diff --git a/convert.py b/convert.py index 4e28a45eb..7b9f043b2 100644 --- a/convert.py +++ b/convert.py @@ -951,8 +951,9 @@ class OutputFile: ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): - size = ' x '.join(map(str, lazy_tensor.shape)) - print(f"[{i+1}/{len(model)}] Writing tensor {name}, size {size}...") + size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) + padi = len(str(len(model))) + print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) ndarray.tofile(of.fout) of.fout.close() diff --git a/llama.cpp b/llama.cpp index a0d7e5137..a6429a4e7 100644 --- a/llama.cpp +++ b/llama.cpp @@ -262,12 +262,12 @@ static size_t checked_div(size_t a, size_t b) { } static std::string llama_format_tensor_shape(const std::vector & ne) { - std::string ret = "[" + std::to_string(ne.at(0)); + char buf[256]; + snprintf(buf, sizeof(buf), "%5u", ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { - ret += " x " + std::to_string(ne.at(i)); + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); } - ret += "]"; - return ret; + return buf; } static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { @@ -942,8 +942,8 @@ static void llama_model_load_internal( ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}); - model.norm = ml->get_tensor("norm.weight", {n_embd}); - model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); + model.norm = ml->get_tensor("norm.weight", {n_embd}); + model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}); model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { @@ -1570,7 +1570,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s tensor.data = read_data.addr; model_loader->load_data_for(tensor); - printf("[%zu/%zu] %36s - %s, type = %6s, ", + printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), ggml_type_name(tensor.type)); From 47f61aaa5f76d04286792e2fbd0c95b659ab2af0 Mon Sep 17 00:00:00 2001 From: slaren <2141330+slaren@users.noreply.github.com> Date: Sun, 16 Apr 2023 21:27:38 +0200 Subject: [PATCH 49/49] Fix: do not close file on mmap (#1017) --- llama_util.h | 1 - 1 file changed, 1 deletion(-) diff --git a/llama_util.h b/llama_util.h index d2110ebb4..c92c0cc71 100755 --- a/llama_util.h +++ b/llama_util.h @@ -176,7 +176,6 @@ struct llama_mmap { flags |= MAP_POPULATE; #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); - close(fd); if (addr == MAP_FAILED) { throw format("mmap failed: %s", strerror(errno)); }