Merge branch 'master' into cuda-cublas-opts

ggml-ci
This commit is contained in:
Georgi Gerganov 2023-11-27 11:49:14 +02:00
commit c830a0537b
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
137 changed files with 17853 additions and 14000 deletions

View file

@ -1,7 +1,7 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug"]
labels: ["bug-unconfirmed"]
assignees: ''
---

View file

@ -288,6 +288,7 @@ jobs:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.21.1-2023-04-24
strategy:
matrix:
@ -383,11 +384,23 @@ jobs:
- name: Test
id: cmake_test
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512
run: |
cd build
ctest -C Release --verbose --timeout 900
- name: Test (Intel SDE)
id: cmake_test_sde
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
run: |
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/777395/sde-external-${env:SDE_VERSION}-win.tar.xz"
# for some weird reason windows tar doesn't like sde tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
cd build
& $sde -future -- ctest -C Release --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash

20
.github/workflows/python-lint.yml vendored Normal file
View file

@ -0,0 +1,20 @@
name: flake8 Lint
on: [push, pull_request]
jobs:
flake8-lint:
runs-on: ubuntu-latest
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
exclude: "examples/*,examples/*/**,*/**/__init__.py"

7
.gitignore vendored
View file

@ -15,6 +15,7 @@
.DS_Store
.build/
.cache/
.ccls-cache/
.direnv/
.envrc
.swiftpm
@ -45,7 +46,8 @@ models-mnt
/infill
/libllama.so
/llama-bench
/llava
/llava-cli
/lookahead
/main
/metal
/perplexity
@ -63,8 +65,9 @@ models-mnt
/speculative
/parallel
/train-text-from-scratch
/tokenize
/vdot
build-info.h
/common/build-info.cpp
arm_neon.h
compile_commands.json
CMakeSettings.json

View file

@ -10,7 +10,7 @@ endif()
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
# configure project version
@ -94,46 +94,12 @@ option(LLAMA_CLBLAST "llama: use CLBlast"
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
#
# Build info header
#
# Generate initial build-info.h
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/.git")
# Is git submodule
if(NOT IS_DIRECTORY "${GIT_DIR}")
file(READ ${GIT_DIR} REAL_GIT_DIR_LINK)
string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK})
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/${REAL_GIT_DIR}")
endif()
# Add a custom target for build-info.h
add_custom_target(BUILD_INFO ALL DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h")
# Add a custom command to rebuild build-info.h when .git/index changes
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION} -DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
DEPENDS "${GIT_DIR}/index"
VERBATIM
)
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
endif()
#
# Compile flags
#
@ -278,13 +244,8 @@ if (LLAMA_BLAS)
endif()
endif()
if (LLAMA_K_QUANTS)
set(GGML_HEADERS_EXTRA k_quants.h)
set(GGML_SOURCES_EXTRA k_quants.c)
add_compile_definitions(GGML_USE_K_QUANTS)
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_CUBLAS)
@ -497,6 +458,15 @@ if (LLAMA_LTO)
endif()
endif()
# this version of Apple ld64 is buggy
execute_process(
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
ERROR_VARIABLE output
)
if (output MATCHES "dyld-1015\.7")
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
endif()
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
@ -549,6 +519,10 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (LLAMA_NATIVE)
include(cmake/FindSIMD.cmake)
endif ()
if (LLAMA_AVX512)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
@ -600,8 +574,12 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
add_compile_options(-mcpu=powerpc64le)
else()
add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
else()
message(STATUS "Unknown architecture")
endif()
@ -673,6 +651,8 @@ add_library(ggml OBJECT
ggml-alloc.h
ggml-backend.c
ggml-backend.h
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}

117
Makefile
View file

@ -1,8 +1,8 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench llava baby-llama beam-search \
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
@ -239,6 +239,11 @@ else
endif
endif
# this version of Apple ld64 is buggy
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
endif
# OS specific
# TODO: support Windows
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
@ -337,18 +342,20 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
endif
endif
ifneq ($(filter ppc64le%,$(UNAME_M)),)
MK_CFLAGS += -mcpu=powerpc64le
MK_CXXFLAGS += -mcpu=powerpc64le
CUDA_POWER_ARCH = 1
endif
else
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifndef LLAMA_NO_K_QUANTS
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
OBJS += k_quants.o
ifdef LLAMA_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
endif
ifndef LLAMA_NO_ACCELERATE
# Mac OS - include Accelerate framework.
@ -365,7 +372,7 @@ ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS
@ -382,7 +389,7 @@ endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
OBJS += ggml-cuda.o
OBJS += ggml-cuda.o
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
ifdef LLAMA_CUDA_NVCC
NVCC = $(LLAMA_CUDA_NVCC)
@ -391,6 +398,8 @@ else
endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
else ifdef CUDA_POWER_ARCH
NVCCFLAGS +=
else
NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH
@ -497,11 +506,6 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
ifndef LLAMA_NO_K_QUANTS
k_quants.o: k_quants.c k_quants.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_NO_K_QUANTS
# combine build flags with cmdline overrides
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
@ -542,13 +546,16 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o
common.o: common/common.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@
@ -569,46 +576,49 @@ libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean:
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
#
# Examples
#
main: examples/main/main.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
main: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./main -h for help. ===='
@echo
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
@ -620,28 +630,34 @@ train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratc
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llava: examples/llava/llava.cpp examples/llava/llava-utils.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
libllava.a: examples/llava/llava.cpp examples/llava/llava.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h common/base64.hpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
export-lora: examples/export-lora/export-lora.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifdef LLAMA_METAL
@ -654,7 +670,7 @@ swift: examples/batched.swift
(cd examples/batched.swift; make build)
endif
build-info.h: $(wildcard .git/index) scripts/build-info.sh
common/build-info.cpp: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh $(CC) > $@.tmp
@if ! cmp -s $@.tmp $@; then \
mv $@.tmp $@; \
@ -662,13 +678,16 @@ build-info.h: $(wildcard .git/index) scripts/build-info.sh
rm $@.tmp; \
fi
build-info.o: common/build-info.cpp
$(CXX) $(CXXFLAGS) -c $(filter-out %.h,$^) -o $@
#
# Tests
#
tests: $(TEST_TARGETS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
run-benchmark-matmult: benchmark-matmult
@ -682,40 +701,40 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-double-float: tests/test-double-float.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-grad0: tests/test-grad0.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-opt: tests/test-opt.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h

View file

@ -42,13 +42,12 @@ let package = Package(
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"k_quants.c",
"ggml-quants.c",
] + additionalSources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14

View file

@ -2,7 +2,6 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
@ -11,8 +10,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- LLaVA support: https://github.com/ggerganov/llama.cpp/pull/3436
- ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252)
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
----
@ -95,6 +95,7 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
**Bindings:**
@ -411,22 +412,31 @@ Building the program with BLAS support may lead to some performance improvements
This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
Windows support is coming soon...
- Using `make`:
```bash
make LLAMA_HIPBLAS=1
```
- Using `CMake`:
- Using `CMake` for Linux:
```bash
mkdir build
cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build .
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build
cd build
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
cmake --build .
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |

View file

@ -10,7 +10,6 @@ const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
config_header: *ConfigHeader,
enable_lto: bool,
include_dirs: ArrayList([]const u8),
@ -41,26 +40,24 @@ const Maker = struct {
const commit_hash = try std.ChildProcess.exec(
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
);
const config_header = builder.addConfigHeader(
.{ .style = .blank, .include_path = "build-info.h" },
.{
.BUILD_NUMBER = 0,
.BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline
.BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}),
.BUILD_TARGET = try target.allocDescription(builder.allocator),
},
);
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
\\int LLAMA_BUILD_NUMBER = {};
\\char const *LLAMA_COMMIT = "{s}";
\\char const *LLAMA_COMPILER = "Zig {s}";
\\char const *LLAMA_BUILD_TARGET = "{s}";
\\
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
var m = Maker{
.builder = builder,
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.config_header = config_header,
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
@ -72,7 +69,7 @@ const Maker = struct {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (o.target.getAbi() != .msvc)
o.defineCMacro("_GNU_SOURCE", null);
o.addConfigHeader(m.config_header);
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
@ -85,7 +82,6 @@ const Maker = struct {
o.linkLibCpp();
}
}
o.addConfigHeader(m.config_header);
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
@ -105,7 +101,6 @@ const Maker = struct {
// linkLibCpp already add (libc++ + libunwind + libc)
e.linkLibCpp();
}
e.addConfigHeader(m.config_header);
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
@ -116,16 +111,12 @@ pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
try make.addFlag("-DGGML_USE_K_QUANTS");
const k_quants = make.obj("k_quants", "k_quants.c");
try make.objs.append(k_quants);
}
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
@ -133,14 +124,14 @@ pub fn build(b: *std.build.Builder) !void {
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser, clip });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}

100
cmake/FindSIMD.cmake Normal file
View file

@ -0,0 +1,100 @@
include(CheckCSourceRuns)
set(AVX_CODE "
#include <immintrin.h>
int main()
{
__m256 a;
a = _mm256_set1_ps(0);
return 0;
}
")
set(AVX512_CODE "
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);
__m512i b = a;
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
return 0;
}
")
set(AVX2_CODE "
#include <immintrin.h>
int main()
{
__m256i a = {0};
a = _mm256_abs_epi16(a);
__m256i x;
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
return 0;
}
")
set(FMA_CODE "
#include <immintrin.h>
int main()
{
__m256 acc = _mm256_setzero_ps();
const __m256 d = _mm256_setzero_ps();
const __m256 p = _mm256_setzero_ps();
acc = _mm256_fmadd_ps( d, p, acc );
return 0;
}
")
macro(check_sse type flags)
set(__FLAG_I 1)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
foreach (__FLAG ${flags})
if (NOT ${type}_FOUND)
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
if (HAS_${type}_${__FLAG_I})
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
endif()
math(EXPR __FLAG_I "${__FLAG_I}+1")
endif()
endforeach()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
if (NOT ${type}_FOUND)
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
set(${type}_FLAGS "" CACHE STRING "${type} flags")
endif()
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
endmacro()
# flags are for MSVC only!
check_sse("AVX" " ;/arch:AVX")
if (NOT ${AVX_FOUND})
set(LLAMA_AVX OFF)
else()
set(LLAMA_AVX ON)
endif()
check_sse("AVX2" " ;/arch:AVX2")
check_sse("FMA" " ;/arch:AVX2")
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
set(LLAMA_AVX2 OFF)
else()
set(LLAMA_AVX2 ON)
endif()
check_sse("AVX512" " ;/arch:AVX512")
if (NOT ${AVX512_FOUND})
set(LLAMA_AVX512 OFF)
else()
set(LLAMA_AVX512 ON)
endif()

View file

@ -1,8 +1,47 @@
# common
# Build info header
#
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
# Is git submodule
if(NOT IS_DIRECTORY "${GIT_DIR}")
file(READ ${GIT_DIR} REAL_GIT_DIR_LINK)
string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK})
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
endif()
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
endif()
# Add a custom command to rebuild build-info.cpp when .git/index changes
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/build-info.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
)
set(TARGET build_info)
add_library(${TARGET} OBJECT build-info.cpp)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(TARGET common)
add_library(${TARGET} OBJECT
add_library(${TARGET} STATIC
base64.hpp
common.h
common.cpp
sampling.h
@ -21,4 +60,4 @@ endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)
target_link_libraries(${TARGET} PRIVATE llama build_info)

392
common/base64.hpp Normal file
View file

@ -0,0 +1,392 @@
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org>
*/
#ifndef PUBLIC_DOMAIN_BASE64_HPP_
#define PUBLIC_DOMAIN_BASE64_HPP_
#include <cstdint>
#include <iterator>
#include <stdexcept>
#include <string>
class base64_error : public std::runtime_error
{
public:
using std::runtime_error::runtime_error;
};
class base64
{
public:
enum class alphabet
{
/** the alphabet is detected automatically */
auto_,
/** the standard base64 alphabet is used */
standard,
/** like `standard` except that the characters `+` and `/` are replaced by `-` and `_` respectively*/
url_filename_safe
};
enum class decoding_behavior
{
/** if the input is not padded, the remaining bits are ignored */
moderate,
/** if a padding character is encounter decoding is finished */
loose
};
/**
Encodes all the elements from `in_begin` to `in_end` to `out`.
@warning The source and destination cannot overlap. The destination must be able to hold at least
`required_encode_size(std::distance(in_begin, in_end))`, otherwise the behavior depends on the output iterator.
@tparam Input_iterator the source; the returned elements are cast to `std::uint8_t` and should not be greater than
8 bits
@tparam Output_iterator the destination; the elements written to it are from the type `char`
@param in_begin the beginning of the source
@param in_end the ending of the source
@param out the destination iterator
@param alphabet which alphabet should be used
@returns the iterator to the next element past the last element copied
@throws see `Input_iterator` and `Output_iterator`
*/
template<typename Input_iterator, typename Output_iterator>
static Output_iterator encode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
alphabet alphabet = alphabet::standard)
{
constexpr auto pad = '=';
const char* alpha = alphabet == alphabet::url_filename_safe
? "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
while (in_begin != in_end) {
std::uint8_t i0 = 0, i1 = 0, i2 = 0;
// first character
i0 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[i0 >> 2 & 0x3f];
++out;
// part of first character and second
if (in_begin != in_end) {
i1 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[((i0 & 0x3) << 4) | (i1 >> 4 & 0x0f)];
++out;
} else {
*out = alpha[(i0 & 0x3) << 4];
++out;
// last padding
*out = pad;
++out;
// last padding
*out = pad;
++out;
break;
}
// part of second character and third
if (in_begin != in_end) {
i2 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[((i1 & 0xf) << 2) | (i2 >> 6 & 0x03)];
++out;
} else {
*out = alpha[(i1 & 0xf) << 2];
++out;
// last padding
*out = pad;
++out;
break;
}
// rest of third
*out = alpha[i2 & 0x3f];
++out;
}
return out;
}
/**
Encodes a string.
@param str the string that should be encoded
@param alphabet which alphabet should be used
@returns the encoded base64 string
@throws see base64::encode()
*/
static std::string encode(const std::string& str, alphabet alphabet = alphabet::standard)
{
std::string result;
result.reserve(required_encode_size(str.length()) + 1);
encode(str.begin(), str.end(), std::back_inserter(result), alphabet);
return result;
}
/**
Encodes a char array.
@param buffer the char array
@param size the size of the array
@param alphabet which alphabet should be used
@returns the encoded string
*/
static std::string encode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::standard)
{
std::string result;
result.reserve(required_encode_size(size) + 1);
encode(buffer, buffer + size, std::back_inserter(result), alphabet);
return result;
}
/**
Decodes all the elements from `in_begin` to `in_end` to `out`. `in_begin` may point to the same location as `out`,
in other words: inplace decoding is possible.
@warning The destination must be able to hold at least `required_decode_size(std::distance(in_begin, in_end))`,
otherwise the behavior depends on the output iterator.
@tparam Input_iterator the source; the returned elements are cast to `char`
@tparam Output_iterator the destination; the elements written to it are from the type `std::uint8_t`
@param in_begin the beginning of the source
@param in_end the ending of the source
@param out the destination iterator
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the iterator to the next element past the last element copied
@throws base64_error depending on the set behavior
@throws see `Input_iterator` and `Output_iterator`
*/
template<typename Input_iterator, typename Output_iterator>
static Output_iterator decode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
//constexpr auto pad = '=';
std::uint8_t last = 0;
auto bits = 0;
while (in_begin != in_end) {
auto c = *in_begin;
++in_begin;
if (c == '=') {
break;
}
auto part = _base64_value(alphabet, c);
// enough bits for one byte
if (bits + 6 >= 8) {
*out = (last << (8 - bits)) | (part >> (bits - 2));
++out;
bits -= 2;
} else {
bits += 6;
}
last = part;
}
// check padding
if (behavior != decoding_behavior::loose) {
while (in_begin != in_end) {
auto c = *in_begin;
++in_begin;
if (c != '=') {
throw base64_error("invalid base64 character.");
}
}
}
return out;
}
/**
Decodes a string.
@param str the base64 encoded string
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the decoded string
@throws see base64::decode()
*/
static std::string decode(const std::string& str, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
std::string result;
result.reserve(max_decode_size(str.length()));
decode(str.begin(), str.end(), std::back_inserter(result), alphabet, behavior);
return result;
}
/**
Decodes a string.
@param buffer the base64 encoded buffer
@param size the size of the buffer
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the decoded string
@throws see base64::decode()
*/
static std::string decode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
std::string result;
result.reserve(max_decode_size(size));
decode(buffer, buffer + size, std::back_inserter(result), alphabet, behavior);
return result;
}
/**
Decodes a string inplace.
@param[in,out] str the base64 encoded string
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@throws base64::decode_inplace()
*/
static void decode_inplace(std::string& str, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
str.resize(decode(str.begin(), str.end(), str.begin(), alphabet, behavior) - str.begin());
}
/**
Decodes a char array inplace.
@param[in,out] str the string array
@param size the length of the array
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the pointer to the next element past the last element decoded
@throws base64::decode_inplace()
*/
static char* decode_inplace(char* str, std::size_t size, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
return decode(str, str + size, str, alphabet, behavior);
}
/**
Returns the required decoding size for a given size. The value is calculated with the following formula:
$$
\lceil \frac{size}{4} \rceil \cdot 3
$$
@param size the size of the encoded input
@returns the size of the resulting decoded buffer; this the absolute maximum
*/
static std::size_t max_decode_size(std::size_t size) noexcept
{
return (size / 4 + (size % 4 ? 1 : 0)) * 3;
}
/**
Returns the required encoding size for a given size. The value is calculated with the following formula:
$$
\lceil \frac{size}{3} \rceil \cdot 4
$$
@param size the size of the decoded input
@returns the size of the resulting encoded buffer
*/
static std::size_t required_encode_size(std::size_t size) noexcept
{
return (size / 3 + (size % 3 ? 1 : 0)) * 4;
}
private:
static std::uint8_t _base64_value(alphabet& alphabet, char c)
{
if (c >= 'A' && c <= 'Z') {
return c - 'A';
} else if (c >= 'a' && c <= 'z') {
return c - 'a' + 26;
} else if (c >= '0' && c <= '9') {
return c - '0' + 52;
}
// comes down to alphabet
if (alphabet == alphabet::standard) {
if (c == '+') {
return 62;
} else if (c == '/') {
return 63;
}
} else if (alphabet == alphabet::url_filename_safe) {
if (c == '-') {
return 62;
} else if (c == '_') {
return 63;
}
} // auto detect
else {
if (c == '+') {
alphabet = alphabet::standard;
return 62;
} else if (c == '/') {
alphabet = alphabet::standard;
return 63;
} else if (c == '-') {
alphabet = alphabet::url_filename_safe;
return 62;
} else if (c == '_') {
alphabet = alphabet::url_filename_safe;
return 63;
}
}
throw base64_error("invalid base64 character.");
}
};
#endif // !PUBLIC_DOMAIN_BASE64_HPP_

4
common/build-info.cpp.in Normal file
View file

@ -0,0 +1,4 @@
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";

View file

@ -1,5 +1,4 @@
#include "common.h"
#include "build-info.h"
#include "llama.h"
#include <algorithm>
@ -13,6 +12,7 @@
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cinttypes>
@ -91,6 +91,19 @@ void process_escapes(std::string& input) {
case '\'': input[output_idx++] = '\''; break;
case '\"': input[output_idx++] = '\"'; break;
case '\\': input[output_idx++] = '\\'; break;
case 'x':
// Handle \x12, etc
if (input_idx + 2 < input_len) {
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
char *err_p = nullptr;
const long val = std::strtol(x, &err_p, 16);
if (err_p == x + 2) {
input_idx += 2;
input[output_idx++] = char(val);
break;
}
}
// fall through
default: input[output_idx++] = '\\';
input[output_idx++] = input[input_idx]; break;
}
@ -103,9 +116,24 @@ void process_escapes(std::string& input) {
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
bool result = true;
try {
if (!gpt_params_parse_ex(argc, argv, params)) {
gpt_print_usage(argc, argv, gpt_params());
exit(0);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
gpt_print_usage(argc, argv, gpt_params());
exit(1);
}
return result;
}
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
gpt_params default_params;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
@ -204,12 +232,52 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
} else if (arg == "--yarn-orig-ctx") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_orig_ctx = std::stoi(argv[i]);
} else if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
} else if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
} else if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
} else if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--memory-f32") {
params.memory_f16 = false;
} else if (arg == "--top-p") {
@ -218,12 +286,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
sparams.top_p = std::stof(argv[i]);
} else if (arg == "--min-p") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.min_p = std::stof(argv[i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.temp = std::stof(argv[i]);
sparams.temp = std::max(sparams.temp, 0.0f);
} else if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
@ -342,6 +417,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_sequences = std::stoi(argv[i]);
} else if (arg == "--p-accept" || arg == "-pa") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.p_accept = std::stof(argv[i]);
} else if (arg == "--p-split" || arg == "-ps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.p_split = std::stof(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
@ -405,8 +492,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "-cml" || arg == "--chatml") {
params.chatml = true;
} else if (arg == "--infill") {
params.infill = true;
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
} else if (arg == "--multiline-input") {
params.multiline_input = true;
} else if (arg == "--simple-io") {
@ -547,11 +638,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, default_params);
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
exit(0);
return false;
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix-bos") {
@ -610,22 +698,17 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
// End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (params.prompt_cache_all &&
(params.interactive || params.interactive_first ||
params.instruct)) {
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
if (params.escape) {
@ -644,6 +727,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
printf("\n");
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
@ -651,6 +735,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
printf(" -r PROMPT, --reverse-prompt PROMPT\n");
printf(" halt generation at PROMPT, return control in interactive mode\n");
@ -678,6 +763,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
@ -700,9 +786,16 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
@ -716,6 +809,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
@ -743,7 +838,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
#endif // GGML_USE_CUBLAS
#endif
printf(" --verbose-prompt print prompt before generation\n");
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
@ -754,6 +851,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
}
std::string get_system_info(const gpt_params & params) {
@ -807,17 +907,23 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.f16_kv = params.memory_f16;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.f16_kv = params.memory_f16;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
return cparams;
}
@ -833,7 +939,7 @@ void llama_batch_add(
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos,
batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
@ -888,7 +994,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_tokens_rm(lctx, -1, -1);
llama_kv_cache_clear(lctx);
llama_reset_timings(lctx);
}
@ -974,6 +1080,12 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
return result;
}
bool llama_should_add_bos_token(const llama_model * model) {
const int add_bos = llama_add_bos_token(model);
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}
//
// YAML utils
//
@ -1090,6 +1202,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
@ -1127,8 +1240,8 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
@ -1274,6 +1387,81 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
}
//
// KV cache utils
//
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
seqs[cs_curr[j]] = seqs.size();
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}

View file

@ -9,6 +9,7 @@
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <random>
@ -25,35 +26,51 @@
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
//
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = -1; // RNG seed
uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
// pinging @cebtenzzre
// // sampling parameters
struct llama_sampling_params sparams;
@ -77,7 +94,7 @@ struct gpt_params {
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
@ -85,6 +102,7 @@ struct gpt_params {
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@ -104,12 +122,15 @@ struct gpt_params {
bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
};
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
@ -181,6 +202,10 @@ std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// YAML utils
//
@ -194,3 +219,13 @@ std::string get_sortable_timestamp();
void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

View file

@ -97,38 +97,56 @@
#define LOG_TEE_TARGET stderr
#endif
// NOTE: currently disabled as it produces too many log files
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// Utility to obtain "pid" like unique process id and use it when creating log files.
//inline std::string log_get_pid()
//{
// static std::string pid;
// if (pid.empty())
// {
// // std::this_thread::get_id() is the most portable way of obtaining a "process id"
// // it's not the same as "pid" but is unique enough to solve multiple instances
// // trying to write to the same log.
// std::stringstream ss;
// ss << std::this_thread::get_id();
// pid = ss.str();
// }
//
// return pid;
//}
inline std::string log_get_pid()
{
static std::string pid;
if (pid.empty())
{
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
// it's not the same as "pid" but is unique enough to solve multiple instances
// trying to write to the same log.
std::stringstream ss;
ss << std::this_thread::get_id();
pid = ss.str();
}
return pid;
}
// Utility function for generating log file names with unique id based on thread id.
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
// where the number is a runtime id of the current thread.
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(log_file_basename, log_file_extension)
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(LogTriStateSame, log_file_basename, log_file_extension)
// INTERNAL, DO NOT USE
inline std::string log_filename_generator_impl(const std::string & log_file_basename, const std::string & log_file_extension)
inline std::string log_filename_generator_impl(LogTriState multilog, const std::string & log_file_basename, const std::string & log_file_extension)
{
static bool _multilog = false;
if (multilog != LogTriStateSame)
{
_multilog = multilog == LogTriStateTrue;
}
std::stringstream buf;
buf << log_file_basename;
//buf << ".";
//buf << log_get_pid();
if (_multilog)
{
buf << ".";
buf << log_get_pid();
}
buf << ".";
buf << log_file_extension;
@ -213,15 +231,6 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
#define LOG_TEE_FLF_VAL ,""
#endif
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// INTERNAL, DO NOT USE
// USE LOG() INSTEAD
//
@ -315,16 +324,23 @@ enum LogTriState
#endif
// INTERNAL, DO NOT USE
inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
inline FILE *log_handler1_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
{
static bool _initialized{false};
static bool _disabled{(filename.empty() && target == nullptr)};
static bool _initialized = false;
static bool _append = false;
static bool _disabled = filename.empty() && target == nullptr;
static std::string log_current_filename{filename};
static FILE *log_current_target{target};
static FILE *logfile = nullptr;
if (change)
{
if (append != LogTriStateSame)
{
_append = append == LogTriStateTrue;
return logfile;
}
if (disable == LogTriStateTrue)
{
// Disable primary target
@ -377,7 +393,7 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
}
logfile = fopen(filename.c_str(), "w");
logfile = fopen(filename.c_str(), _append ? "a" : "w");
}
if (!logfile)
@ -398,9 +414,9 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
// INTERNAL, DO NOT USE
inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
{
return log_handler1_impl(change, disable, filename, target);
return log_handler1_impl(change, append, disable, filename, target);
}
// Disables logs entirely at runtime.
@ -411,7 +427,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTri
// INTERNAL, DO NOT USE
inline FILE *log_disable_impl()
{
return log_handler1_impl(true, LogTriStateTrue);
return log_handler1_impl(true, LogTriStateSame, LogTriStateTrue);
}
// Enables logs at runtime.
@ -420,19 +436,31 @@ inline FILE *log_disable_impl()
// INTERNAL, DO NOT USE
inline FILE *log_enable_impl()
{
return log_handler1_impl(true, LogTriStateFalse);
return log_handler1_impl(true, LogTriStateSame, LogTriStateFalse);
}
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
#define log_set_target(target) log_set_target_impl(target)
// INTERNAL, DO NOT USE
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, target); }
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, LogTriStateSame, target); }
// INTERNAL, DO NOT USE
inline FILE *log_handler() { return log_handler1_impl(); }
// Enable or disable creating separate log files for each run.
// can ONLY be invoked BEFORE first log use.
#define log_multilog(enable) log_filename_generator_impl((enable) ? LogTriStateTrue : LogTriStateFalse, "", "")
// Enable or disable append mode for log file.
// can ONLY be invoked BEFORE first log use.
#define log_append(enable) log_append_impl(enable)
// INTERNAL, DO NOT USE
inline FILE *log_append_impl(bool enable)
{
return log_handler1_impl(true, enable ? LogTriStateTrue : LogTriStateFalse, LogTriStateSame);
}
inline void log_test()
{
log_disable();
@ -494,6 +522,18 @@ inline bool log_param_single_parse(const std::string & param)
return true;
}
if (param == "--log-new")
{
log_multilog(true);
return true;
}
if (param == "--log-append")
{
log_append(true);
return true;
}
return false;
}
@ -523,7 +563,9 @@ inline void log_print_usage()
printf(" --log-disable Disable trace logs\n");
printf(" --log-enable Enable trace logs\n");
printf(" --log-file Specify a log filename (without extension)\n");
printf(" Log file will be tagged with unique ID and written as \"<name>.<ID>.log\"\n"); /* */
printf(" --log-new Create a separate new log file on start. "
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
printf(" --log-append Don't truncate the old log file.\n");
}
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)

View file

@ -39,6 +39,7 @@ void llama_sampling_free(struct llama_sampling_context * ctx) {
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
ctx->grammar = NULL;
}
if (!ctx->parsed_grammar.rules.empty()) {
@ -89,10 +90,10 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
@ -110,6 +111,7 @@ llama_token llama_sampling_sample(
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
@ -167,8 +169,12 @@ llama_token llama_sampling_sample(
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp <= 0) {
// greedy sampling
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
@ -186,6 +192,7 @@ llama_token llama_sampling_sample(
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep);
llama_sample_temp (ctx_main, &cur_p, temp);
id = llama_sample_token(ctx_main, &cur_p);

View file

@ -14,6 +14,7 @@ typedef struct llama_sampling_params {
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled

View file

@ -32,6 +32,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
return state;
@ -1045,6 +1046,7 @@ struct train_params_common get_default_train_params_common() {
params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.n_epochs = -1;
params.n_gpu_layers = 0;
params.custom_n_ctx = false;
@ -1080,6 +1082,7 @@ struct train_params_common get_default_train_params_common() {
params.adam_beta2 = 0.999f;
params.adam_gclip = 1.0f;
params.adam_eps_f = 0.0f;
return params;
}
@ -1133,6 +1136,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
fprintf(stderr, "\n");
}
@ -1352,6 +1356,17 @@ bool consume_common_train_arg(
return true;
}
params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;

View file

@ -9,6 +9,8 @@
#include "ggml.h"
#include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state;
struct train_state {
@ -44,6 +46,7 @@ struct train_params_common {
int n_batch;
int n_gradient_accumulation;
int n_epochs;
int n_gpu_layers;
bool custom_n_ctx;

View file

@ -1,316 +0,0 @@
#!/usr/bin/env python3
# HF baichuan --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Any
import itertools
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
if TYPE_CHECKING:
from typing import TypeAlias
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
r = weights.shape[0] // 3
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
r = weights.shape[0] // 3
return weights[r * n_part : r * n_part + r, ...]
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
endianess = gguf.GGUFEndian.LITTLE
if args.bigendian:
endianess = gguf.GGUFEndian.BIG
endianess_str = "Big Endian" if args.bigendian else "Little Endian"
print(f"gguf: Conversion Endianess {endianess}")
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
print("hello print: ",hparams["architectures"][0])
if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
print(f"num_parts:{num_parts}\n")
ARCH=gguf.MODEL_ARCH.BAICHUAN
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
elif "model_max_length" in hparams:
ctx_length = hparams["model_max_length"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_model_file = dir_model / 'tokenizer.model'
if not tokenizer_model_file.is_file():
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
sys.exit(1)
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
vocab_size = hparams.get('vocab_size')
if vocab_size is None:
vocab_size = tokenizer.vocab_size()
for i in range(vocab_size):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
tmp=model_part
for i in range(block_count):
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,247 +0,0 @@
#!/usr/bin/env python3
# HF bloom --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import re
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
# Supported Models:
# https://huggingface.co/bigscience/bloom-1b7
# https://huggingface.co/bigscience/bloom-3b
# https://huggingface.co/bigscience/bloom-7b1
# https://huggingface.co/Langboat/bloom-1b4-zh
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "BloomForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.BLOOM
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("Bloom")
n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
gguf_writer.add_embedding_length(n_embed)
gguf_writer.add_feed_forward_length(4 * n_embed)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(n_head)
gguf_writer.add_head_count_kv(n_head)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head_kv = hparams.get("n_head_kv", n_head)
head_dim = n_embed // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
has_lm_head = True
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
has_lm_head = False
for original_name in model_part.keys():
data = model_part[original_name]
name = re.sub(r'transformer\.', '', original_name)
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
data = np.concatenate(
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
axis=0
)
print("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
data = np.concatenate(
(qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,))),
axis=0
)
print("re-format attention.linear_qkv.bias")
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
if not has_lm_head and name == "word_embeddings.weight":
gguf_writer.add_tensor("output.weight", data)
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,253 +0,0 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
from __future__ import annotations
import argparse
import contextlib
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path, prefix: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith(prefix):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] not in ("RWForCausalLM", "FalconForCausalLM"):
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model, "model-00")
if num_parts:
is_safetensors = True
from safetensors import safe_open
else:
is_safetensors = False
num_parts = count_model_parts(dir_model, "pytorch_model-")
ARCH=gguf.MODEL_ARCH.FALCON
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams.get("num_hidden_layers")
if block_count is None:
block_count = hparams["n_layer"] # old name
n_head = hparams.get("num_attention_heads")
if n_head is None:
n_head = hparams["n_head"] # old name
n_head_kv = hparams.get("num_kv_heads")
if n_head_kv is None:
n_head_kv = hparams.get("n_head_kv", 1) # old name
gguf_writer.add_name("Falcon")
gguf_writer.add_context_length(2048) # not in config.json
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(n_head)
gguf_writer.add_head_count_kv(n_head_kv)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i])
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
head_dim = hparams["hidden_size"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
elif is_safetensors:
part_names = (
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
if is_safetensors:
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
else:
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
with ctx as model_part:
for name in model_part.keys():
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data = torch.cat((q,k,v)).reshape_as(data)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,221 +0,0 @@
#!/usr/bin/env python3
# HF gptneox--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.GPTNEOX
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

900
convert-hf-to-gguf.py Executable file
View file

@ -0,0 +1,900 @@
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import contextlib
import json
import os
import re
import sys
from enum import IntEnum
from pathlib import Path
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
import numpy as np
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
###### MODEL DEFINITIONS ######
class SentencePieceTokenTypes(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
class Model:
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
self.dir_model = dir_model
self.ftype = ftype
self.fname_out = fname_out
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.is_safetensors = self._is_model_safetensors()
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model)
self.model_arch = self._get_model_architecture()
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
def set_vocab(self):
self._set_vocab_gpt2()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
for part_name in self.part_names:
print(f"gguf: loading model part '{part_name}'")
ctx: ContextManager[Any]
if self.is_safetensors:
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
else:
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
with ctx as model_part:
for name in model_part.keys():
data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
yield name, data
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.hparams.get(
"n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
))
if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
self.gguf_writer.add_context_length(n_ctx)
if (n_embd := self.hparams.get("hidden_size")) is not None:
self.gguf_writer.add_embedding_length(n_embd)
if (n_ff := self.hparams.get("intermediate_size")) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
if (n_head := self.hparams.get("num_attention_head")) is not None:
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
def write(self):
self.write_tensors()
self.gguf_writer.write_header_to_file()
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file()
self.gguf_writer.close()
def write_vocab(self):
self.gguf_writer.write_header_to_file()
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.close()
@staticmethod
def count_model_parts(dir_model: Path, prefix: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.endswith(prefix):
num_parts += 1
return num_parts
@staticmethod
def load_hparams(dir_model):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def from_model_architecture(model_architecture):
if model_architecture == "GPTNeoXForCausalLM":
return GPTNeoXModel
if model_architecture == "BloomForCausalLM":
return BloomModel
if model_architecture == "MPTForCausalLM":
return MPTModel
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return BaichuanModel
if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
return FalconModel
if model_architecture == "GPTBigCodeForCausalLM":
return StarCoderModel
if model_architecture == "GPTRefactForCausalLM":
return RefactModel
if model_architecture == "PersimmonForCausalLM":
return PersimmonModel
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
return Model
def _is_model_safetensors(self) -> bool:
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
def _get_part_names(self):
if self.is_safetensors:
if self.num_parts == 1: # there's only one .safetensors file
return ("model.safetensors",)
return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
if self.num_parts == 1: # there's only one .bin file
return ("pytorch_model.bin",)
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
def _get_model_architecture(self) -> gguf.MODEL_ARCH:
arch = self.hparams["architectures"][0]
if arch == "GPTNeoXForCausalLM":
return gguf.MODEL_ARCH.GPTNEOX
if arch == "BloomForCausalLM":
return gguf.MODEL_ARCH.BLOOM
if arch == "MPTForCausalLM":
return gguf.MODEL_ARCH.MPT
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return gguf.MODEL_ARCH.BAICHUAN
if arch in ("FalconForCausalLM", "RWForCausalLM"):
return gguf.MODEL_ARCH.FALCON
if arch == "GPTBigCodeForCausalLM":
return gguf.MODEL_ARCH.STARCODER
if arch == "GPTRefactForCausalLM":
return gguf.MODEL_ARCH.REFACT
if arch == "PersimmonForCausalLM":
return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
raise NotImplementedError(f'Architecture "{arch}" not supported!')
def _set_vocab_gpt2(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
for i in range(vocab_size):
if i not in reverse_vocab:
pad_token = f"[PAD{i}]".encode('utf-8')
tokens.append(bytearray(pad_token))
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_sentencepiece(self):
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file():
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
sys.exit(1)
tokenizer = SentencePieceProcessor(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
for token_id in range(vocab_size):
piece = tokenizer.id_to_piece(token_id)
text = piece.encode("utf-8")
score = tokenizer.get_score(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.is_unknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.is_control(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.is_unused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.is_byte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
tokens.append(key.encode("utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
class GPTNeoXModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
)
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
class BloomModel(Model):
def set_gguf_parameters(self):
self.gguf_writer.add_name("Bloom")
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
self.gguf_writer.add_embedding_length(n_embed)
self.gguf_writer.add_feed_forward_length(4 * n_embed)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams["n_layer"]
tensors = dict(self.get_tensors())
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
has_lm_head = True
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
for name, data_torch in tensors.items():
if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
has_lm_head = False
name = re.sub(r'transformer\.', '', name)
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
data = np.concatenate(
(
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
),
axis=0,
)
print("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
data = np.concatenate(
(
qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,)),
),
axis=0,
)
print("re-format attention.linear_qkv.bias")
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if not has_lm_head and name == "word_embeddings.weight":
self.gguf_writer.add_tensor("output.weight", data)
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
class MPTModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams["n_layers"]
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
self.gguf_writer.add_head_count(self.hparams["n_heads"])
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
self.gguf_writer.add_head_count_kv(kv_n_heads)
self.gguf_writer.add_layer_norm_eps(1e-5)
if self.hparams["attn_config"]["clip_qkv"] is not None:
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
# note: MPT output is tied to (same as) wte in original model;
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
if new_name == "token_embd.weight":
self.gguf_writer.add_tensor("output.weight", data)
class BaichuanModel(Model):
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
hf_repo = self.hparams.get("_name_or_path", "")
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_source_hf_repo(hf_repo)
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
def write_tensors(self):
# Collect tensors from generator object
model_kv = dict(self.get_tensors())
block_count = self.hparams["num_hidden_layers"]
head_count = self.hparams["num_attention_heads"]
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
for i in range(block_count):
if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
print(f"Unpacking and permuting layer {i}")
model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
self._reverse_hf_permute_part(w, 0, head_count, head_count)
model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
self._reverse_hf_part(w, 2)
del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
for name, data_torch in model_kv.items():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
def _reverse_hf_permute_part(
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
) -> Tensor:
r = weights.shape[0] // 3
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
r = weights.shape[0] // 3
return weights[r * n_part:r * n_part + r, ...]
class FalconModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams.get("num_hidden_layers")
if block_count is None:
block_count = self.hparams["n_layer"] # old name
n_head = self.hparams.get("num_attention_heads")
if n_head is None:
n_head = self.hparams["n_head"] # old name
n_head_kv = self.hparams.get("num_kv_heads")
if n_head_kv is None:
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
self.gguf_writer.add_name("Falcon")
self.gguf_writer.add_context_length(2048) # not in config.json
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head_kv)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams.get("num_hidden_layers")
if block_count is None:
block_count = self.hparams["n_layer"] # old name
n_head = self.hparams.get("num_attention_heads")
if n_head is None:
n_head = self.hparams["n_head"] # old name
n_head_kv = self.hparams.get("num_kv_heads")
if n_head_kv is None:
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
head_dim = self.hparams["hidden_size"] // n_head
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class StarCoderModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("StarCoder")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(1)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
class RefactModel(Model):
def set_gguf_parameters(self):
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(ff_dim)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(1)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
n_head = self.hparams["n_head"]
n_head_kv = 1
head_dim = self.hparams["n_embd"] // n_head
block_count = self.hparams["n_layer"]
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
tensors = dict(self.get_tensors())
for i in range(block_count):
if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
del tensors[f"transformer.h.{i}.attn.kv.weight"]
if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
del tensors[f"transformer.h.{i}.attn.q.weight"]
if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
for name, data_torch in tensors.items():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class PersimmonModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
head_count = self.hparams["num_attention_heads"]
head_count_kv = head_count
hidden_size = self.hparams["hidden_size"]
self.gguf_writer.add_name('persimmon-8b-chat')
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
def set_vocab(self):
self._set_vocab_sentencepiece()
# self.gguf_writer.add_bos_token_id(71013)
# self.gguf_writer.add_eos_token_id(71013)
def write_tensors(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data_torch.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data_torch.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class StableLMModel(Model):
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)
###### CONVERSION LOGIC ######
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16"], default="f16",
help="output format - use f32 for float32, f16 for float16",
)
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
parser.add_argument(
"model", type=Path,
help="directory containing model file",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
print(f"Loading model: {dir_model.name}")
hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
print("Set model parameters")
model_instance.set_gguf_parameters()
print("Set model tokenizer")
model_instance.set_vocab()
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print(f"Model successfully exported to '{fname_out}'")

View file

@ -2,7 +2,6 @@
from __future__ import annotations
import argparse
import math
import struct
import sys
from enum import IntEnum
@ -12,34 +11,16 @@ import numpy as np
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.F32 : (1, 4),
gguf.GGMLQuantizationType.F16 : (1, 2),
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}
class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2
class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
@ -59,6 +40,7 @@ class GGMLFType(IntEnum):
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
@ -90,6 +72,7 @@ class Hyperparameters:
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
class Vocab:
def __init__(self, load_scores = True):
self.items = []
@ -111,6 +94,7 @@ class Vocab:
self.items.append((item_text, item_score))
return offset - orig_offset
class Tensor:
def __init__(self, use_padding = True):
self.name = None
@ -125,7 +109,7 @@ class Tensor:
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
assert name_len < 4096, 'Absurd tensor name length'
quant = GGML_QUANT_SIZES.get(dtype)
quant = gguf.GGML_QUANT_SIZES.get(dtype)
assert quant is not None, 'Unknown tensor type'
(blksize, tysize) = quant
offset += 12
@ -144,6 +128,7 @@ class Tensor:
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLModel:
def __init__(self):
self.hyperparameters = None
@ -180,8 +165,8 @@ class GGMLModel:
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
@ -208,6 +193,7 @@ class GGMLModel:
hp.set_n_ff(self)
return offset
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
@ -238,7 +224,7 @@ class GGMLToGGUF:
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False )
use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
if self.special_vocab is not None:
@ -362,7 +348,8 @@ class GGMLToGGUF:
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
raw_dtype = tensor.dtype )
raw_dtype = tensor.dtype)
def handle_metadata(cfg, hp):
import convert
@ -386,38 +373,40 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype )
cfg.vocabtype)
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
convert.check_vocab_size(params, vocab)
return (params, vocab, svocab)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True,
help = 'Input GGMLv3 filename')
help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True,
help ='Output GGUF filename')
help ='Output GGUF filename')
parser.add_argument('--name',
help = 'Set model name')
help = 'Set model name')
parser.add_argument('--desc',
help = 'Set model description')
help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1,
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
@ -427,7 +416,7 @@ def main():
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
print('* Scanning GGML input file')
offset = model.load(data, 0)
offset = model.load(data, 0) # noqa
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
@ -442,12 +431,15 @@ def main():
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg,
converter = GGMLToGGUF(
model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
special_vocab = special_vocab )
special_vocab = special_vocab
)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__':
main()

View file

@ -1,227 +0,0 @@
#!/usr/bin/env python3
# HF mpt--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "MPTForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.MPT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layers"]
gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_seq_len"])
gguf_writer.add_embedding_length(hparams["d_model"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
gguf_writer.add_head_count(hparams["n_heads"])
if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
gguf_writer.add_head_count_kv(kv_n_heads)
gguf_writer.add_layer_norm_eps(1e-05)
if hparams["attn_config"]["clip_qkv"] is not None:
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
# accomodate some "reserved" tokens; this is causing problems down the line in
# llama.cpp, so we pad the vocab with dummy tokens:
vocab_size = hparams["vocab_size"]
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Cannot map tensor '" + name + "'")
continue # for the sake of compatibility with some old published models, don't quit
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
# note: MPT output is tied to (same as) wte in original model;
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
if new_name == "token_embd.weight":
gguf_writer.add_tensor("output.weight", data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -6,9 +6,10 @@ import argparse
from pathlib import Path
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
@ -21,6 +22,7 @@ def _flatten_dict(dct, tensors, prefix=None):
raise ValueError(type(dct[key]))
return None
def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
@ -54,6 +56,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
pass
return tokens, scores, toktypes
def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
@ -125,6 +128,5 @@ def main():
print("")
if __name__ == '__main__':
main()

View file

@ -1,272 +0,0 @@
#!/usr/bin/env python3
# HF refact--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import sys
from pathlib import Path
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a Refact model to a GGML compatible file"
)
parser.add_argument(
"--vocab-only",
action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile",
type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model",
type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype",
type=int,
choices=[0, 1],
default=1,
nargs="?",
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f"Error: {args.model} is not a directory", file=sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
print("gguf: loading model " + dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTRefactForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH = gguf.MODEL_ARCH.REFACT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
# Get refact feed forward dimension
hidden_dim = hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
block_count = hparams["n_layer"]
gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])
gguf_writer.add_feed_forward_length(ff_dim)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = 1
head_dim = hparams["n_embd"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
for i in range(block_count):
if f"transformer.h.{i}.attn.kv.weight" in model_part:
data = model_part[f"transformer.h.{i}.attn.kv.weight"]
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
: n_head_kv * head_dim
]
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
n_head_kv * head_dim :
]
del model_part[f"transformer.h.{i}.attn.kv.weight"]
if f"transformer.h.{i}.attn.q.weight" in model_part:
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
f"transformer.h.{i}.attn.q.weight"
]
del model_part[f"transformer.h.{i}.attn.q.weight"]
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if (
ftype == 1
and data_dtype == np.float32
and name.endswith(".weight")
and n_dims == 2
):
data = data.astype(np.float16)
print(
new_name
+ ", n_dims = "
+ str(n_dims)
+ ", "
+ str(old_dtype)
+ " --> "
+ str(data.dtype)
)
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -1,210 +0,0 @@
#!/usr/bin/env python3
# HF starcoder --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.STARCODER
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("StarCoder")
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["n_embd"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View file

@ -3,11 +3,9 @@ from __future__ import annotations
import argparse
import concurrent.futures
import copy
import enum
import faulthandler
import functools
import io
import itertools
import json
import math
@ -23,14 +21,14 @@ from abc import ABCMeta, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
import numpy as np
from sentencepiece import SentencePieceProcessor # type: ignore[import]
from sentencepiece import SentencePieceProcessor
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
if TYPE_CHECKING:
@ -48,6 +46,7 @@ DEFAULT_CONCURRENCY = 8
# data types
#
@dataclass(frozen=True)
class DataType:
name: str
@ -57,15 +56,18 @@ class DataType:
def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize
@dataclass(frozen=True)
class UnquantizedDataType(DataType):
pass
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
@dataclass(frozen=True)
class QuantizedDataType(DataType):
block_size: int
@ -79,6 +81,7 @@ class QuantizedDataType(DataType):
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python!
@ -88,6 +91,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
@ -96,10 +100,11 @@ class Q8_0QuantizedDataType(QuantizedDataType):
yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
@ -118,6 +123,8 @@ SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
# TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType
# TODO: move to `gguf.py`
class GGMLFileType(enum.IntEnum):
AllF32 = 0
MostlyF16 = 1 # except 1d tensors
@ -130,6 +137,7 @@ class GGMLFileType(enum.IntEnum):
# 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
@ -140,6 +148,7 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
# hparams loading
#
@dataclass
class Params:
n_vocab: int
@ -151,8 +160,11 @@ class Params:
n_head_kv: int
f_norm_eps: float
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
@ -166,11 +178,11 @@ class Params:
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
@ -198,20 +210,20 @@ class Params:
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"]
n_embd = config["hidden_size"]
n_layer = config["num_hidden_layers"]
n_ff = config["intermediate_size"]
n_head = config["num_attention_heads"]
n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
f_norm_eps = config["rms_norm_eps"]
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
f_rope_scale = config["rope_scaling"].get("factor")
else:
f_rope_scale = None
if rope_scaling is not None and (typ := rope_scaling.get("type")):
rope_factor = rope_scaling.get("factor")
f_rope_scale = rope_factor
if typ == "linear":
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
if "max_sequence_length" in config:
n_ctx = config["max_sequence_length"]
@ -222,16 +234,19 @@ class Params:
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_ctx = n_ctx,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
f_rope_scale = f_rope_scale,
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
n_layer = config["num_hidden_layers"],
n_ctx = n_ctx,
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
rope_finetuned = rope_finetuned,
)
# LLaMA v2 70B params.json
@ -240,17 +255,8 @@ class Params:
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
n_embd = config["dim"]
n_layer = config["n_layers"]
n_ff = -1
n_head = config["n_heads"]
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
f_norm_eps = config["norm_eps"]
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if f_rope_freq_base == 1000000:
if config.get("rope_theta") == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
@ -260,22 +266,16 @@ class Params:
# LLaMA v1
n_ctx = 2048
if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0]
if n_ff == -1:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
)
@staticmethod
@ -319,7 +319,7 @@ class BpeVocab:
(item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary.
if item['content'] not in self.bpe_tokenizer )
if item['content'] not in self.bpe_tokenizer)
vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
@ -337,7 +337,6 @@ class BpeVocab:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
for i, _ in enumerate(tokenizer):
@ -366,16 +365,19 @@ class SentencePieceVocab:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {vocab_size}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
@ -414,6 +416,7 @@ class SentencePieceVocab:
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
#
@ -421,13 +424,14 @@ Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
# TODO: reuse (probably move to gguf.py?)
#
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
#print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
.swapaxes(1, 2)
.reshape(weights.shape))
class Tensor(metaclass=ABCMeta):
@ -508,7 +512,7 @@ class LazyTensor:
ret = self._load()
# Should be okay if it maps to the same numpy type?
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
(self.data_type, ret.data_type, self.description)
(self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> LazyTensor:
@ -596,6 +600,7 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTe
return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
@ -603,6 +608,7 @@ def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().part(n_part)
@ -698,6 +704,7 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
data_base_path=pickle_paths[0][:-4],
zip_file=zf)
model = unpickler.load()
if 'model' in model: model = model['model']
as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
@ -751,6 +758,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
In = TypeVar('In')
Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
@ -785,6 +793,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
break
yield result
def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
@ -803,7 +812,7 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None:
@ -828,8 +837,16 @@ class OutputFile:
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.f_rope_scale is not None:
self.gguf.add_rope_scale_linear(params.f_rope_scale)
if params.rope_scaling_type:
assert params.f_rope_scale is not None
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_orig_ctx is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)
@ -849,7 +866,7 @@ class OutputFile:
elif isinstance(vocab, BpeVocab):
self.gguf.add_tokenizer_model("gpt2")
else:
raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
raise ValueError('Unknown vocab type: Not BpeVocab or SentencePieceVocab')
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes)
@ -875,7 +892,7 @@ class OutputFile:
self.gguf.close()
@staticmethod
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out, endianess=endianess)
@ -903,7 +920,7 @@ class OutputFile:
return dt.quantize(arr)
@staticmethod
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess=gguf.GGUFEndian.LITTLE) -> None:
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out, endianess=endianess)
@ -937,8 +954,9 @@ class OutputFile:
of.close()
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32
@ -951,10 +969,12 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
raise Exception(f"Unexpected combination of types: {name_to_type}")
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
for (name, tensor) in model.items()}
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
@ -967,7 +987,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
print(f"Permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
#tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
@ -992,6 +1012,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
return out
def nth_multifile_path(path: Path, n: int) -> Path | None:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model.
@ -1036,7 +1057,8 @@ def load_some_model(path: Path) -> ModelPlus:
# Be extra-friendly and accept either a file or a directory:
if path.is_dir():
# Check if it's a set of safetensors files first
files = list(path.glob("model-00001-of-*.safetensors"))
globs = ["model-00001-of-*.safetensors", "model.safetensors"]
files = [file for glob in globs for file in path.glob(glob)]
if not files:
# Try the PyTorch patterns too, with lower priority
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
@ -1112,14 +1134,18 @@ def do_dump_model(model_plus: ModelPlus) -> None:
def main(args_in: list[str] | None = None) -> None:
output_choices = ["f32", "f16"]
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin, *.safetensors)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
@ -1168,8 +1194,8 @@ def main(args_in: list[str] | None = None) -> None:
# FIXME: Try to respect vocab_dir somehow?
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
outfile = args.outfile
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
print(f"Wrote {outfile}")
@ -1182,8 +1208,8 @@ def main(args_in: list[str] | None = None) -> None:
vocab = load_vocab(vocab_dir, args.vocabtype)
# FIXME: Try to respect vocab_dir somehow?
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
model = model_plus.model
model = convert_model_names(model, params)

BIN
docs/llama-star/idea-arch.key Executable file

Binary file not shown.

Binary file not shown.

View file

@ -17,7 +17,7 @@ llama_model_load_internal: [cublas] total VRAM used: 17223 MB
If you see these lines, then the GPU is being used.
## Verifying that the CPU is not oversaturated
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physicial CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physical CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
# Example of runtime flags effect on inference speed benchmark
These runs were tested on the following machine:

View file

@ -24,6 +24,7 @@ else()
add_subdirectory(llama-bench)
add_subdirectory(llava)
add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize)
@ -31,6 +32,7 @@ else()
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(speculative)
add_subdirectory(lookahead)
add_subdirectory(train-text-from-scratch)
if (LLAMA_METAL)
add_subdirectory(metal)

View file

@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);

View file

@ -153,7 +153,7 @@ while n_cur <= n_len {
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if new_token_id == llama_token_eos(context) || n_cur == n_len {
if new_token_id == llama_token_eos(model) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {

View file

@ -1,9 +1,6 @@
set(TARGET benchmark)
add_executable(${TARGET} benchmark-matmult.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,4 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "ggml.h"
@ -172,7 +171,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
struct ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, m11xm2);
printf("n_threads=%i\n", benchmark_params.n_threads);
@ -181,9 +181,9 @@ int main(int argc, char ** argv) {
std::vector<uint8_t> work_buffer;
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads);
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
TENSOR_DUMP(gf.nodes[0]);
TENSOR_DUMP(gf->nodes[0]);
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
@ -201,7 +201,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31);
struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf31, q31);
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
@ -212,7 +213,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
//printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32);
struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf32, q32);
printf("n_threads=%i\n", benchmark_params.n_threads);
const int dimx = sizex;
@ -224,7 +226,7 @@ int main(int argc, char ** argv) {
// Let's use the F32 result from above as a reference for the quantized multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
printf("=====================================================================================\n");
@ -234,7 +236,7 @@ int main(int argc, char ** argv) {
long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads);
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
long long int stop = ggml_time_us();
long long int usec = stop-start;
@ -252,7 +254,7 @@ int main(int argc, char ** argv) {
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
@ -267,7 +269,7 @@ int main(int argc, char ** argv) {
}
// Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads);
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
}
printf("\n");
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} embedding.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,4 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View file

@ -240,7 +240,7 @@ static struct lora_data * load_lora(struct lora_info * info) {
}
struct ggml_init_params params_ggml;
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
params_ggml.mem_buffer = NULL;
params_ggml.no_alloc = true;
result->ctx = ggml_init(params_ggml);
@ -334,7 +334,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
struct ggml_init_params params;
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
params.mem_buffer = NULL;
params.no_alloc = true;
struct ggml_context * ctx = NULL;

View file

@ -21,7 +21,7 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
```
Finetune output files will be saved every N iterations (config with `--save-every N`).
**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
So in above example after 10 iterations these files will be written:
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf

View file

@ -3,9 +3,7 @@
import argparse
import gguf
import os
import struct
import sys
import numpy as np
from pathlib import Path

View file

@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd);
ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd);
ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd);
ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd);
ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd);
ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd);
ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd);
ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd);
ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd);
ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd);
ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd);
ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd);
ggml_set_zero(layer.w3_b);
}
free_random_normal_distribution(rnd);
@ -642,8 +642,9 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int rope_mode = 0;
return ggml_rope_custom(ctx,
t, KQ_pos, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale);
t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};
set_name(tokens_input, "tokens_input");
@ -652,7 +653,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
if (ggml_is_quantized(a->type)) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
} else if (a->type == GGML_TYPE_F32) {
return ggml_add(ctx, a, b);
@ -771,7 +772,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
if (enable_checkpointing) {
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
} else {
*gb = *gf;
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, true);
}
@ -1545,6 +1546,7 @@ int main(int argc, char ** argv) {
srand(params.common.seed);
struct llama_model_params llama_mparams = llama_model_default_params();
llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
llama_mparams.vocab_only = false;
printf("%s: model base = '%s'\n", __func__, params.fn_model_base);
@ -1602,6 +1604,7 @@ int main(int argc, char ** argv) {
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
opt->params.n_threads = params.common.n_threads;
opt->params.past = params.common.opt_past;
opt->params.delta = params.common.opt_delta;
@ -1728,11 +1731,9 @@ int main(int argc, char ** argv) {
ggml_allocr_free(alloc);
// context for compute tensors without their data
size_t estimated_compute_size_wo_data = (
ggml_tensor_overhead()*GGML_MAX_NODES*2
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
params.common.use_checkpointing ? 3 : 2
)
const size_t estimated_compute_size_wo_data = (
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
);
struct ggml_init_params ctx_compute_params = {
estimated_compute_size_wo_data, // mem_size
@ -1755,11 +1756,11 @@ int main(int argc, char ** argv) {
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute,
@ -1788,11 +1789,11 @@ int main(int argc, char ** argv) {
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute,

View file

@ -0,0 +1,34 @@
#!/bin/bash
cd `dirname $0`
cd ../..
EXE="./finetune"
if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "main --lora" with GPU inferencing.
while getopts "dg" opt; do
case $opt in
d)
DEBUGGER="gdb --args"
;;
g)
EXE="./build/bin/Release/finetune"
GPUARG="--gpu-layers 25"
;;
esac
done
$DEBUGGER $EXE \
--model-base $MODEL \
$GPUARG \
--checkpoint-in chk-ol3b-shakespeare-LATEST.gguf \
--checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
--lora-out lora-ol3b-shakespeare-ITERATION.bin \
--train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
--save-every 10 \
--threads 10 --adam-iter 30 --batch 4 --ctx 64 \
--use-checkpointing

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -2,7 +2,6 @@
#include "console.h"
#include "llama.h"
#include "build-info.h"
#include "grammar-parser.h"
#include <cassert>
@ -147,6 +146,13 @@ int main(int argc, char ** argv) {
return 0;
}
if (params.chatml) {
printf("\n************\n");
printf("%s: please use the 'main' tool for chatml mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.antiprompt.empty()) {
printf("\n************\n");
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
@ -184,8 +190,8 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
@ -231,7 +237,7 @@ int main(int argc, char ** argv) {
LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos);
bool suff_rm_leading_spc = params.escape;

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} llama-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -19,7 +19,6 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "build-info.h"
#include "ggml-cuda.h"
// utils
@ -641,8 +640,8 @@ struct test {
}
};
const std::string test::build_commit = BUILD_COMMIT;
const int test::build_number = BUILD_NUMBER;
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cublas();
const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::metal = !!ggml_cpu_has_metal();
@ -1037,7 +1036,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
// warmup run
if (t.n_prompt > 0) {
@ -1048,7 +1047,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {

View file

@ -1,20 +1,36 @@
set(TARGET clip)
add_library(${TARGET} clip.cpp clip.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
add_library(llava OBJECT
llava.cpp
llava.h
clip.cpp
clip.h
)
target_link_libraries(llava PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(llava PUBLIC .)
target_include_directories(llava PUBLIC ../..)
target_include_directories(llava PUBLIC ../../common)
target_compile_features(llava PRIVATE cxx_std_11)
add_library(llava_static STATIC $<TARGET_OBJECTS:llava>)
if (BUILD_SHARED_LIBS)
set_target_properties(llava PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llava PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(llava_shared SHARED $<TARGET_OBJECTS:llava>)
target_link_libraries(llava_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS llava_shared LIBRARY)
endif()
set(TARGET llava)
add_executable(${TARGET} llava.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
add_dependencies(llava BUILD_INFO)
endif()
set(TARGET llava-cli)
add_executable(llava-cli llava-cli.cpp)
install(TARGETS llava-cli RUNTIME)
target_link_libraries(llava-cli PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(llava PRIVATE cxx_std_11)

View file

@ -9,12 +9,12 @@ models are available.
After API is confirmed, more models will be supported / uploaded.
## Usage
Build with cmake or run `make llava` to build it.
Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava` to see the usage. For example:
After building, run: `./llava-cli` to see the usage. For example:
```sh
./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
@ -51,7 +51,6 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
## TODO
- [ ] Support server mode.
- [ ] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods.
- [ ] Support more model variants.

View file

@ -664,7 +664,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// measure mem requirement and allocate
{
static const size_t tensor_alignment = 32;
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
clip_image_f32_batch batch;
batch.size = 1;
@ -680,26 +680,44 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return new_clip;
}
clip_image_u8 * make_clip_image_u8() { return new clip_image_u8(); }
clip_image_u8 * make_clip_image_u8() {
auto img = new clip_image_u8();
return img;
}
clip_image_f32 * make_clip_image_f32() { return new clip_image_f32(); }
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname);
return false;
}
void clip_image_u8_free(clip_image_u8 * img) { if (img->data) { delete[] img->data; } delete img; }
void clip_image_f32_free(clip_image_f32 * img) { if (img->data) { delete[] img->data; } delete img; }
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->size = nx * ny * 3;
img->data = new uint8_t[img->size]();
memcpy(img->data, data, img->size);
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
stbi_image_free(data);
return true;
}
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
stbi_image_free(data);
return true;
}
@ -714,39 +732,40 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8 temp; // we will keep the input image data here temporarily
clip_image_u8 * temp = make_clip_image_u8(); // we will keep the input image data here temporarily
if (pad2square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
temp.nx = longer_side;
temp.ny = longer_side;
temp.size = 3 * longer_side * longer_side;
temp.data = new uint8_t[temp.size]();
temp->nx = longer_side;
temp->ny = longer_side;
temp->size = 3 * longer_side * longer_side;
temp->data = new uint8_t[temp->size]();
uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
// fill with background color
for (size_t i = 0; i < temp.size; i++) {
temp.data[i] = bc[i % 3];
for (size_t i = 0; i < temp->size; i++) {
temp->data[i] = bc[i % 3];
}
// copy from the input image
for (int y = 0; y < img->ny; y++) {
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp.nx + x);
temp.data[j] = img->data[i];
temp.data[j+1] = img->data[i+1];
temp.data[j+2] = img->data[i+2];
const int j = 3 * (y * temp->nx + x);
temp->data[j] = img->data[i];
temp->data[j+1] = img->data[i+1];
temp->data[j+2] = img->data[i+2];
}
}
} else {
temp.nx = img->nx;
temp.ny = img->ny;
temp.size = img->size;
temp.data = img->data;
temp->nx = img->nx;
temp->ny = img->ny;
temp->size = img->size;
temp->data = new uint8_t[temp->size]();
memcpy(&temp->data[0], &img->data[0], temp->size); // copy
}
const int nx = temp.nx;
const int ny = temp.ny;
const int nx = temp->nx;
const int ny = temp->ny;
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
@ -785,10 +804,10 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp.data[j00];
const float v01 = temp.data[j01];
const float v10 = temp.data[j10];
const float v11 = temp.data[j11];
const float v00 = temp->data[j00];
const float v01 = temp->data[j01];
const float v10 = temp->data[j10];
const float v11 = temp->data[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
@ -803,6 +822,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
}
}
}
clip_image_u8_free(temp);
return true;
}
@ -1049,16 +1069,16 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
return true;
}
int clip_n_mmproj_embd(struct clip_ctx * ctx) {
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_2_b->ne[0];
}
int clip_n_patches(struct clip_ctx * ctx) {
int clip_n_patches(const struct clip_ctx * ctx) {
auto & params = ctx->vision_model.hparams;
return (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
}
size_t clip_embd_nbytes(struct clip_ctx * ctx) {
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
}

View file

@ -1,7 +1,22 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
#include <stddef.h>
#include <stdint.h>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define CLIP_API __declspec(dllexport)
# else
# define CLIP_API __declspec(dllimport)
# endif
# else
# define CLIP_API __attribute__ ((visibility ("default")))
# endif
#else
# define CLIP_API
#endif
struct clip_ctx;
@ -20,19 +35,20 @@ struct clip_vision_hparams {
float eps;
};
struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
/** load mmproj model */
CLIP_API struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
/** free mmproj model */
CLIP_API void clip_free(struct clip_ctx * ctx);
void clip_free(struct clip_ctx * ctx);
size_t clip_embd_nbytes(struct clip_ctx * ctx);
int clip_n_patches(struct clip_ctx * ctx);
int clip_n_mmproj_embd(struct clip_ctx * ctx);
size_t clip_embd_nbytes(const struct clip_ctx * ctx);
int clip_n_patches(const struct clip_ctx * ctx);
int clip_n_mmproj_embd(const struct clip_ctx * ctx);
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
uint8_t * data;
uint8_t * data = NULL;
size_t size;
};
@ -41,7 +57,7 @@ struct clip_image_u8 {
struct clip_image_f32 {
int nx;
int ny;
float * data;
float * data = NULL;
size_t size;
};
@ -57,7 +73,12 @@ struct clip_image_f32_batch {
struct clip_image_u8 * make_clip_image_u8();
struct clip_image_f32 * make_clip_image_f32();
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
CLIP_API void clip_image_u8_free(clip_image_u8 * img);
CLIP_API void clip_image_f32_free(clip_image_f32 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);

View file

@ -0,0 +1,314 @@
#include "ggml.h"
#include "common.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "base64.hpp"
#include <cstdio>
#include <cstdlib>
#include <vector>
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
fprintf(stderr, "%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
// TODO: use common/sampling.h
static llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
auto & sparams = params.sparams;
// out of user input, sample next token
const float temp = sparams.temp;
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
const float top_p = sparams.top_p;
const float tfs_z = sparams.tfs_z;
const float typical_p = sparams.typical_p;
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
// const float repeat_penalty = sparams.repeat_penalty;
// const float alpha_presence = sparams.presence_penalty;
// const float alpha_frequency = sparams.frequency_penalty;
const int mirostat = sparams.mirostat;
const float mirostat_tau = sparams.mirostat_tau;
const float mirostat_eta = sparams.mirostat_eta;
// const bool penalize_nl = sparams.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
static const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}
static bool prompt_contains_image(const std::string& prompt) {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos);
}
// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
fprintf(stderr, "%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes);
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
fprintf(stderr, "%s: could not load image from base64 string.\n", __func__);
return NULL;
}
return embed;
}
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) {
return prompt;
}
auto pre = prompt.substr(0, begin);
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
return pre + replacement + post;
}
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
// load and preprocess the image
llava_image_embed * embed = NULL;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
printf("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
if (!embed) {
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
return NULL;
}
}
return embed;
}
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
// llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, add_bos);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);
// generate the response
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
}
static struct llava_context * llava_init(gpt_params * params) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_backend_init(params->numa);
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return NULL;
}
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return NULL;
}
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_backend_free();
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
auto ctx_llava = llava_init(&params);
if (ctx_llava == NULL) {
fprintf(stderr, "%s: error: failed to init llava\n", __func__);
return 1;
}
auto image_embed = load_image(ctx_llava, &params);
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_print_timings(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
llava_free(ctx_llava);
return 0;
}

View file

@ -1,147 +0,0 @@
#pragma once
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < N; i += n_batch) {
int n_eval = N - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
// TODO: use common/sampling.h
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
auto & sparams = params.sparams;
// out of user input, sample next token
const float temp = sparams.temp;
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
const float top_p = sparams.top_p;
const float tfs_z = sparams.tfs_z;
const float typical_p = sparams.typical_p;
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
// const float repeat_penalty = sparams.repeat_penalty;
// const float alpha_presence = sparams.presence_penalty;
// const float alpha_frequency = sparams.frequency_penalty;
const int mirostat = sparams.mirostat;
const float mirostat_tau = sparams.mirostat_tau;
const float mirostat_eta = sparams.mirostat_eta;
// const bool penalize_nl = sparams.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties
// float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, repeat_penalty);
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl(ctx)] = nl_logit;
// }
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}

View file

@ -1,164 +1,163 @@
#include "clip.h"
#include "llava-utils.h"
#include "common.h"
#include "llama.h"
#include "llava.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
#include "base64.hpp"
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
clip_image_f32 * img_res = make_clip_image_f32();
if (!clip_image_preprocess(ctx_clip, img, img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
clip_image_f32_free(img_res);
return false;
}
if (params.mmproj.empty() || params.image.empty()) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
const char * clip_path = params.mmproj.c_str();
const char * img_path = params.image.c_str();
if (params.prompt.empty()) {
params.prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
// load and preprocess the image
clip_image_u8 img;
clip_image_f32 img_res;
if (!clip_image_load_from_file(img_path, &img)) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
int n_img_pos = clip_n_patches(ctx_clip);
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
return 1;
}
*n_img_pos = clip_n_patches(ctx_clip);
const int64_t t_img_enc_start_us = ggml_time_us();
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
clip_image_f32_free(img_res);
if (!encoded) {
fprintf(stderr, "Unable to encode image\n");
return 1;
return false;
}
const int64_t t_img_enc_end_us = ggml_time_us();
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
// we get the embeddings, free up the memory required for CLIP
clip_free(ctx_clip);
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
llama_backend_init(params.numa);
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.main_gpu = params.main_gpu;
model_params.tensor_split = params.tensor_split;
model_params.use_mmap = params.use_mmap;
model_params.use_mlock = params.use_mlock;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.seed = params.seed;
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// make sure that the correct mmproj was used, i.e., compare apples to apples
const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
if (n_img_embd != n_llama_embd) {
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 1;
}
// process the prompt
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
int n_past = 0;
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
// generate the response
printf("\n");
printf("prompt: '%s'\n", params.prompt.c_str());
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llama, params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
{
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
}
llama_print_timings(ctx_llama);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 0;
return true;
}
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
// make sure that the correct mmproj was used, i.e., compare apples to apples
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
if (n_image_embd != n_llama_embd) {
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
return false;
}
return true;
}
static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
free(image_embd);
return false;
}
int n_img_pos;
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
fprintf(stderr, "%s: cannot encode image, aborting\n", __func__);
free(image_embd);
return false;
}
*image_embd_out = image_embd;
*n_img_pos_out = n_img_pos;
return true;
}
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
int n_eval = image_embed->n_image_pos - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
clip_image_u8 * img = make_clip_image_u8();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);
return NULL;
}
float* image_embed = NULL;
int n_image_pos = 0;
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
if (!image_embed_result) {
clip_image_u8_free(img);
fprintf(stderr, "%s: coulnd't embed the image\n", __func__);
return NULL;
}
clip_image_u8_free(img);
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
result->embed = image_embed;
result->n_image_pos = n_image_pos;
return result;
}
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
auto file = fopen(path, "rb");
if (file == NULL) {
fprintf(stderr, "%s: can't read file %s\n", __func__, path);
return false;
}
fseek(file, 0, SEEK_END);
auto fileSize = ftell(file);
fseek(file, 0, SEEK_SET);
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
if (buffer == NULL) {
fprintf(stderr, "%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
perror("Memory allocation error");
fclose(file);
return false;
}
errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
die_fmt("read error: %s", strerror(errno));
}
if (ret != (size_t) fileSize) {
die("unexpectedly reached end of file");
}
fclose(file); // Close the file
*bytesOut = buffer;
*sizeOut = fileSize;
return true;
}
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
unsigned char* image_bytes;
long image_bytes_length;
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
if (!loaded) {
fprintf(stderr, "%s: failed to load %s\n", __func__, image_path);
return NULL;
}
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
free(image_bytes);
return embed;
}
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed) {
free(embed->embed);
free(embed);
}

50
examples/llava/llava.h Normal file
View file

@ -0,0 +1,50 @@
#ifndef LLAVA_H
#define LLAVA_H
#include "ggml.h"
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAVA_API __declspec(dllexport)
# else
# define LLAVA_API __declspec(dllimport)
# endif
# else
# define LLAVA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAVA_API
#endif
struct clip_ctx;
#ifdef __cplusplus
extern "C" {
#endif
struct llava_image_embed {
float * embed;
int n_image_pos;
};
/** sanity check for clip <-> llava embed size match */
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
/** build an image embed from image file bytes */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
/** build an image embed from a path to an image filename */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
/** free an embedding made with llava_image_embed_make_* */
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,5 @@
set(TARGET lookahead)
add_executable(${TARGET} lookahead.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,487 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
struct ngram_data {
bool active = false;
llama_seq_id seq_id = -1;
std::vector<int> i_batch;
std::vector<llama_token> tokens;
};
// n-gram container
struct ngram_container {
ngram_container(int n_vocab, int N, int G) {
cnt.resize(n_vocab);
head.resize(n_vocab);
tokens.resize(n_vocab * G * (N - 1));
}
int n_total = 0;
std::vector<int> cnt;
std::vector<int> head;
// [n_vocab][G][N - 1]
// for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
std::vector<llama_token> tokens;
};
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
const int W = 15; // lookahead window
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("lookahead", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the target model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// Tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);
std::vector<llama_token> inp;
std::vector<llama_token> all;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
all = inp;
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
// eval the prompt
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
int n_predict = 0;
int n_accept = 0;
int n_past = inp.size();
llama_token id = 0;
// used to determine end of generation
bool has_eos = false;
// for each decoded batch, we have at most W + G + 1 distinct sequences:
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
// verification n-grams
std::vector<ngram_data> ngrams_cur(G);
// tokens for the past N - 1 Jacobi iterations
std::vector<llama_token> tokens_j_prev(W);
std::vector<std::vector<llama_token>> tokens_j(N - 1);
for (int j = 0; j < N - 1; j++) {
tokens_j[j].resize(W);
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// initialize randomly from the prompt tokens
tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
} else {
// initialize with a sequence of increasing numbers
tokens_j[j][i] = 100 + i;
}
}
}
std::vector<llama_seq_id> seq_id_look;
// the input token belongs both to all sequences
std::vector<llama_seq_id> seq_id_all(W + G + 1);
for (int i = 0; i < W + G + 1; i++) {
seq_id_all[i] = i;
}
// here we keep adding new n-grams as we go
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
const auto t_dec_start = ggml_time_us();
// sample first token
{
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
llama_sampling_accept(ctx_sampling, ctx, id, true);
{
const std::string token_str = llama_token_to_piece(ctx, id);
printf("%s", token_str.c_str());
fflush(stdout);
}
}
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
//
// Example for W = 5, N = 4, G = 2:
// (I = input, L = lookahead, V = verification)
//
// Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
// Info: I L L L L L L L L L L L L L L V V V V V V
// Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
// Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
// ---------------------------------------------------------------------
// Seq: 0
// 1 1 1
// 2 2 2 2
// 3 3 3 3 3
// 4 4 4 4 4 4
// 5 5 5 5 5 5 5
// 6 6 6 6
// 7 7 7 7
// ---------------------------------------------------------------------
// | | | | | | | | | | |
// V V V V V | | | | | |
// j_tokens | | | | | |
// V V V V V V
// id
{
llama_batch_clear(batch);
// current token - first token of the first level
llama_batch_add(batch, id, n_past, seq_id_all, true);
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
{
const int g_cur = ngrams_observed.cnt[id];
ngrams_cur.resize(g_cur);
for (int g = 0; g < g_cur; g++) {
ngrams_cur[g].active = true;
ngrams_cur[g].tokens.resize(N);
ngrams_cur[g].i_batch.resize(N);
ngrams_cur[g].seq_id = W + 1 + g;
ngrams_cur[g].i_batch[0] = 0;
ngrams_cur[g].tokens [0] = id;
}
for (int j = 0; j < N - 1; j++) {
for (int g = 0; g < g_cur; g++) {
const int idx = id*(N - 1)*G + g*(N - 1);
const llama_token t = ngrams_observed.tokens[idx + j];
ngrams_cur[g].tokens [j + 1] = t;
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
}
}
}
// fill the remaining W - 1 tokens for the first level
for (int i = 1; i < W; i++) {
seq_id_look.resize(W - i);
for (int j = 0; j < W - i; j++) {
seq_id_look[j] = i + j + 1;
}
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
}
// fill the rest of the levels
for (int j = 1; j < N - 1; j++) {
for (int i = 0; i < W; i++) {
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
}
}
}
if (llama_decode(ctx, batch) != 0) {
fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
return 1;
}
int seq_id_best = 0;
for (int v = 0; v < N; ++v) {
int i_batch = 0;
// if no active ngrams are left, it means the sampled token does not pass the verification
if (v > 0) {
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
i_batch = ngrams_cur[g].i_batch[v];
seq_id_best = ngrams_cur[g].seq_id;
++n_accept;
break;
}
}
// no more matches -> create a new batch
if (i_batch == 0) {
break;
}
}
// sample the next token
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
llama_sampling_accept(ctx_sampling, ctx, id, true);
// print
{
const std::string token_str = llama_token_to_piece(ctx, id);
if (v == 0) {
printf("%s", token_str.c_str());
} else {
// print light cyan
printf("\033[0;96m%s\033[0m", token_str.c_str());
}
fflush(stdout);
if (id == llama_token_eos(model)) {
has_eos = true;
}
all.push_back(id);
}
++n_predict;
++n_past;
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// verify across active n-grams
for (int g = 0; g < (int) ngrams_cur.size(); g++) {
if (ngrams_cur[g].active) {
if (v == N - 1) {
ngrams_cur[g].active = false;
} else {
if (id != ngrams_cur[g].tokens[v + 1]) {
ngrams_cur[g].active = false;
}
}
}
}
// print known n-grams starting with token id (debug)
if (0 && v == 0) {
if (ngrams_observed.cnt[id] > 0) {
printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
}
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
printf(" - ngram %2d: ", i);
const int idx = id*(N - 1)*G + i*(N - 1);
for (int j = 0; j < N - 1; j++) {
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
printf("%s", token_str.c_str());
}
printf("\n");
}
}
// update lookahead tokens
{
for (int i = 0; i < W; i++) {
tokens_j_prev[i] = tokens_j[0][i];
}
for (int j = 0; j < N - 2; j++) {
tokens_j[j] = tokens_j[j + 1];
}
if (v == 0) {
// sample from the last level
for (int i = 0; i < W; i++) {
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
}
} else {
for (int i = 0; i < W; i++) {
// there are different ways to init these tokens
if (0) {
// random init
tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
} else {
// init from the previous level
tokens_j[N - 2][i] = tokens_j[0][i];
}
}
}
}
// update observed ngrams
if (v == 0) {
// the first token of the n-gram is determined by the index in the container so it is not stored
std::vector<llama_token> ngram(N - 1);
// n-gram generation
// ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
for (int f = 0; f < W; ++f) {
const int ft = tokens_j_prev[f]; // first token of the n-gram
for (int j = 0; j < N - 1; ++j) {
ngram[j] = tokens_j[j][f];
}
// filter-out repeating n-grams
{
bool is_unique = true;
for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
const int idx = ft*(N - 1)*G + k*(N - 1);
bool is_match = true;
for (int j = 0; j < N - 1; ++j) {
if (ngrams_observed.tokens[idx + j] != ngram[j]) {
is_match = false;
break;
}
}
if (is_match) {
is_unique = false;
break;
}
}
if (!is_unique) {
continue;
}
}
const int head = ngrams_observed.head[ft];
const int idx = ft*(N - 1)*G + head*(N - 1);
for (int i = 0; i < N - 1; i++) {
ngrams_observed.tokens[idx + i] = ngram[i];
}
ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
ngrams_observed.head[ft] = (head + 1) % G;
ngrams_observed.n_total++;
}
}
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
}
}
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("W = %2d\n", W);
LOG_TEE("N = %2d\n", N);
LOG_TEE("G = %2d\n", G);
LOG_TEE("\n");
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_accept = %d\n", n_accept);
llama_print_timings(ctx);
llama_kv_cache_view_free(&kvc_view);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} main.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -142,7 +142,7 @@ The `--ctx-size` option allows you to set the size of the prompt context used by
### Extended Context Size
Some fine-tuned models have extened the context length by scaling RoPE. For example, if the original pretrained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
@ -208,6 +208,14 @@ Top-p sampling, also known as nucleus sampling, is another text generation metho
Example usage: `--top-p 0.95`
### Min P Sampling
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.05).
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out.
Example usage: `--min-p 0.05`
### Tail Free Sampling (TFS)
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).

View file

@ -2,7 +2,6 @@
#include "console.h"
#include "llama.h"
#include "build-info.h"
#include <cassert>
#include <cinttypes>
@ -153,8 +152,8 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
@ -230,13 +229,16 @@ int main(int argc, char ** argv) {
}
}
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos);
std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n");
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
}
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
} else {
LOG("use session tokens\n");
@ -298,7 +300,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOGLN(
@ -314,7 +316,7 @@ int main(int argc, char ** argv) {
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
params.n_keep = (int)embd_inp.size();
}
@ -325,11 +327,23 @@ int main(int argc, char ** argv) {
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.push_back("<|im_start|>user\n");
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
@ -706,7 +720,7 @@ int main(int argc, char ** argv) {
is_interacting = true;
printf("\n");
} else if (params.instruct) {
} else if (params.instruct || params.chatml) {
is_interacting = true;
}
}
@ -714,7 +728,7 @@ int main(int argc, char ** argv) {
if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n");
if (params.instruct) {
if (params.instruct || params.chatml) {
printf("\n> ");
}
@ -761,6 +775,12 @@ int main(int argc, char ** argv) {
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
// chatml mode: insert user chat prefix
if (params.chatml && !is_antiprompt) {
LOG("inserting chatml prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) {
process_escapes(buffer);
}
@ -779,6 +799,11 @@ int main(int argc, char ** argv) {
LOG("inserting instruction suffix\n");
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
// chatml mode: insert assistant chat suffix
if (params.chatml) {
LOG("inserting chatml suffix\n");
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
}
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
@ -804,7 +829,7 @@ int main(int argc, char ** argv) {
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive)) {
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
LOG_TEE(" [end of text]\n");
break;
}

View file

@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
struct ggml_context * ctx_data = NULL;
struct ggml_context * ctx_eval = NULL;
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
struct ggml_cgraph * gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
// this allocates all Metal resources and memory buffers
auto * ctx_metal = ggml_metal_init(1);
@ -46,13 +46,13 @@ int main(int argc, char ** argv) {
// main
{
struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "embd");
struct ggml_tensor * input = ggml_graph_get_tensor(gf, "embd");
*(int32_t *) input->data = 1; // BOS
ggml_metal_set_tensor(ctx_metal, input);
// warmup
ggml_metal_graph_compute(ctx_metal, &gf);
ggml_metal_graph_compute(ctx_metal, gf);
const int n_iter = 16;
@ -60,7 +60,7 @@ int main(int argc, char ** argv) {
// the actual inference happens here
for (int i = 0; i < n_iter; ++i) {
ggml_metal_graph_compute(ctx_metal, &gf);
ggml_metal_graph_compute(ctx_metal, gf);
}
const int64_t t1 = ggml_time_us();
@ -70,7 +70,7 @@ int main(int argc, char ** argv) {
// debug output
{
struct ggml_tensor * logits = gf.nodes[gf.n_nodes - 1];
struct ggml_tensor * logits = gf->nodes[gf->n_nodes - 1];
ggml_metal_get_tensor(ctx_metal, logits);
float * ptr = (float *) ggml_get_data(logits);

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} parallel.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,3 +1,3 @@
# llama.cpp/example/parallel
Simplified simluation for serving incoming requests in parallel
Simplified simulation of serving incoming requests in parallel

View file

@ -1,7 +1,5 @@
// A basic application simulating a server with multiple clients.
// The clients submite requests to the server and they are processed in parallel.
#include "build-info.h"
// The clients submit requests to the server and they are processed in parallel.
#include "common.h"
#include "llama.h"
@ -115,6 +113,8 @@ int main(int argc, char ** argv) {
// insert new requests as soon as the previous one is done
const bool cont_batching = params.cont_batching;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("parallel", "log"));
LOG_TEE("Log start\n");
@ -174,6 +174,8 @@ int main(int argc, char ** argv) {
int32_t n_total_gen = 0;
int32_t n_cache_miss = 0;
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
const auto t_main_start = ggml_time_us();
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
@ -203,6 +205,11 @@ int main(int argc, char ** argv) {
LOG_TEE("Processing requests ...\n\n");
while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
llama_batch_clear(batch);
// decode any currently ongoing sequences

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} perplexity.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,4 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"
@ -150,8 +149,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
@ -210,7 +208,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@ -289,8 +287,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
auto tim1 = std::chrono::high_resolution_clock::now();
@ -339,7 +336,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@ -482,7 +479,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
// This is needed as usual for LLaMA models
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
// Number of tasks to use when computing the score
if ( params.hellaswag_tasks < hs_task_count ) {
@ -573,7 +570,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
}
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
if (logits.empty()) {

View file

@ -1,6 +1,6 @@
set(TARGET quantize-stats)
add_executable(${TARGET} quantize-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -1,5 +1,4 @@
#define LLAMA_API_INTERNAL
#include "build-info.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"

View file

@ -1,9 +1,6 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,4 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"
@ -18,7 +17,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
#ifdef GGML_USE_K_QUANTS
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
@ -31,7 +29,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
#endif
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
@ -70,13 +67,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
}
// usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
@ -103,6 +101,8 @@ int main(int argc, char ** argv) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else {
usage(argv[0]);
}

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} save-load-state.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,4 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View file

@ -6,11 +6,8 @@ install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -7,7 +7,7 @@ Command line options:
- `--threads N`, `-t N`: Set the number of threads to use during generation.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
@ -122,6 +122,8 @@ node index.js
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token (default: 0.05).
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
@ -232,6 +234,55 @@ node index.js
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
*Options:*
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such are `mirostat` are supported.
*Examples:*
You can use either Python `openai` library with appropriate checkpoints:
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
```
... or raw HTTP requests:
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
## More examples
### Change system prompt on runtime

File diff suppressed because it is too large Load diff

View file

@ -94,6 +94,10 @@ export async function* llama(prompt, params = {}, config = {}) {
break;
}
}
if (result.error) {
result.error = JSON.parse(result.error);
console.error(`llama.cpp error: ${result.error.content}`);
}
}
}
}

View file

@ -160,6 +160,11 @@
height: 10em;
}
[contenteditable] {
display: inline-block;
white-space: pre-wrap;
outline: 0px solid transparent;
}
@keyframes loading-bg-wipe {
0% {
@ -219,6 +224,7 @@
repeat_penalty: 1.18, // 1.0 = disabled
top_k: 40, // <= 0 to use vocab size
top_p: 0.5, // 1.0 = disabled
min_p: 0.05, // 0 = disabled
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
@ -461,18 +467,23 @@
}, "{{char}}");
}
const runCompletion = async () => {
const runCompletion = () => {
if (controller.value) {
console.log('already running...');
return;
}
const { prompt } = session.value;
transcriptUpdate([...session.value.transcript, ["", prompt]]);
await runLlama(prompt, {
runLlama(prompt, {
...params.value,
slot_id: slot_id,
stop: [],
}, "");
}, "").finally(() => {
session.value.prompt = session.value.transcript.map(([_, data]) =>
Array.isArray(data) ? data.map(msg => msg.content).join('') : data
).join('');
session.value.transcript = [];
})
}
const stop = (e) => {
@ -572,6 +583,7 @@
}
}, [messages])
const isCompletionMode = session.value.type === 'completion'
const chatLine = ([user, data], index) => {
let message
const isArrayMessage = Array.isArray(data)
@ -581,20 +593,31 @@
const text = isArrayMessage ?
data.map(msg => msg.content).join('').replace(/^\s+/, '') :
data;
message = html`<${Markdownish} text=${template(text)} />`
message = isCompletionMode ?
text :
html`<${Markdownish} text=${template(text)} />`
}
if (user) {
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
} else {
return html`<p key=${index}>${message}</p>`
return isCompletionMode ?
html`<span key=${index}>${message}</span>` :
html`<p key=${index}>${message}</p>`
}
};
const handleCompletionEdit = (e) => {
session.value.prompt = e.target.innerText;
session.value.transcript = [];
}
return html`
<section id="chat" ref=${container}>
<div id="chat" ref=${container} key=${messages.length}>
<img style="width: 60%;${!session.value.image_selected ? `display: none;` : ``}" src="${session.value.image_selected}"/>
${messages.flatMap(chatLine)}
</section>`;
<span contenteditable=${isCompletionMode} ref=${container} oninput=${handleCompletionEdit}>
${messages.flatMap(chatLine)}
</span>
</div>`;
};
const ConfigForm = (props) => {
@ -744,6 +767,7 @@
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })}
${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })}
</fieldset>
<details>
<summary>More options</summary>

View file

@ -1,6 +1,5 @@
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include "grammar-parser.h"
#include "../llava/clip.h"
@ -30,6 +29,8 @@
#define SERVER_VERBOSE 1
#endif
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
struct server_params
@ -60,6 +61,10 @@ static bool server_verbose = false;
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
json oaicompat_completion_params_parse(const json &body);
std::string format_chatml(std::vector<json> messages);
//
// base64 utils (TODO: move to common in the future)
//
@ -149,6 +154,7 @@ struct task_server {
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
};
struct task_result {
@ -371,12 +377,16 @@ struct llama_client_slot
std::vector<completion_token_output> generated_token_probs;
bool infill = false;
bool embedding = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model;
std::string stopping_word;
// sampling
@ -476,7 +486,7 @@ struct llama_client_slot
};
}
void print_timings() {
void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
@ -500,6 +510,7 @@ struct llama_server_context
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t id_gen;
int32_t n_ctx; // total context for all clients / slots
@ -572,6 +583,8 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
@ -605,6 +618,11 @@ struct llama_server_context
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
@ -620,12 +638,12 @@ struct llama_server_context
std::vector<llama_token> p;
if (first)
{
p = ::llama_tokenize(ctx, s, add_bos);
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = ::llama_tokenize(ctx, s, false);
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
@ -642,7 +660,7 @@ struct llama_server_context
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
@ -673,11 +691,20 @@ struct llama_server_context
slot_params default_params;
llama_sampling_params default_sparams;
if (data.count("__oaicompat") != 0) {
slot->oaicompat = true;
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
} else {
slot->oaicompat = false;
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
@ -857,12 +884,12 @@ struct llama_server_context
void kv_cache_clear() {
// clear the entire KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
@ -1090,6 +1117,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
task_result res;
res.id = id;
res.stop = false;
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
@ -1112,6 +1140,7 @@ struct llama_server_context
{"temp", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
@ -1163,6 +1192,12 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.push_back(res);
}
@ -1210,6 +1245,12 @@ struct llama_server_context
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
if (slot.oaicompat)
{
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
res.result_json["model"] = slot.oaicompat_model;
}
queue_results.push_back(res);
}
@ -1244,13 +1285,15 @@ struct llama_server_context
queue_results.push_back(res);
}
int request_completion(json data, bool infill)
int request_completion(json data, bool infill, bool embedding)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.data = data;
task.target_id = 0;
task.data = std::move(data);
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
queue_tasks.push_back(task);
return task.id;
@ -1376,7 +1419,7 @@ struct llama_server_context
{
LOG_TEE("slot unavailable\n");
// send error result
send_error(task.id, "slot unavaliable");
send_error(task.id, "slot unavailable");
return;
}
@ -1388,6 +1431,7 @@ struct llama_server_context
slot->reset();
slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
if (!launch_slot_with_data(slot, task.data))
@ -1547,11 +1591,40 @@ struct llama_server_context
}
else
{
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);
@ -1561,35 +1634,6 @@ struct llama_server_context
}
else
{
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.num_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it
if (slot.num_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.num_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
}
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
@ -1624,7 +1668,7 @@ struct llama_server_context
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
@ -1695,7 +1739,7 @@ struct llama_server_context
}
// prompt evaluated for embedding
if (params.embedding)
if (slot.embedding)
{
send_embedding(slot);
slot.release();
@ -1751,12 +1795,18 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported())
@ -1877,6 +1927,19 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--rope-scaling")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
@ -1895,6 +1958,38 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.rope_freq_scale = std::stof(argv[i]);
}
else if (arg == "--yarn-ext-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-attn-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-fast")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-slow")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
@ -2119,6 +2214,233 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
}
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
for (auto it = messages.begin(); it != messages.end(); ++it) {
chatml_msgs << "<|im_start|>"
<< json_value(*it, "role", std::string("user")) << '\n';
chatml_msgs << json_value(*it, "content", std::string(""))
<< "<|im_end|>\n";
}
chatml_msgs << "<|im_start|>assistant" << '\n';
return chatml_msgs.str();
}
/* llama.cpp completion api semantics */
json oaicompat_completion_params_parse(
const json &body /* openai api json semantics */)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
if (llama_params.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body["stop"].is_null()) {
llama_params["stop"] = json::array({});
} else if (body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
@ -2209,8 +2531,8 @@ int main(int argc, char **argv)
llama_backend_init(params.numa);
LOG_INFO("build info", {{"build", BUILD_NUMBER},
{"commit", BUILD_COMMIT}});
LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
{"commit", LLAMA_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
@ -2274,7 +2596,7 @@ int main(int argc, char **argv)
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false);
const int task_id = llama.request_completion(data, false, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@ -2295,9 +2617,9 @@ int main(int argc, char **argv)
task_result result = llama.next_result(task_id);
if (!result.error) {
const std::string str =
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
@ -2309,6 +2631,17 @@ int main(int argc, char **argv)
break;
}
} else {
const std::string str =
"error: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.c_str(), str.size()))
{
return false;
}
break;
}
}
@ -2326,10 +2659,102 @@ int main(int argc, char **argv)
}
});
svr.Get("/v1/models", [&params](const httplib::Request&, httplib::Response& res)
{
std::time_t t = std::time(0);
json models = {
{"object", "list"},
{"data", {
{
{"id", params.model_alias},
{"object", "model"},
{"created", t},
{"owned_by", "llamacpp"}
},
}}
};
res.set_content(models.dump(), "application/json");
});
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
if (!result.error && result.stop) {
json oaicompat_result = format_final_response_oaicompat(data, result);
res.set_content(oaicompat_result.dump(-1, ' ', false,
json::error_handler_t::replace),
"application/json");
} else {
res.status = 500;
res.set_content(result.result_json["content"], "text/plain");
return;
}
} else {
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
while (true) {
task_result llama_result = llama.next_result(task_id);
if (!llama_result.error) {
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
for (auto it = result_array.begin(); it != result_array.end(); ++it)
{
if (!it->empty()) {
const std::string str =
"data: " +
it->dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
return false;
}
}
}
if (llama_result.stop) {
break;
}
} else {
const std::string str =
"error: " +
llama_result.result_json.dump(-1, ' ', false,
json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {{"to_send", str}});
if (!sink.write(str.c_str(), str.size())) {
return false;
}
break;
}
}
sink.done();
return true;
};
auto on_complete = [task_id, &llama](bool) {
// cancel request
llama.request_cancel(task_id);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
});
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true);
const int task_id = llama.request_completion(data, true, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@ -2433,7 +2858,7 @@ int main(int argc, char **argv)
{
prompt = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false);
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json");
});

View file

@ -3,6 +3,3 @@ add_executable(${TARGET} speculative.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -1,5 +1,3 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"
@ -8,6 +6,9 @@
#include <string>
#include <vector>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct seq_draft {
bool active = false;
bool drafting = false;
@ -36,9 +37,11 @@ int main(int argc, char ** argv) {
// max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel;
// TODO: make this configurable
const float p_accept = 0.80f;
const float p_split = 0.10f;
// probability threshold for accepting a token from the draft model
const float p_accept = params.p_accept;
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log"));
@ -64,9 +67,49 @@ int main(int argc, char ** argv) {
params.n_gpu_layers = params.n_gpu_layers_draft;
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
// tokenize the prompt
{
const int n_vocab_tgt = llama_n_vocab(model_tgt);
const int n_vocab_dft = llama_n_vocab(model_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return 1;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
const char * token_text_dft = llama_token_get_text(model_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
llama_token_to_piece(ctx_tgt, i).c_str(),
llama_token_to_piece(ctx_dft, i).c_str());
return 1;
}
}
}
// Tokenize the prompt
const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
LOG("add_bos tgt: %d\n", add_bos_tgt);
const bool add_bos_dft = llama_should_add_bos_token(model_dft);
LOG("add_bos dft: %d\n", add_bos_dft);
if (add_bos_tgt != add_bos_dft) {
fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
return 1;
}
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
const int max_context_size = llama_n_ctx(ctx_tgt);
const int max_tokens_list_size = max_context_size - 4;
@ -118,7 +161,7 @@ int main(int argc, char ** argv) {
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
params.sparams.temp = std::max(0.01f, params.sparams.temp);
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
@ -227,6 +270,7 @@ int main(int argc, char ** argv) {
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode (ctx_dft, batch_dft);
++n_past_dft;
@ -370,7 +414,7 @@ int main(int argc, char ** argv) {
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
}
//LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
// LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
llama_decode(ctx_tgt, batch_tgt);
++n_past_tgt;
}

View file

@ -0,0 +1,5 @@
set(TARGET tokenize)
add_executable(${TARGET} tokenize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,44 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
if (argc < 3 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
return 1;
}
const char * model_path = argv[1];
const char * prompt = argv[2];
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
llama_backend_init(false);
llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params);
llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
const bool add_bos = llama_should_add_bos_token(model);
std::vector<llama_token> tokens;
tokens = ::llama_tokenize(model, prompt, add_bos, true);
for (int i = 0; i < (int) tokens.size(); i++) {
if (printing_ids) {
printf("%d\n", tokens[i]);
} else {
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
}
}
return 0;
}

View file

@ -9,7 +9,7 @@ import numpy as np
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
import gguf
# gguf constants

View file

@ -349,9 +349,9 @@ static struct ggml_tensor * llama_build_train_graphs(
// not capturing these, to silcence warnings
const int rope_mode = 0;
return ggml_rope_custom(ctx,
t, KQ_pos, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale);
return ggml_rope_custom(
ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};
set_name(tokens_input, "tokens_input");
@ -436,7 +436,7 @@ static struct ggml_tensor * llama_build_train_graphs(
if (enable_checkpointing) {
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
} else {
*gb = *gf;
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, true);
}
@ -1006,6 +1006,7 @@ int main(int argc, char ** argv) {
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
opt->params.n_threads = params.common.n_threads;
opt->params.past = params.common.opt_past;
opt->params.delta = params.common.opt_delta;
@ -1108,11 +1109,9 @@ int main(int argc, char ** argv) {
ggml_allocr_free(alloc);
// context for compute tensors without their data
size_t estimated_compute_size_wo_data = (
ggml_tensor_overhead()*GGML_MAX_NODES*2
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
params.common.use_checkpointing ? 3 : 2
)
const size_t estimated_compute_size_wo_data = (
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
);
struct ggml_init_params ctx_compute_params = {
estimated_compute_size_wo_data, // mem_size
@ -1135,11 +1134,11 @@ int main(int argc, char ** argv) {
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_train_graphs(
&model, alloc, ctx_compute,
@ -1168,11 +1167,11 @@ int main(int argc, char ** argv) {
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_train_graphs(
&model, alloc, ctx_compute,

12
flake.lock generated
View file

@ -5,11 +5,11 @@
"systems": "systems"
},
"locked": {
"lastModified": 1692799911,
"narHash": "sha256-3eihraek4qL744EvQXsK1Ha6C3CR7nnT8X2qWap4RNk=",
"lastModified": 1694529238,
"narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "f9e7cf818399d17d347f847525c5a5a8032e4e44",
"rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1692913444,
"narHash": "sha256-1SvMQm2DwofNxXVtNWWtIcTh7GctEVrS/Xel/mdc6iY=",
"lastModified": 1698318101,
"narHash": "sha256-gUihHt3yPD7bVqg+k/UVHgngyaJ3DMEBchbymBMvK1E=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "18324978d632ffc55ef1d928e81630c620f4f447",
"rev": "63678e9f3d3afecfeafa0acead6239cdb447574c",
"type": "github"
},
"original": {

View file

@ -11,8 +11,7 @@
meta.mainProgram = "llama";
inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin;
buildInputs = with pkgs; [ openmpi ];
osSpecific = with pkgs; buildInputs ++
(
osSpecific = with pkgs; buildInputs ++ (
if isAarch64 && isDarwin then
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
@ -51,6 +50,9 @@
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece torchWithoutCuda transformers ]);
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
@ -93,12 +95,15 @@
};
packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ hip hipblas rocblas ];
buildInputs = with pkgs.rocmPackages; buildInputs ++ [ clr hipblas rocblas ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_HIPBLAS=1"
"-DCMAKE_C_COMPILER=hipcc"
"-DCMAKE_CXX_COMPILER=hipcc"
"-DCMAKE_POSITION_INDEPENDENT_CODE=ON"
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
];
};
apps.llama-server = {
@ -126,5 +131,9 @@
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific;
};
devShells.extra = pkgs.mkShell {
buildInputs = [ llama-python-extra ];
packages = nativeBuildInputs ++ osSpecific;
};
});
}

View file

@ -1,51 +1,21 @@
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
#define MAX_FREE_BLOCKS 256
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF printf
#define AT_PRINTF(...) ((void)0)
struct hash_node {
struct ggml_tensor * t;
int n_children;
int n_views;
};
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
size_t h = hash(t);
// linear probing
size_t i = h;
while (hash_table[i].t != NULL) {
if (hash_table[i].t == t) {
return &hash_table[i];
}
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
hash_table[i].t = t;
return &hash_table[i];
}
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define AT_PRINTF(...)
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
@ -59,20 +29,18 @@ struct free_block {
size_t size;
};
#define MAX_FREE_BLOCKS 256
struct ggml_allocr {
struct ggml_tallocr {
struct ggml_backend_buffer * buffer;
bool buffer_owned;
void * data;
void * base;
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
int parse_seq[GGML_MAX_CONCUR];
int parse_seq_len;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
@ -80,7 +48,7 @@ struct ggml_allocr {
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
@ -89,7 +57,7 @@ static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
@ -103,7 +71,7 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
#endif
// check if a tensor is allocated by this buffer
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer;
}
@ -111,7 +79,7 @@ static bool ggml_is_view(struct ggml_tensor * t) {
return t->view_src != NULL;
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
@ -162,9 +130,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
}
tensor->data = addr;
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
tensor->buffer = alloc->buffer;
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
@ -180,16 +149,16 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
if (ggml_allocr_is_own(alloc, tensor) == false) {
static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
if (ggml_tallocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
// AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
return;
}
@ -199,7 +168,9 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
if (!alloc->measure) {
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
@ -253,91 +224,180 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
alloc->n_free_blocks++;
}
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
for (int i = 0; i < n; i++) {
alloc->parse_seq[i] = list[i];
}
alloc->parse_seq_len = n;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
if (alloc->measure) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
}
}
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_allocr){
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ true,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_allocr_reset(alloc);
ggml_tallocr_reset(alloc);
return alloc;
}
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment);
ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
alloc->measure = true;
return alloc;
}
struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
*alloc = (struct ggml_allocr){
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
alloc->measure = true;
ggml_tallocr_reset(alloc);
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ false,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_allocr_reset(alloc);
ggml_tallocr_reset(alloc);
return alloc;
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
return alloc->buffer;
}
void ggml_tallocr_free(ggml_tallocr_t alloc) {
if (alloc == NULL) {
return;
}
if (alloc->buffer_owned) {
ggml_backend_buffer_free(alloc->buffer);
}
free(alloc);
}
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
return alloc->measure;
}
//////////// compute graph allocator
size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
return alloc->max_size;
}
// graph allocator
struct hash_node {
int n_children;
int n_views;
};
struct ggml_gallocr {
ggml_tallocr_t talloc;
struct ggml_hash_set hash_set;
struct hash_node * hash_values;
size_t hash_values_size;
ggml_tallocr_t * hash_allocs;
int * parse_seq;
int parse_seq_len;
};
ggml_gallocr_t ggml_gallocr_new(void) {
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
*galloc = (struct ggml_gallocr) {
/*.talloc = */ NULL,
/*.hash_set = */ {0},
/*.hash_values = */ NULL,
/*.hash_values_size = */ 0,
/*.hash_allocs = */ NULL,
/*.parse_seq = */ NULL,
/*.parse_seq_len = */ 0,
};
return galloc;
}
void ggml_gallocr_free(ggml_gallocr_t galloc) {
if (galloc == NULL) {
return;
}
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
if (galloc->hash_allocs != NULL) {
free(galloc->hash_allocs);
}
if (galloc->parse_seq != NULL) {
free(galloc->parse_seq);
}
free(galloc);
}
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
free(galloc->parse_seq);
galloc->parse_seq = malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
galloc->parse_seq[i] = list[i];
}
galloc->parse_seq_len = n;
}
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
return &galloc->hash_values[i];
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
@ -378,23 +438,40 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
}
}
static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
assert(view->view_src != NULL && view->view_src->data != NULL);
view->backend = view->view_src->backend;
static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
if (galloc->talloc != NULL) {
return galloc->talloc;
}
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
}
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
ggml_tallocr_t alloc = node_tallocr(galloc, view);
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
if (update_backend) {
view->backend = view->view_src->backend;
}
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
ggml_backend_buffer_init_tensor(alloc->buffer, view);
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, view);
}
}
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
struct hash_node * ht = alloc->hash_table;
static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
if (node->data == NULL) {
if (ggml_is_view(node)) {
init_view(alloc, node);
init_view(galloc, node, true);
} else {
// see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
@ -405,16 +482,16 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
}
// if the node's data is external, then we cannot re-use it
if (ggml_allocr_is_own(alloc, parent) == false) {
if (ggml_tallocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
struct hash_node * p_hn = hash_get(ht, parent);
struct hash_node * p_hn = hash_get(galloc, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src);
struct hash_node * view_src_hn = hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then
@ -424,171 +501,267 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->view_src = view_src;
view_src_hn->n_views += 1;
init_view(alloc, node);
init_view(galloc, node, false);
return;
}
}
else {
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->view_src = parent;
p_hn->n_views += 1;
init_view(alloc, node);
init_view(galloc, node, false);
return;
}
}
}
}
ggml_allocr_alloc(alloc, node);
ggml_tallocr_alloc(alloc, node);
}
}
}
size_t ggml_allocr_alloc_graph_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
// reset hash table
struct hash_node * ht = alloc->hash_table;
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
ggml_tallocr_free_tensor(alloc, node);
}
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
const int * parse_seq = galloc->parse_seq;
int parse_seq_len = galloc->parse_seq_len;
// count number of children and views
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
hash_get(galloc, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(galloc, node, true);
}
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(galloc, parent)->n_children += 1;
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
init_view(galloc, parent, true);
}
}
}
// allocate tensors
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
int i = parse_seq_len ? parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
hash_get(ht, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(alloc, node);
}
}
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(ht, parent)->n_children += 1;
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
init_view(alloc, parent);
allocate_node(galloc, parent);
}
// allocate node
allocate_node(galloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
}
}
// allocate tensors
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
// graph inputs are allocated first to ensure that they are not overwritten by each other
if (inputs != NULL && inputs[g] != NULL) {
for (int i = 0; inputs[g][i] != NULL; i++) {
struct ggml_tensor * input = inputs[g][i];
AT_PRINTF("input: %s\n", input->name);
allocate_node(alloc, input);
}
}
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
int update_start = parse_seq_len ? last_barrier_pos : ind;
int update_end = parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = parse_seq_len ? parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(alloc, parent);
}
struct hash_node * p_hn = hash_get(galloc, parent);
p_hn->n_children -= 1;
// allocate node
allocate_node(alloc, node);
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
}
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(galloc, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
free_node(galloc, view_src);
}
}
struct hash_node * p_hn = hash_get(ht, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocr_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocr_free_tensor(alloc, parent);
}
}
else {
free_node(galloc, parent);
}
}
}
AT_PRINTF("\n");
if (alloc->parse_seq_len) {
last_barrier_pos = ind + 1;
}
}
}
// free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) {
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocr_free_tensor(alloc, output);
AT_PRINTF("\n");
if (parse_seq_len) {
last_barrier_pos = ind + 1;
}
}
}
return alloc->max_size;
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL);
size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
size_t hash_size = graph->visited_hash_table.size;
// check if the hash table is initialized and large enough
if (galloc->hash_set.size < hash_size) {
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
galloc->hash_set.size = hash_size;
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
}
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->talloc = talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
galloc->talloc = NULL;
size_t max_size = ggml_tallocr_max_size(talloc);
return max_size;
}
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
return alloc->max_size;
void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
const size_t hash_size = hash_set.size;
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
galloc->talloc = NULL;
// alloc hash_values if needed
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
galloc->hash_values_size = hash_size;
}
// free hash_set.keys if needed
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
galloc->hash_set = hash_set;
// reset hash values
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->hash_allocs = hash_node_talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
// remove unowned resources
galloc->hash_set.keys = NULL;
galloc->hash_allocs = NULL;
}
// legacy API wrapper
struct ggml_allocr {
ggml_tallocr_t talloc;
ggml_gallocr_t galloc;
};
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
*alloc = (struct ggml_allocr) {
/*.talloc = */ talloc,
/*.galloc = */ ggml_gallocr_new(),
};
return alloc;
}
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
}
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
}
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
}
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
}
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
}
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
return ggml_tallocr_get_buffer(alloc->talloc);
}
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
}
void ggml_allocr_free(ggml_allocr_t alloc) {
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
}
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
return ggml_tallocr_is_measure(alloc->talloc);
}
void ggml_allocr_reset(ggml_allocr_t alloc) {
ggml_tallocr_reset(alloc->talloc);
}
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
ggml_tallocr_alloc(alloc->talloc, tensor);
}
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
return ggml_tallocr_max_size(alloc->talloc);
}
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
}

View file

@ -6,27 +6,79 @@
extern "C" {
#endif
struct ggml_backend;
struct ggml_backend_buffer;
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
//
// Legacy API
//
typedef struct ggml_allocr * ggml_allocr_t;
// initialize allocator for use with CPU backend only
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
// initialize allocator for use with ggml-backend
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
GGML_API void ggml_allocr_free (struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
GGML_API size_t ggml_allocr_alloc_graph_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs);
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
//
// ggml-backend v2 API
//
// Seperate tensor and graph allocator objects
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
// The original API is kept as a wrapper around the new API
// Tensor allocator
typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
// Graph allocator
typedef struct ggml_gallocr * ggml_gallocr_t;
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
// Allocate tensors from the allocators given by the hash table
GGML_API void ggml_gallocr_alloc_graph_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
struct ggml_hash_set hash_set,
ggml_tallocr_t * hash_node_talloc);
#ifdef __cplusplus
}

87
ggml-backend-impl.h Normal file
View file

@ -0,0 +1,87 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
#ifdef __cplusplus
}
#endif

View file

@ -1,7 +1,9 @@
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
@ -33,6 +35,10 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
@ -43,15 +49,20 @@ size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_get_alignment(buffer->backend);
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return buffer->iface.get_base(buffer);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buffer->iface.get_alloc_size) {
return buffer->iface.get_alloc_size(buffer, tensor);
}
@ -59,12 +70,14 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
}
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// free_tensor is optional
if (buffer->iface.free_tensor) {
buffer->iface.free_tensor(buffer, tensor);
}
@ -73,14 +86,21 @@ void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_t
// backend
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
return tensor->buffer->backend;
return tensor->buffer ? tensor->buffer->backend : NULL;
}
const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend);
}
void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend);
}
@ -101,13 +121,23 @@ void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * dat
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
@ -156,7 +186,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) {
return;
@ -234,6 +264,8 @@ static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backen
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT(data != NULL && "failed to allocate buffer");
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
}
@ -271,8 +303,7 @@ static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml
}
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
@ -383,3 +414,537 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
}
// scheduler
#define GGML_MAX_BACKENDS 4
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
struct ggml_cgraph * graph;
};
struct ggml_backend_sched {
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
ggml_gallocr_t galloc;
struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size]
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
struct ggml_context * ctx;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return INT_MAX;
}
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->tallocs[i] == allocr) {
return i;
}
}
return INT_MAX;
}
// returns the backend that should be used for the node based on the current locations
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend(node);
if (cur_backend != NULL) {
sprintf(causes[hash_id(node)], "1.dst");
return cur_backend;
}
// view_src
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
sprintf(causes[hash_id(node)], "1.vsrc");
return ggml_get_backend(node->view_src);
}
// src
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = node->src[i];
if (src == NULL) {
break;
}
ggml_backend_t src_backend = ggml_get_backend(src);
if (src_backend != NULL) {
int src_prio = sched_backend_prio(sched, src_backend);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
cur_backend = src_backend;
sprintf(causes[hash_id(node)], "1.src%d", i);
}
}
}
return cur_backend;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
}
fprintf(stderr, "\n");
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0;
struct ggml_init_params params = {
/*.mem_size = */ sizeof(sched->context_buffer),
/*.mem_buffer = */ sched->context_buffer,
/*.no_alloc = */ true
};
if (sched->ctx != NULL) {
ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params);
// pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (node_allocr(leaf) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
if (leaf_backend == NULL && leaf->view_src != NULL) {
leaf_backend = ggml_get_backend(leaf->view_src);
}
if (leaf_backend != NULL) {
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
}
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node_allocr(node) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
if (node_backend != NULL) {
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
sprintf(causes[hash_id(node)], "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) {
node_allocr(src) = node_allocr;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node->view_src == NULL) {
sched->splits[0].tallocr = node_allocr(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != cur_allocr) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].tallocr = node_allocr;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
cur_allocr = node_allocr;
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) {
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
// create copies
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
}
node->src[j] = sched->node_copies[id][cur_backend_id];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
#if 1
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
}
}
}
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
sched->graph = graph_copy;
}
static void sched_alloc_splits(ggml_backend_sched_t sched) {
ggml_gallocr_alloc_graph_n(
sched->galloc,
sched->graph,
sched->hash_set,
sched->node_talloc);
}
static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
int split_backend_id = sched_backend_prio(sched, split_backend);
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
if (split->inputs[j]->buffer == NULL) {
if (split->inputs[j]->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
exit(1);
}
struct ggml_tensor * view = split->inputs[j];
view->backend = view->view_src->backend;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
}
if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1);
}
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, split->graph);
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
}
static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]);
}
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
memset(sched, 0, sizeof(struct ggml_backend_sched));
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
}
sched->galloc = ggml_gallocr_new();
// init measure allocs for each backend
for (int i = 0; i < n_backends; i++) {
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
}
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_free(sched->tallocs[i]);
}
ggml_gallocr_free(sched->galloc);
free(sched->hash_set.keys);
free(sched->node_talloc);
free(sched->node_copies);
free(sched);
}
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched);
// allocate buffers and reset allocators
for (int i = 0; i < sched->n_backends; i++) {
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
ggml_tallocr_free(sched->tallocs[i]);
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
}
sched_reset(sched);
}
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph);
sched_alloc_splits(sched);
sched_compute_splits(sched);
sched_reset(sched);
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return sched->tallocs[backend_index];
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
node_allocr(node) = sched->tallocs[backend_index];
}

View file

@ -1,51 +1,20 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_backend;
//
// Backend buffer
//
struct ggml_backend_buffer;
// type-erased backend-specific types / wrappers
typedef void * ggml_backend_context_t;
typedef void * ggml_backend_graph_plan_t;
typedef void * ggml_backend_buffer_context_t;
// avoid accessing internals of these types
typedef struct ggml_backend * ggml_backend_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
//
// backend buffer
//
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
// TODO: hide behind API
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
// backend buffer functions
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
@ -55,50 +24,13 @@ extern "C" {
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
//
// backend
// Backend
//
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
// TODO: hide behind API
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
// backend helper functions
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
@ -133,11 +65,72 @@ extern "C" {
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -17,7 +17,12 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
GGML_API void ggml_init_cublas(void);
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
GGML_API bool ggml_cublas_loaded(void);
GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr);

243
ggml-impl.h Normal file
View file

@ -0,0 +1,243 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}
#endif

View file

@ -26,7 +26,7 @@
#include <stdbool.h>
// max memory buffers that can be mapped to the device
#define GGML_METAL_MAX_BUFFERS 16
#define GGML_METAL_MAX_BUFFERS 64
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
struct ggml_tensor;

View file

@ -1,5 +1,6 @@
#import "ggml-metal.h"
#import "ggml-backend-impl.h"
#import "ggml.h"
#import <Foundation/Foundation.h>
@ -23,7 +24,7 @@
#define UNUSED(x) (void)(x)
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
#define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE)
struct ggml_metal_buffer {
const char * name;
@ -85,6 +86,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
@ -113,6 +115,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rope_f32);
GGML_METAL_DECL_KERNEL(rope_f16);
GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(im2col_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
@ -125,7 +128,7 @@ struct ggml_metal_context {
// MSL code
// TODO: move the contents here when ready
// for now it is easier to work in a separate file
static NSString * const msl_library_source = @"see metal.metal";
//static NSString * const msl_library_source = @"see metal.metal";
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@ -141,7 +144,8 @@ void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_dat
ggml_metal_log_user_data = user_data;
}
static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
if (ggml_metal_log_callback != NULL) {
va_list args;
va_start(args, format);
@ -209,7 +213,17 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
} else {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {
@ -234,14 +248,17 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// load kernels
{
NSError * error = nil;
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
/*
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
(int) ctx->pipeline_##name.threadExecutionWidth); \
*/
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
if (error) { \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
@ -273,6 +290,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
@ -303,6 +321,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(im2col_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
@ -321,15 +340,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
break;
}
}
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
@ -372,6 +391,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
@ -402,6 +422,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32);
GGML_METAL_DEL_KERNEL(im2col_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
@ -459,6 +480,10 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
const int64_t tsize = ggml_nbytes(t);
if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
ctx = t->buffer->backend->context;
}
// find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
@ -516,11 +541,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
@ -540,11 +565,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}
@ -559,7 +584,7 @@ bool ggml_metal_add_buffer(
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__);
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
@ -737,6 +762,20 @@ void ggml_metal_graph_compute(
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
struct ggml_tensor * dst = gf->nodes[i];
switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop -> next node
} continue;
default:
{
} break;
}
const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0;
const int64_t ne02 = src0 ? src0->ne[2] : 0;
@ -790,14 +829,6 @@ void ggml_metal_graph_compute(
//}
switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop
} break;
case GGML_OP_CONCAT:
{
const int64_t nb = ne00;
@ -994,11 +1025,15 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_SOFT_MAX:
{
const int nth = MIN(32, ne00);
int nth = 32; // SIMD width
if (ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else {
do {
nth *= 2;
} while (nth <= ne00 && nth <= 1024);
nth /= 2;
[encoder setComputePipelineState:ctx->pipeline_soft_max];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1006,8 +1041,9 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_DIAG_MASK_INF:
{
@ -1114,6 +1150,7 @@ void ggml_metal_graph_compute(
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4;
} break;
@ -1121,13 +1158,18 @@ void ggml_metal_graph_compute(
{
nth0 = 32;
nth1 = 1;
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
nrows = ne11;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
nrows = ne11;
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
nrows = 4;
}
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
nrows = 4;
}
} break;
@ -1317,7 +1359,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@ -1336,7 +1378,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@ -1388,14 +1430,19 @@ void ggml_metal_graph_compute(
const int nth = MIN(1024, ne00);
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base;
float freq_scale;
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break;
@ -1403,33 +1450,90 @@ void ggml_metal_graph_compute(
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&freq_base length:sizeof(float) atIndex:22];
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:23];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int32_t N = src1->ne[is_2D ? 3 : 2];
const int32_t IC = src1->ne[is_2D ? 2 : 1];
const int32_t IH = is_2D ? src1->ne[1] : 1;
const int32_t IW = src1->ne[0];
const int32_t KH = is_2D ? src0->ne[1] : 1;
const int32_t KW = src0->ne[0];
const int32_t OH = is_2D ? dst->ne[2] : 1;
const int32_t OW = dst->ne[1];
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
} break;
case GGML_OP_DUP:
case GGML_OP_CPY:
case GGML_OP_CONT:

View file

@ -184,36 +184,73 @@ kernel void kernel_soft_max(
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max
float lmax = tpitg[0] < ne00 ? psrc0[tpitg[0]] : -INFINITY;
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
float lmax = tpitg < ne00 ? psrc0[tpitg] : -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]);
}
const float max = simd_max(lmax);
float max = simd_max(lmax);
if (tiisg == 0) {
buf[sgitg] = max;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp(psrc0[i00] - max);
lsum += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice.
// wish to compute it twice.
pdst[i00] = exp_psrc0;
}
const float sum = simd_sum(lsum);
float sum = simd_sum(lsum);
if (tiisg == 0) {
buf[sgitg] = sum;
}
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] /= sum;
}
}
@ -224,37 +261,73 @@ kernel void kernel_soft_max_4(
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max
float4 lmax4 = tpitg[0] < ne00/4 ? psrc4[tpitg[0]] : -INFINITY;
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
float4 lmax4 = tpitg < ne00/4 ? psrc4[tpitg] : -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]);
}
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
const float max = simd_max(lmax);
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max = simd_max(lmax);
if (tiisg == 0) {
buf[sgitg] = max;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp(psrc4[i00] - max);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
const float sum = simd_sum(lsum);
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
float sum = simd_sum(lsum);
if (tiisg == 0) {
buf[sgitg] = sum;
}
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] /= sum;
}
}
@ -274,7 +347,7 @@ kernel void kernel_diag_mask_inf(
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
}
kernel void kernel_diag_mask_inf_8(
@ -719,7 +792,7 @@ kernel void kernel_mul_mv_f32_f32(
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F32_F32;
@ -771,6 +844,79 @@ kernel void kernel_mul_mv_f32_f32(
}
}
#define N_F16_F16 4
kernel void kernel_mul_mv_f16_f16(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F16_F16;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
if (ne00 < 128) {
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (half) x[i] * (half) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
device const half4 * y4 = (device const half4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}
kernel void kernel_mul_mv_f16_f32_1row(
device const char * src0,
device const char * src1,
@ -988,6 +1134,45 @@ kernel void kernel_alibi_f32(
}
}
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
thread float * cos_theta, thread float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
}
*cos_theta = cos(theta) * mscale;
*sin_theta = sin(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
}
static void rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
}
typedef void (rope_t)(
device const void * src0,
device const int32_t * src1,
@ -1011,8 +1196,13 @@ typedef void (rope_t)(
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]);
@ -1041,8 +1231,13 @@ kernel void kernel_rope(
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
@ -1052,19 +1247,22 @@ kernel void kernel_rope(
const bool is_neox = mode & 2;
float corr_dims[2];
rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
device const int32_t * pos = src1;
const int64_t p = pos[i2];
const float theta_0 = freq_scale * (float)p;
const float theta_0 = (float)p;
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@ -1079,9 +1277,12 @@ kernel void kernel_rope(
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*ic - ib);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
const float theta = theta_0 * pow(freq_base, cur_rot);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const int64_t i0 = ib*n_dims + ic/2;
@ -1101,6 +1302,39 @@ kernel void kernel_rope(
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
kernel void kernel_im2col_f16(
device const float * x,
device half * dst,
constant int32_t & ofs0,
constant int32_t & ofs1,
constant int32_t & IW,
constant int32_t & IH,
constant int32_t & CHW,
constant int32_t & s0,
constant int32_t & s1,
constant int32_t & p0,
constant int32_t & p1,
constant int32_t & d0,
constant int32_t & d1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
const int32_t offset_dst =
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
kernel void kernel_cpy_f16_f16(
device const half * src0,
device half * dst,

Some files were not shown because too many files have changed in this diff Show more