Rework tokenizer handling
This commit is contained in:
parent
b2ba44eab2
commit
c94df09732
1 changed files with 71 additions and 105 deletions
176
model.py
176
model.py
|
@ -7,12 +7,22 @@ import torch
|
|||
import contextlib
|
||||
import numpy as np
|
||||
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import TypeAlias, Any
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
|
||||
class SentencePieceTokenTypes(Enum):
|
||||
NORMAL = 1
|
||||
UNKNOWN = 2
|
||||
CONTROL = 3
|
||||
USER_DEFINED = 4
|
||||
UNUSED = 5
|
||||
BYTE = 6
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self, dir_model: Path, ftype: int, fname_out: Path):
|
||||
self.dir_model = dir_model
|
||||
|
@ -59,7 +69,7 @@ class Model:
|
|||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
def set_vocab(self):
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
tokens: list[bytearray] = []
|
||||
|
@ -94,6 +104,62 @@ class Model:
|
|||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_sentencepiece(self):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.is_unknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.is_control(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.is_unused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.is_byte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
tokens.append(key.encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def get_tensors(self):
|
||||
for part_name in self.part_names:
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
|
@ -380,68 +446,7 @@ class MPTModel(Model):
|
|||
|
||||
class BaichuanModel(Model):
|
||||
def set_vocab(self):
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = self.dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
vocab_size = self.hparams.get('vocab_size')
|
||||
if vocab_size is None:
|
||||
vocab_size = tokenizer.vocab_size()
|
||||
|
||||
for i in range(vocab_size):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append(key.encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
|
@ -780,18 +785,14 @@ class PersimmonModel(Model):
|
|||
self.gguf_writer.add_layer_norm_eps(self.hparams["layernorm_epsilon"])
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, scores, toktypes = self._get_sentencepiece_tokenizer_info()
|
||||
self.gguf_writer.add_tokenizer_model('llama')
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_bos_token_id(71013)
|
||||
self._set_vocab_sentencepiece()
|
||||
# self.gguf_writer.add_bos_token_id(71013)
|
||||
# self.gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
print(tensor_map)
|
||||
|
||||
for name, data in self.get_tensors():
|
||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
@ -805,38 +806,3 @@ class PersimmonModel(Model):
|
|||
n_dims = len(data.shape)
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _get_sentencepiece_tokenizer_info(self):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
|
||||
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||
print('gguf: adding tokens')
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
pass
|
||||
return tokens, scores, toktypes
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue