split qnn ops into file
This commit is contained in:
parent
e1056da1c0
commit
c9e99bd603
9 changed files with 889 additions and 845 deletions
723
ggml-qnn.cpp
723
ggml-qnn.cpp
|
@ -1,22 +1,14 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdatomic.h>
|
||||
#include <string.h>
|
||||
#include <stddef.h>
|
||||
#include <inttypes.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
#include <dlfcn.h>
|
||||
#include <fcntl.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <tuple>
|
||||
#include <queue>
|
||||
|
@ -28,7 +20,6 @@
|
|||
#include <regex>
|
||||
#include <random>
|
||||
#include <functional>
|
||||
#include <unordered_map>
|
||||
#include <condition_variable>
|
||||
#include <cassert>
|
||||
#include <unordered_set>
|
||||
|
@ -40,8 +31,9 @@
|
|||
|
||||
#include "ggml-qnn/logger.hpp"
|
||||
#include "ggml-qnn/utils.hpp"
|
||||
#include "ggml-qnn/backend.hpp"
|
||||
#include "ggml-qnn/tensor.hpp"
|
||||
#include "ggml-qnn/backend.hpp"
|
||||
#include "ggml-qnn/backend-ops.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
//
|
||||
|
@ -63,11 +55,6 @@ static int free_qnn_tensor(Qnn_Tensor_t & tensor);
|
|||
|
||||
#define QNN_BACKEND_NAME "qnn"
|
||||
|
||||
typedef void (*ggml_qnn_func_t)(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1,
|
||||
ggml_tensor * dst);
|
||||
|
||||
static struct qnn::qcom_socinfo g_qnn_soc_info_table[] = {
|
||||
/* Qualcomm SnapDragon 8 Gen 1 */
|
||||
[qnn::SM8450] = {
|
||||
|
@ -183,78 +170,6 @@ struct ggml_backend_qnn_buffer_type_context {
|
|||
// QNN backend internal helper functions
|
||||
//
|
||||
// =================================================================================================
|
||||
static bool qnn_is_valid_params(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
if ((nullptr == ctx) || (nullptr == src0) || (nullptr == src1) || (nullptr == dst)) {
|
||||
QNN_LOG_WARN("invalid params\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
qnn::qnn_instance *instance = nullptr;
|
||||
Qnn_Tensor_t *tensor_0 = nullptr;
|
||||
Qnn_Tensor_t *tensor_1 = nullptr;
|
||||
Qnn_Tensor_t *tensor_2 = nullptr;
|
||||
tensor_0 = (Qnn_Tensor_t *) src0->extra;
|
||||
tensor_1 = (Qnn_Tensor_t *) src1->extra;
|
||||
tensor_2 = (Qnn_Tensor_t *) dst->extra;
|
||||
instance = ctx->instance;
|
||||
if ((nullptr == instance) || (nullptr == tensor_0) || (nullptr == tensor_1) || (nullptr == tensor_2)) {
|
||||
QNN_LOG_WARN("invalid params\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define CHECK_PARAMS(ctx, src0, src1, dst) \
|
||||
do { \
|
||||
if (!qnn_is_valid_params((ctx), (src0), (src1), (dst))) { \
|
||||
return; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
#define CHECK_PARAMS(ctx, src0, src1, dst)
|
||||
#endif
|
||||
|
||||
#if ENABLE_QNNBACKEND_PERF
|
||||
class qnn_perf {
|
||||
public:
|
||||
qnn_perf(const std::string & perf_name) : _perf_name(std::move(perf_name)) {};
|
||||
qnn_perf() = delete;
|
||||
qnn_perf(const qnn_perf & ) = delete;
|
||||
qnn_perf & operator= (const qnn_perf & ) = delete;
|
||||
|
||||
void start() {
|
||||
_begin_time = ggml_time_us();
|
||||
}
|
||||
|
||||
void info() {
|
||||
_end_time = ggml_time_us();
|
||||
_duration = (_end_time - _begin_time);
|
||||
QNN_LOG_INFO("duration of %s : %lld microseconds\n", _perf_name.c_str(), _duration);
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t _begin_time = 0LL;
|
||||
int64_t _end_time = 0LL;
|
||||
int64_t _duration = 0LL;
|
||||
std::string _perf_name;
|
||||
};
|
||||
#else
|
||||
class qnn_perf {
|
||||
public:
|
||||
qnn_perf(const std::string & perf_name) {}
|
||||
qnn_perf() = delete;
|
||||
qnn_perf(const qnn_perf & ) = delete;
|
||||
qnn_perf & operator= (const qnn_perf & ) = delete;
|
||||
|
||||
void start() {}
|
||||
void info() {}
|
||||
};
|
||||
#endif
|
||||
|
||||
static size_t memscpy(void * dst, size_t dst_size, const void * src, size_t copy_size) {
|
||||
if (!dst || !src || !dst_size || !copy_size) return 0;
|
||||
|
||||
|
@ -354,100 +269,10 @@ static int free_qnn_tensor(Qnn_Tensor_t & tensor) {
|
|||
// implementation of QNN backend for GGML
|
||||
//
|
||||
// =================================================================================================
|
||||
static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst);
|
||||
static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
||||
|
||||
static ggml_qnn_func_t s_op_table[GGML_OP_COUNT] = {
|
||||
nullptr, // GGML_OP_NONE
|
||||
nullptr, // GGML_OP_DUP
|
||||
ggml_qnn_add, // GGML_OP_ADD
|
||||
nullptr, // GGML_OP_ADD1
|
||||
nullptr, // GGML_OP_ACC
|
||||
nullptr, // GGML_OP_SUB
|
||||
nullptr, // GGML_OP_MUL
|
||||
nullptr, // GGML_OP_DIV
|
||||
nullptr, // GGML_OP_SQR
|
||||
nullptr, // GGML_OP_SQRT
|
||||
nullptr, // GGML_OP_LOG
|
||||
nullptr, // GGML_OP_SUM
|
||||
nullptr, // GGML_OP_SUM_ROWS
|
||||
nullptr, // GGML_OP_MEAN
|
||||
nullptr, // GGML_OP_ARGMAX
|
||||
nullptr, // GGML_OP_REPEAT
|
||||
nullptr, // GGML_OP_REPEAT_BACK
|
||||
nullptr, // GGML_OP_CONCAT
|
||||
nullptr, // GGML_OP_SILU_BACK
|
||||
nullptr, // GGML_OP_NORM
|
||||
nullptr, // GGML_OP_RMS_NORM
|
||||
nullptr, // GGML_OP_RMS_NORM_BACK
|
||||
nullptr, // GGML_OP_GROUP_NORM
|
||||
|
||||
ggml_qnn_mul_mat, // GGML_OP_MUL_MAT
|
||||
nullptr, // GGML_OP_MUL_MAT_ID
|
||||
nullptr, // GGML_OP_OUT_PROD
|
||||
|
||||
nullptr, // GGML_OP_SCALE
|
||||
nullptr, // GGML_OP_SET
|
||||
nullptr, // GGML_OP_CPY
|
||||
nullptr, // GGML_OP_CONT
|
||||
nullptr, // GGML_OP_RESHAPE
|
||||
nullptr, // GGML_OP_VIEW
|
||||
nullptr, // GGML_OP_PERMUTE
|
||||
nullptr, // GGML_OP_TRANSPOSE
|
||||
nullptr, // GGML_OP_GET_ROWS
|
||||
nullptr, // GGML_OP_GET_ROWS_BACK
|
||||
nullptr, // GGML_OP_DIAG
|
||||
nullptr, // GGML_OP_DIAG_MASK_INF
|
||||
nullptr, // GGML_OP_DIAG_MASK_ZERO
|
||||
nullptr, // GGML_OP_SOFT_MAX
|
||||
nullptr, // GGML_OP_SOFT_MAX_BACK
|
||||
nullptr, // GGML_OP_ROPE
|
||||
nullptr, // GGML_OP_ROPE_BACK
|
||||
nullptr, // GGML_OP_CLAMP
|
||||
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
|
||||
nullptr, // GGML_OP_IM2COL
|
||||
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
|
||||
nullptr, // GGML_OP_POOL_1D
|
||||
nullptr, // GGML_OP_POOL_2D
|
||||
nullptr, // GGML_OP_UPSCALE
|
||||
nullptr, // GGML_OP_PAD
|
||||
nullptr, // GGML_OP_ARANGE
|
||||
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
|
||||
nullptr, // GGML_OP_ARGSORT
|
||||
nullptr, // GGML_OP_LEAKY_RELU
|
||||
|
||||
nullptr, // GGML_OP_FLASH_ATTN_EXT
|
||||
nullptr, // GGML_OP_FLASH_ATTN_BACK
|
||||
nullptr, // GGML_OP_SSM_CONV
|
||||
nullptr, // GGML_OP_SSM_SCAN
|
||||
nullptr, // GGML_OP_WIN_PART
|
||||
nullptr, // GGML_OP_WIN_UNPART
|
||||
nullptr, // GGML_OP_GET_REL_POS
|
||||
nullptr, // GGML_OP_ADD_REL_POS
|
||||
|
||||
nullptr, // GGML_OP_UNARY
|
||||
|
||||
nullptr, // GGML_OP_MAP_UNARY
|
||||
nullptr, // GGML_OP_MAP_BINARY
|
||||
|
||||
nullptr, // GGML_OP_MAP_CUSTOM1_F32
|
||||
nullptr, // GGML_OP_MAP_CUSTOM2_F32
|
||||
nullptr, // GGML_OP_MAP_CUSTOM3_F32
|
||||
|
||||
nullptr, // GGML_OP_MAP_CUSTOM1
|
||||
nullptr, // GGML_OP_MAP_CUSTOM2
|
||||
nullptr, // GGML_OP_MAP_CUSTOM3
|
||||
|
||||
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
|
||||
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
|
||||
};
|
||||
|
||||
static bool ggml_qnn_can_handle_op(ggml_backend_qnn_context * ctx,
|
||||
const struct ggml_tensor * tensor,
|
||||
bool b_dump_tensor_info) {
|
||||
if (ggml_is_empty(tensor) || !s_op_table[tensor->op]) {
|
||||
if (ggml_is_empty(tensor) || !qnn::ggml_qnn_op_array()[tensor->op]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -496,550 +321,10 @@ static bool ggml_qnn_can_handle_op(ggml_backend_qnn_context * ctx,
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
//TODO: this function can be removed later because there are duplicated codes with ggml_qnn_mul_mat
|
||||
// keep it for illustrate how to implement a specified GGMPL OP using QNN API + QNN RPC
|
||||
static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
||||
bool graph_initialized = false;
|
||||
qnn::qnn_instance *instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_add";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_ADD;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
instance = ctx->instance;
|
||||
auto qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn_perf perf("ggml_qnn_add");
|
||||
perf.start();
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
graph_initialized = true;
|
||||
auto & graph_item = instance->_qnn_graph_map[map_entry];
|
||||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
if (!graph_initialized) {
|
||||
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
||||
"_" + src0->name + "_" + src1->name;
|
||||
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QnnHtpGraph_CustomConfig_t hvx_config;
|
||||
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
||||
hvx_config.numHvxThreads = 8;
|
||||
QnnGraph_Config_t graph_hvx_config;
|
||||
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_hvx_config.customConfig = &hvx_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t dlbc_config;
|
||||
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
||||
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
||||
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
||||
QnnGraph_Config_t graph_dlbc_config;
|
||||
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_dlbc_config.customConfig = &dlbc_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t opt_config;
|
||||
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
||||
opt_config.optimizationOption.floatValue = 1; // 1 / 3
|
||||
QnnGraph_Config_t graph_opt_config;
|
||||
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_opt_config.customConfig = &opt_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t vtcm_config;
|
||||
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
||||
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
||||
QnnGraph_Config_t graph_vtcm_config;
|
||||
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_vtcm_config.customConfig = &vtcm_config;
|
||||
|
||||
const QnnGraph_Config_t * p_graphconfig[] = {&graph_hvx_config,
|
||||
&graph_dlbc_config,
|
||||
&graph_vtcm_config,
|
||||
&graph_opt_config,
|
||||
NULL};
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
||||
&graph_handle);
|
||||
} else {
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
||||
&graph_handle);
|
||||
}
|
||||
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
||||
"error = %d\n",
|
||||
graph_name.c_str(), error);
|
||||
goto failure;
|
||||
} else {
|
||||
QNN_LOG_INFO("create qnn graph handle with graph name %s ok\n", graph_name.c_str());
|
||||
}
|
||||
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
||||
if (!tensor_input0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
||||
if (!tensor_input1.is_valid()) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
||||
if (!tensor_output.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_output.get_qnn_tensor()};
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t) 1,
|
||||
.v1 = {"ggml_op_add",
|
||||
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
||||
QNN_OP_ELEMENT_WISE_ADD,
|
||||
0, qnn_params,
|
||||
2, tensor_inputs,
|
||||
1,tensor_outputs}
|
||||
};
|
||||
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphFinalize(graph_handle,
|
||||
nullptr, nullptr);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_input0.get_qnn_tensor(),
|
||||
tensor_input1.get_qnn_tensor(),
|
||||
tensor_output.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
} else {
|
||||
auto & graph_item = instance->_qnn_graph_map[map_entry];
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_output.get_qnn_tensor()};
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs,2,
|
||||
tensor_outputs,1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
}
|
||||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
||||
src0->nb[1], src0->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src1->name, src1->type, ggml_type_name(src1->type),
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
||||
src1->nb[1], src1->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
dst->name, dst->type, ggml_type_name(dst->type),
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
|
||||
dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
perf.info();
|
||||
}
|
||||
|
||||
/*
|
||||
* ggml_qnn_mul_mat was re-added as a standalone function because
|
||||
* the following comments came from https://github.com/ggerganov/llama.cpp/pull/1632
|
||||
* MUL_MAT take most of the compute time (about 95%).
|
||||
* So to speed up llama, we have to focus on MUL_MAT.
|
||||
*
|
||||
* We have three kinds of MUL_MAT to compute:
|
||||
* mul_mat_f32: both src0 and src1 are F32.
|
||||
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
|
||||
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
|
||||
*/
|
||||
static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
||||
bool graph_initialized = false;
|
||||
qnn::qnn_instance *instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_mul_mat";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_MUL_MAT;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
instance = ctx->instance;
|
||||
auto qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn_perf perf("ggml_qnn_mul_mat");
|
||||
perf.start();
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
graph_initialized = true;
|
||||
auto & graph_item = instance->_qnn_graph_map[map_entry];
|
||||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
//TODO: for scenarios of quantized data in src0
|
||||
// pass-1: dequantize src0 to FP32
|
||||
// pass-2: dq-src0 * src1
|
||||
// the performance gains is worth although there is performance loss in pass-1
|
||||
|
||||
if (!graph_initialized) {
|
||||
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
||||
"_" + src0->name + "_" + src1->name;
|
||||
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QnnHtpGraph_CustomConfig_t hvx_config;
|
||||
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
||||
hvx_config.numHvxThreads = 8;
|
||||
QnnGraph_Config_t graph_hvx_config;
|
||||
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_hvx_config.customConfig = &hvx_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t dlbc_config;
|
||||
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
||||
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
||||
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
||||
QnnGraph_Config_t graph_dlbc_config;
|
||||
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_dlbc_config.customConfig = &dlbc_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t opt_config;
|
||||
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
||||
opt_config.optimizationOption.floatValue = 1; //1 / 3
|
||||
QnnGraph_Config_t graph_opt_config;
|
||||
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_opt_config.customConfig = &opt_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t vtcm_config;
|
||||
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
||||
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
||||
QnnGraph_Config_t graph_vtcm_config;
|
||||
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_vtcm_config.customConfig = &vtcm_config;
|
||||
|
||||
const QnnGraph_Config_t * p_graphconfig[] = {&graph_hvx_config,
|
||||
&graph_dlbc_config,
|
||||
&graph_vtcm_config,
|
||||
&graph_opt_config,
|
||||
NULL};
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
||||
&graph_handle);
|
||||
} else {
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
||||
&graph_handle);
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
||||
"error = %d\n",
|
||||
graph_name.c_str(), error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
||||
if (!tensor_input0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
||||
if (!tensor_input1.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
||||
if (!tensor_output.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_output.get_qnn_tensor()};
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t) 1,
|
||||
.v1 = {"ggml_op_mul_mat",
|
||||
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
||||
QNN_OP_MAT_MUL,
|
||||
0, qnn_params,
|
||||
2, tensor_inputs,
|
||||
1, tensor_outputs}
|
||||
};
|
||||
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphFinalize(graph_handle,
|
||||
nullptr, nullptr);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_input0.get_qnn_tensor(),
|
||||
tensor_input1.get_qnn_tensor(),
|
||||
tensor_output.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
} else {
|
||||
auto & graph_item= instance->_qnn_graph_map[map_entry];
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_output.get_qnn_tensor()};
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
}
|
||||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
||||
src0->nb[1], src0->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src1->name, src1->type, ggml_type_name(src1->type),
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
||||
src1->nb[1], src1->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
|
||||
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
perf.info();
|
||||
}
|
||||
|
||||
static void ggml_qnn_repeat(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_get_rows(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_acc(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_div(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_gelu(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_silu(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_tanh(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_relu(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_hardswish(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_sqr(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_norm(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_group_norm(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_concat(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_upscale(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_pad(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_rms_norm(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_cpy(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_dup(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_qnn_cpy(ctx, src0, dst, nullptr);
|
||||
(void) src1;
|
||||
}
|
||||
|
||||
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_scale(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_clamp(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_soft_max(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_rope(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_pool2d(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_im2col(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_sum_rows(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_argsort(ggml_backend_qnn_context * ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_nop(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
|
||||
const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
(void)src0;
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
}
|
||||
|
||||
bool ggml_qnn_compute_forward(ggml_backend_qnn_context * ctx,
|
||||
struct ggml_compute_params * params,
|
||||
struct ggml_tensor * tensor) {
|
||||
ggml_qnn_func_t func = s_op_table[tensor->op];
|
||||
auto func = qnn::ggml_qnn_op_array()[tensor->op];
|
||||
if (!func) {
|
||||
QNN_LOG_WARN("unsupported op %d", tensor->op);
|
||||
return false;
|
||||
|
|
675
ggml-qnn/backend-ops.cpp
Normal file
675
ggml-qnn/backend-ops.cpp
Normal file
|
@ -0,0 +1,675 @@
|
|||
|
||||
#include "backend-ops.hpp"
|
||||
|
||||
#include "utils.hpp"
|
||||
#include "logger.hpp"
|
||||
#include "tensor.hpp"
|
||||
|
||||
|
||||
static bool qnn_is_valid_params(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
if ((nullptr == ctx) || (nullptr == src0) || (nullptr == src1) || (nullptr == dst)) {
|
||||
QNN_LOG_WARN("invalid params\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
qnn::qnn_instance* instance = nullptr;
|
||||
Qnn_Tensor_t* tensor_0 = nullptr;
|
||||
Qnn_Tensor_t* tensor_1 = nullptr;
|
||||
Qnn_Tensor_t* tensor_2 = nullptr;
|
||||
tensor_0 = (Qnn_Tensor_t*)src0->extra;
|
||||
tensor_1 = (Qnn_Tensor_t*)src1->extra;
|
||||
tensor_2 = (Qnn_Tensor_t*)dst->extra;
|
||||
instance = ctx->instance;
|
||||
if ((nullptr == instance) || (nullptr == tensor_0) || (nullptr == tensor_1) || (nullptr == tensor_2)) {
|
||||
QNN_LOG_WARN("invalid params\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define CHECK_PARAMS(ctx, src0, src1, dst) \
|
||||
do { \
|
||||
if (!qnn_is_valid_params((ctx), (src0), (src1), (dst))) { \
|
||||
return; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
#define CHECK_PARAMS(ctx, src0, src1, dst)
|
||||
#endif
|
||||
|
||||
//TODO: this function can be removed later because there are duplicated codes with ggml_qnn_mul_mat
|
||||
// keep it for illustrate how to implement a specified GGMPL OP using QNN API + QNN RPC
|
||||
static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
||||
bool graph_initialized = false;
|
||||
qnn::qnn_instance* instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_add";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_ADD;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
instance = ctx->instance;
|
||||
auto qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn::qnn_perf perf("ggml_qnn_add");
|
||||
perf.start();
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
graph_initialized = true;
|
||||
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
||||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
if (!graph_initialized) {
|
||||
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
||||
"_" + src0->name + "_" + src1->name;
|
||||
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QnnHtpGraph_CustomConfig_t hvx_config;
|
||||
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
||||
hvx_config.numHvxThreads = 8;
|
||||
QnnGraph_Config_t graph_hvx_config;
|
||||
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_hvx_config.customConfig = &hvx_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t dlbc_config;
|
||||
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
||||
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
||||
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
||||
QnnGraph_Config_t graph_dlbc_config;
|
||||
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_dlbc_config.customConfig = &dlbc_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t opt_config;
|
||||
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
||||
opt_config.optimizationOption.floatValue = 1; // 1 / 3
|
||||
QnnGraph_Config_t graph_opt_config;
|
||||
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_opt_config.customConfig = &opt_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t vtcm_config;
|
||||
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
||||
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
||||
QnnGraph_Config_t graph_vtcm_config;
|
||||
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_vtcm_config.customConfig = &vtcm_config;
|
||||
|
||||
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
|
||||
&graph_dlbc_config,
|
||||
&graph_vtcm_config,
|
||||
&graph_opt_config,
|
||||
NULL };
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
||||
&graph_handle);
|
||||
}
|
||||
else {
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
||||
&graph_handle);
|
||||
}
|
||||
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
||||
"error = %d\n",
|
||||
graph_name.c_str(), error);
|
||||
goto failure;
|
||||
}
|
||||
else {
|
||||
QNN_LOG_INFO("create qnn graph handle with graph name %s ok\n", graph_name.c_str());
|
||||
}
|
||||
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
||||
if (!tensor_input0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
||||
if (!tensor_input1.is_valid()) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
||||
if (!tensor_output.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
||||
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t)1,
|
||||
.v1 = {"ggml_op_add",
|
||||
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
||||
QNN_OP_ELEMENT_WISE_ADD,
|
||||
0, qnn_params,
|
||||
2, tensor_inputs,
|
||||
1,tensor_outputs}
|
||||
};
|
||||
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphFinalize(graph_handle,
|
||||
nullptr, nullptr);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_input0.get_qnn_tensor(),
|
||||
tensor_input1.get_qnn_tensor(),
|
||||
tensor_output.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
}
|
||||
else {
|
||||
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
||||
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
}
|
||||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
||||
src0->nb[1], src0->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src1->name, src1->type, ggml_type_name(src1->type),
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
||||
src1->nb[1], src1->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
dst->name, dst->type, ggml_type_name(dst->type),
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
|
||||
dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
perf.info();
|
||||
}
|
||||
|
||||
/*
|
||||
* ggml_qnn_mul_mat was re-added as a standalone function because
|
||||
* the following comments came from https://github.com/ggerganov/llama.cpp/pull/1632
|
||||
* MUL_MAT take most of the compute time (about 95%).
|
||||
* So to speed up llama, we have to focus on MUL_MAT.
|
||||
*
|
||||
* We have three kinds of MUL_MAT to compute:
|
||||
* mul_mat_f32: both src0 and src1 are F32.
|
||||
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
|
||||
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
|
||||
*/
|
||||
static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
||||
bool graph_initialized = false;
|
||||
qnn::qnn_instance* instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_mul_mat";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_MUL_MAT;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
instance = ctx->instance;
|
||||
auto qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn::qnn_perf perf("ggml_qnn_mul_mat");
|
||||
perf.start();
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
graph_initialized = true;
|
||||
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
||||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
//TODO: for scenarios of quantized data in src0
|
||||
// pass-1: dequantize src0 to FP32
|
||||
// pass-2: dq-src0 * src1
|
||||
// the performance gains is worth although there is performance loss in pass-1
|
||||
|
||||
if (!graph_initialized) {
|
||||
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
||||
"_" + src0->name + "_" + src1->name;
|
||||
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QnnHtpGraph_CustomConfig_t hvx_config;
|
||||
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
||||
hvx_config.numHvxThreads = 8;
|
||||
QnnGraph_Config_t graph_hvx_config;
|
||||
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_hvx_config.customConfig = &hvx_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t dlbc_config;
|
||||
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
||||
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
||||
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
||||
QnnGraph_Config_t graph_dlbc_config;
|
||||
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_dlbc_config.customConfig = &dlbc_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t opt_config;
|
||||
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
||||
opt_config.optimizationOption.floatValue = 1; //1 / 3
|
||||
QnnGraph_Config_t graph_opt_config;
|
||||
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_opt_config.customConfig = &opt_config;
|
||||
|
||||
QnnHtpGraph_CustomConfig_t vtcm_config;
|
||||
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
||||
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
||||
QnnGraph_Config_t graph_vtcm_config;
|
||||
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
||||
graph_vtcm_config.customConfig = &vtcm_config;
|
||||
|
||||
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
|
||||
&graph_dlbc_config,
|
||||
&graph_vtcm_config,
|
||||
&graph_opt_config,
|
||||
NULL };
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
||||
&graph_handle);
|
||||
}
|
||||
else {
|
||||
error = qnn_raw_interface.graphCreate(
|
||||
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
||||
&graph_handle);
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
||||
"error = %d\n",
|
||||
graph_name.c_str(), error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
||||
if (!tensor_input0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
||||
if (!tensor_input1.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
||||
if (!tensor_output.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
||||
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t)1,
|
||||
.v1 = {"ggml_op_mul_mat",
|
||||
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
||||
QNN_OP_MAT_MUL,
|
||||
0, qnn_params,
|
||||
2, tensor_inputs,
|
||||
1, tensor_outputs}
|
||||
};
|
||||
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphFinalize(graph_handle,
|
||||
nullptr, nullptr);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_input0.get_qnn_tensor(),
|
||||
tensor_input1.get_qnn_tensor(),
|
||||
tensor_output.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
}
|
||||
else {
|
||||
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
||||
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
||||
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
||||
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
tensor_outputs, 1,
|
||||
nullptr, nullptr);
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
||||
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
||||
}
|
||||
}
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
}
|
||||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
||||
src0->nb[1], src0->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src1->name, src1->type, ggml_type_name(src1->type),
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
||||
src1->nb[1], src1->nb[2]);
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
|
||||
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
perf.info();
|
||||
}
|
||||
|
||||
static void ggml_qnn_repeat(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_get_rows(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_acc(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_div(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_gelu(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_silu(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_tanh(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_relu(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_hardswish(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_sqr(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_norm(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_group_norm(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_concat(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_upscale(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_pad(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_rms_norm(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_cpy(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_dup(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
ggml_qnn_cpy(ctx, src0, dst, nullptr);
|
||||
(void)src1;
|
||||
}
|
||||
|
||||
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_scale(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_clamp(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_soft_max(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_rope(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_pool2d(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_im2col(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
static void ggml_qnn_sum_rows(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_argsort(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
}
|
||||
|
||||
static void ggml_qnn_nop(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst) {
|
||||
(void)src0;
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
}
|
||||
|
||||
qnn::ggml_qnn_op_array_t qnn::ggml_qnn_op_array() {
|
||||
static constexpr const qnn::ggml_qnn_op_t kQnnOpsTable[GGML_OP_COUNT] = {
|
||||
nullptr, // GGML_OP_NONE
|
||||
nullptr, // GGML_OP_DUP
|
||||
ggml_qnn_add, // GGML_OP_ADD
|
||||
nullptr, // GGML_OP_ADD1
|
||||
nullptr, // GGML_OP_ACC
|
||||
nullptr, // GGML_OP_SUB
|
||||
nullptr, // GGML_OP_MUL
|
||||
nullptr, // GGML_OP_DIV
|
||||
nullptr, // GGML_OP_SQR
|
||||
nullptr, // GGML_OP_SQRT
|
||||
nullptr, // GGML_OP_LOG
|
||||
nullptr, // GGML_OP_SUM
|
||||
nullptr, // GGML_OP_SUM_ROWS
|
||||
nullptr, // GGML_OP_MEAN
|
||||
nullptr, // GGML_OP_ARGMAX
|
||||
nullptr, // GGML_OP_REPEAT
|
||||
nullptr, // GGML_OP_REPEAT_BACK
|
||||
nullptr, // GGML_OP_CONCAT
|
||||
nullptr, // GGML_OP_SILU_BACK
|
||||
nullptr, // GGML_OP_NORM
|
||||
nullptr, // GGML_OP_RMS_NORM
|
||||
nullptr, // GGML_OP_RMS_NORM_BACK
|
||||
nullptr, // GGML_OP_GROUP_NORM
|
||||
|
||||
ggml_qnn_mul_mat, // GGML_OP_MUL_MAT
|
||||
nullptr, // GGML_OP_MUL_MAT_ID
|
||||
nullptr, // GGML_OP_OUT_PROD
|
||||
|
||||
nullptr, // GGML_OP_SCALE
|
||||
nullptr, // GGML_OP_SET
|
||||
nullptr, // GGML_OP_CPY
|
||||
nullptr, // GGML_OP_CONT
|
||||
nullptr, // GGML_OP_RESHAPE
|
||||
nullptr, // GGML_OP_VIEW
|
||||
nullptr, // GGML_OP_PERMUTE
|
||||
nullptr, // GGML_OP_TRANSPOSE
|
||||
nullptr, // GGML_OP_GET_ROWS
|
||||
nullptr, // GGML_OP_GET_ROWS_BACK
|
||||
nullptr, // GGML_OP_DIAG
|
||||
nullptr, // GGML_OP_DIAG_MASK_INF
|
||||
nullptr, // GGML_OP_DIAG_MASK_ZERO
|
||||
nullptr, // GGML_OP_SOFT_MAX
|
||||
nullptr, // GGML_OP_SOFT_MAX_BACK
|
||||
nullptr, // GGML_OP_ROPE
|
||||
nullptr, // GGML_OP_ROPE_BACK
|
||||
nullptr, // GGML_OP_CLAMP
|
||||
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
|
||||
nullptr, // GGML_OP_IM2COL
|
||||
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
|
||||
nullptr, // GGML_OP_POOL_1D
|
||||
nullptr, // GGML_OP_POOL_2D
|
||||
nullptr, // GGML_OP_UPSCALE
|
||||
nullptr, // GGML_OP_PAD
|
||||
nullptr, // GGML_OP_ARANGE
|
||||
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
|
||||
nullptr, // GGML_OP_ARGSORT
|
||||
nullptr, // GGML_OP_LEAKY_RELU
|
||||
|
||||
nullptr, // GGML_OP_FLASH_ATTN_EXT
|
||||
nullptr, // GGML_OP_FLASH_ATTN_BACK
|
||||
nullptr, // GGML_OP_SSM_CONV
|
||||
nullptr, // GGML_OP_SSM_SCAN
|
||||
nullptr, // GGML_OP_WIN_PART
|
||||
nullptr, // GGML_OP_WIN_UNPART
|
||||
nullptr, // GGML_OP_GET_REL_POS
|
||||
nullptr, // GGML_OP_ADD_REL_POS
|
||||
|
||||
nullptr, // GGML_OP_UNARY
|
||||
|
||||
nullptr, // GGML_OP_MAP_UNARY
|
||||
nullptr, // GGML_OP_MAP_BINARY
|
||||
|
||||
nullptr, // GGML_OP_MAP_CUSTOM1_F32
|
||||
nullptr, // GGML_OP_MAP_CUSTOM2_F32
|
||||
nullptr, // GGML_OP_MAP_CUSTOM3_F32
|
||||
|
||||
nullptr, // GGML_OP_MAP_CUSTOM1
|
||||
nullptr, // GGML_OP_MAP_CUSTOM2
|
||||
nullptr, // GGML_OP_MAP_CUSTOM3
|
||||
|
||||
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
|
||||
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
|
||||
};
|
||||
|
||||
return kQnnOpsTable;
|
||||
}
|
17
ggml-qnn/backend-ops.hpp
Normal file
17
ggml-qnn/backend-ops.hpp
Normal file
|
@ -0,0 +1,17 @@
|
|||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "backend.hpp"
|
||||
|
||||
namespace qnn {
|
||||
|
||||
typedef void (*ggml_qnn_op_t)(ggml_backend_qnn_context* ctx,
|
||||
const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
ggml_tensor* dst);
|
||||
|
||||
typedef const ggml_qnn_op_t(&ggml_qnn_op_array_t)[GGML_OP_COUNT];
|
||||
|
||||
ggml_qnn_op_array_t ggml_qnn_op_array();
|
||||
|
||||
}
|
|
@ -1,11 +1,6 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "QnnTypes.h"
|
||||
#include "QnnCommon.h"
|
||||
#include "QnnContext.h"
|
||||
#include "QnnBackend.h"
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
|
|
@ -1,21 +1,27 @@
|
|||
#pragma once
|
||||
|
||||
#include <math.h>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <map>
|
||||
|
||||
// header file of Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
|
||||
// https://qpm.qualcomm.com/#/main/tools/details/qualcomm_ai_engine_direct
|
||||
#include "QnnTypes.h"
|
||||
#include "QnnCommon.h"
|
||||
#include "QnnInterface.h"
|
||||
#include "QnnContext.h"
|
||||
#include "QnnBackend.h"
|
||||
#include "QnnGraph.h"
|
||||
#include "QnnProperty.h"
|
||||
#include "QnnTensor.h"
|
||||
#include "System/QnnSystemInterface.h"
|
||||
#include "HTP/QnnHtpDevice.h"
|
||||
#include "HTP/QnnHtpGraph.h"
|
||||
|
||||
#include "qnn-types.hpp"
|
||||
#include "utils.hpp"
|
||||
#include "logger.hpp"
|
||||
|
||||
namespace qnn {
|
||||
|
||||
|
@ -864,9 +870,8 @@ namespace qnn {
|
|||
const qnn::qcom_socinfo& get_soc_info() { return _soc_info; }
|
||||
|
||||
public:
|
||||
std::map<std::string, std::tuple<Qnn_GraphHandle_t, Qnn_Tensor_t*,
|
||||
Qnn_Tensor_t*, Qnn_Tensor_t*>>
|
||||
_qnn_graph_map;
|
||||
std::map<std::string,
|
||||
std::tuple<Qnn_GraphHandle_t, Qnn_Tensor_t*, Qnn_Tensor_t*, Qnn_Tensor_t*>> _qnn_graph_map;
|
||||
|
||||
private:
|
||||
int load_system() {
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include "QnnTensor.h"
|
||||
#include "System/QnnSystemInterface.h"
|
||||
|
||||
#include "ggml-qnn.h"
|
||||
#include "backend.hpp"
|
||||
#include "qnn.hpp"
|
||||
|
||||
|
|
126
ggml-qnn/utils.cpp
Normal file
126
ggml-qnn/utils.cpp
Normal file
|
@ -0,0 +1,126 @@
|
|||
|
||||
#include "utils.hpp"
|
||||
|
||||
#include "ggml-qnn.h"
|
||||
#include "qnn-types.hpp"
|
||||
|
||||
namespace qnn {
|
||||
|
||||
// TODO: mapping more ggml data type to QNN data type
|
||||
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
|
||||
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype) {
|
||||
switch (ggmltype) {
|
||||
case GGML_TYPE_F16:
|
||||
return QNN_DATATYPE_FLOAT_16;
|
||||
case GGML_TYPE_F32:
|
||||
return QNN_DATATYPE_FLOAT_32;
|
||||
case GGML_TYPE_I8:
|
||||
return QNN_DATATYPE_INT_8;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return QNN_DATATYPE_SFIXED_POINT_8;
|
||||
case GGML_TYPE_Q4_0:
|
||||
return QNN_DATATYPE_SFIXED_POINT_4;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return QNN_DATATYPE_UNDEFINED;
|
||||
}
|
||||
|
||||
|
||||
uint32_t get_ggml_tensor_rank(const ggml_tensor* tensor) {
|
||||
uint32_t rank = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if ((0 != tensor->ne[i]) && (1 != tensor->ne[i])) {
|
||||
rank++;
|
||||
}
|
||||
}
|
||||
return rank;
|
||||
}
|
||||
|
||||
|
||||
const char* get_backend_name(int n_backend_type) {
|
||||
switch (n_backend_type) {
|
||||
case QNN_BACKEND_CPU:
|
||||
return "QNN-CPU";
|
||||
case QNN_BACKEND_GPU:
|
||||
return "QNN-GPU";
|
||||
case QNN_BACKEND_NPU:
|
||||
return "QNN-NPU";
|
||||
case QNN_BACKEND_GGML:
|
||||
return "ggml"; //"fake" QNN backend, used for compare performance between QNN backend and original GGML
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
const char* get_chipset_desc(uint32_t chipset_id) {
|
||||
switch (chipset_id) {
|
||||
case SM8450:
|
||||
return "SM8450";
|
||||
case SM8475:
|
||||
return "SM8475";
|
||||
case SM8550:
|
||||
return "SM8550";
|
||||
case SM8650:
|
||||
return "SM8650";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
const char* get_htparch_desc(size_t htp_arch) {
|
||||
switch (htp_arch) {
|
||||
case V68:
|
||||
return "QCOM_HTP_V68";
|
||||
case V69:
|
||||
return "QCOM_HTP_V69";
|
||||
case V73:
|
||||
return "QCOM_HTP_V73";
|
||||
case V75:
|
||||
return "QCOM_HTP_V75";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
intptr_t align_to(size_t alignment, intptr_t offset) {
|
||||
return offset % alignment == 0
|
||||
? offset
|
||||
: offset + (static_cast<intptr_t>(alignment) -
|
||||
offset % static_cast<intptr_t>(alignment));
|
||||
}
|
||||
|
||||
uint32_t get_ggml_tensor_data_size(const ggml_tensor* tensor) {
|
||||
/*
|
||||
size_t data_size = ggml_row_size(tensor->type, tensor->ne[0]);
|
||||
size_t n_dims = qnn_get_ggml_tensor_rank(tensor);
|
||||
for (int i = 1; i < n_dims; i++) {
|
||||
data_size *= tensor->ne[i];
|
||||
}
|
||||
|
||||
return data_size;
|
||||
*/
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
//
|
||||
// QNN backend internal helper functions
|
||||
//
|
||||
// =================================================================================================
|
||||
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
|
||||
const char* opname_from_ggmlop(enum ggml_op ggmlop) {
|
||||
switch (ggmlop) {
|
||||
case GGML_OP_ADD:
|
||||
return QNN_OP_ELEMENT_WISE_ADD;
|
||||
case GGML_OP_MUL:
|
||||
return QNN_OP_ELEMENT_WISE_MULTIPLY;
|
||||
case GGML_OP_MUL_MAT:
|
||||
return QNN_OP_MAT_MUL;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
}
|
|
@ -1,135 +1,34 @@
|
|||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <inttypes.h>
|
||||
#include <dlfcn.h>
|
||||
#include <fcntl.h>
|
||||
#include <string>
|
||||
|
||||
#include "QnnTypes.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include "qnn-types.hpp"
|
||||
#include "logger.hpp"
|
||||
|
||||
namespace qnn {
|
||||
|
||||
// TODO: mapping more ggml data type to QNN data type
|
||||
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
|
||||
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype) {
|
||||
switch (ggmltype) {
|
||||
case GGML_TYPE_F16:
|
||||
return QNN_DATATYPE_FLOAT_16;
|
||||
case GGML_TYPE_F32:
|
||||
return QNN_DATATYPE_FLOAT_32;
|
||||
case GGML_TYPE_I8:
|
||||
return QNN_DATATYPE_INT_8;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return QNN_DATATYPE_SFIXED_POINT_8;
|
||||
case GGML_TYPE_Q4_0:
|
||||
return QNN_DATATYPE_SFIXED_POINT_4;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return QNN_DATATYPE_UNDEFINED;
|
||||
}
|
||||
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype);
|
||||
uint32_t get_ggml_tensor_rank(const ggml_tensor* tensor);
|
||||
const char* get_backend_name(int n_backend_type);
|
||||
const char* get_chipset_desc(uint32_t chipset_id);
|
||||
const char* get_htparch_desc(size_t htp_arch);
|
||||
intptr_t align_to(size_t alignment, intptr_t offset);
|
||||
uint32_t get_ggml_tensor_data_size(const ggml_tensor* tensor);
|
||||
|
||||
|
||||
uint32_t get_ggml_tensor_rank(const ggml_tensor* tensor) {
|
||||
uint32_t rank = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if ((0 != tensor->ne[i]) && (1 != tensor->ne[i])) {
|
||||
rank++;
|
||||
}
|
||||
}
|
||||
return rank;
|
||||
}
|
||||
|
||||
|
||||
const char* get_backend_name(int n_backend_type) {
|
||||
switch (n_backend_type) {
|
||||
case QNN_BACKEND_CPU:
|
||||
return "QNN-CPU";
|
||||
case QNN_BACKEND_GPU:
|
||||
return "QNN-GPU";
|
||||
case QNN_BACKEND_NPU:
|
||||
return "QNN-NPU";
|
||||
case QNN_BACKEND_GGML:
|
||||
return "ggml"; //"fake" QNN backend, used for compare performance between QNN backend and original GGML
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
const char* get_chipset_desc(uint32_t chipset_id) {
|
||||
switch (chipset_id) {
|
||||
case SM8450:
|
||||
return "SM8450";
|
||||
case SM8475:
|
||||
return "SM8475";
|
||||
case SM8550:
|
||||
return "SM8550";
|
||||
case SM8650:
|
||||
return "SM8650";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
const char* get_htparch_desc(size_t htp_arch) {
|
||||
switch (htp_arch) {
|
||||
case V68:
|
||||
return "QCOM_HTP_V68";
|
||||
case V69:
|
||||
return "QCOM_HTP_V69";
|
||||
case V73:
|
||||
return "QCOM_HTP_V73";
|
||||
case V75:
|
||||
return "QCOM_HTP_V75";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
}
|
||||
const char* opname_from_ggmlop(enum ggml_op ggmlop);
|
||||
|
||||
template <typename Fn> Fn load_qnn_functionpointers(void* handle, const char* function_name) {
|
||||
return reinterpret_cast<Fn>(dlsym(handle, function_name));
|
||||
}
|
||||
|
||||
intptr_t align_to(size_t alignment, intptr_t offset) {
|
||||
return offset % alignment == 0
|
||||
? offset
|
||||
: offset + (static_cast<intptr_t>(alignment) -
|
||||
offset % static_cast<intptr_t>(alignment));
|
||||
}
|
||||
|
||||
uint32_t get_ggml_tensor_data_size(const ggml_tensor* tensor) {
|
||||
/*
|
||||
size_t data_size = ggml_row_size(tensor->type, tensor->ne[0]);
|
||||
size_t n_dims = qnn_get_ggml_tensor_rank(tensor);
|
||||
for (int i = 1; i < n_dims; i++) {
|
||||
data_size *= tensor->ne[i];
|
||||
}
|
||||
|
||||
return data_size;
|
||||
*/
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
|
||||
// =================================================================================================
|
||||
//
|
||||
// QNN backend internal helper functions
|
||||
//
|
||||
// =================================================================================================
|
||||
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
|
||||
const char* opname_from_ggmlop(enum ggml_op ggmlop) {
|
||||
switch (ggmlop) {
|
||||
case GGML_OP_ADD:
|
||||
return QNN_OP_ELEMENT_WISE_ADD;
|
||||
case GGML_OP_MUL:
|
||||
return QNN_OP_ELEMENT_WISE_MULTIPLY;
|
||||
case GGML_OP_MUL_MAT:
|
||||
return QNN_OP_MAT_MUL;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
inline int validate_tensor_version(Qnn_Tensor_t tensor) {
|
||||
if (tensor.version != QNN_TENSOR_VERSION_1) {
|
||||
QNN_LOG_WARN(
|
||||
|
@ -272,6 +171,45 @@ namespace qnn {
|
|||
tensor.v1.memHandle = handle;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if ENABLE_QNNBACKEND_PERF
|
||||
class qnn_perf {
|
||||
public:
|
||||
qnn_perf(const std::string& perf_name) : _perf_name(std::move(perf_name)) {};
|
||||
qnn_perf() = delete;
|
||||
qnn_perf(const qnn_perf&) = delete;
|
||||
qnn_perf& operator= (const qnn_perf&) = delete;
|
||||
|
||||
void start() {
|
||||
_begin_time = ggml_time_us();
|
||||
}
|
||||
|
||||
void info() {
|
||||
_end_time = ggml_time_us();
|
||||
_duration = (_end_time - _begin_time);
|
||||
QNN_LOG_INFO("duration of %s : %lld microseconds\n", _perf_name.c_str(), _duration);
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t _begin_time = 0LL;
|
||||
int64_t _end_time = 0LL;
|
||||
int64_t _duration = 0LL;
|
||||
std::string _perf_name;
|
||||
};
|
||||
#else
|
||||
class qnn_perf {
|
||||
public:
|
||||
qnn_perf(const std::string& perf_name) {}
|
||||
qnn_perf() = delete;
|
||||
qnn_perf(const qnn_perf&) = delete;
|
||||
qnn_perf& operator= (const qnn_perf&) = delete;
|
||||
|
||||
void start() {}
|
||||
void info() {}
|
||||
};
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -21,6 +21,8 @@ set(SOURCE_FILES
|
|||
../../ggml-backend.c
|
||||
../../ggml-quants.c
|
||||
../../ggml-qnn/logger.cpp
|
||||
../../ggml-qnn/utils.cpp
|
||||
../../ggml-qnn/backend-ops.cpp
|
||||
../../ggml-qnn.cpp
|
||||
ggml-qnn-ut.cpp
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue