Merge branch 'master' into compilade/bitnet-ternary
This commit is contained in:
commit
cb6d9962c4
77 changed files with 4681 additions and 2212 deletions
|
@ -295,6 +295,7 @@ class Model:
|
|||
gguf.MODEL_TENSOR.FFN_GATE_INP,
|
||||
gguf.MODEL_TENSOR.POS_EMBD,
|
||||
gguf.MODEL_TENSOR.TOKEN_TYPES,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
)
|
||||
)
|
||||
or not name.endswith(".weight")
|
||||
|
@ -608,6 +609,15 @@ class Model:
|
|||
if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
|
||||
# ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
|
||||
res = "smollm"
|
||||
if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
|
||||
# ref: https://huggingface.co/bigscience/bloom
|
||||
res = "bloom"
|
||||
if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
|
||||
# ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
|
||||
res = "gpt3-finnish"
|
||||
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
||||
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
||||
res = "exaone"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
@ -911,7 +921,7 @@ class GPTNeoXModel(Model):
|
|||
return tensors
|
||||
|
||||
|
||||
@Model.register("BloomForCausalLM")
|
||||
@Model.register("BloomForCausalLM", "BloomModel")
|
||||
class BloomModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BLOOM
|
||||
|
||||
|
@ -2719,7 +2729,7 @@ class StarCoder2Model(Model):
|
|||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
|
||||
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
|
||||
|
@ -2750,7 +2760,10 @@ class MambaModel(Model):
|
|||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||||
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
|
||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||||
|
||||
use_dt_b_c_norm = False
|
||||
# For falconmamba we do apply RMS norm on B / DT and C layers
|
||||
if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
|
||||
use_dt_b_c_norm = True
|
||||
# Fail early for models which don't have a block expansion factor of 2
|
||||
assert d_inner == 2 * d_model
|
||||
|
||||
|
@ -2758,12 +2771,13 @@ class MambaModel(Model):
|
|||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
||||
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||||
self.gguf_writer.add_ssm_state_size(d_state)
|
||||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
_tok_embd = None
|
||||
|
@ -2790,23 +2804,6 @@ class MambaModel(Model):
|
|||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
|
||||
if bid is not None and new_name in (
|
||||
self.format_tensor_name(
|
||||
n, bid, ".weight" if name.endswith(".weight") else ""
|
||||
)
|
||||
for n in [
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
gguf.MODEL_TENSOR.SSM_X,
|
||||
gguf.MODEL_TENSOR.SSM_DT,
|
||||
gguf.MODEL_TENSOR.SSM_A,
|
||||
gguf.MODEL_TENSOR.SSM_D,
|
||||
]
|
||||
):
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
|
||||
return super().tensor_force_quant(name, new_name, bid, n_dims)
|
||||
|
||||
|
||||
@Model.register("CohereForCausalLM")
|
||||
class CommandR2Model(Model):
|
||||
|
@ -3751,8 +3748,120 @@ class ChatGLMModel(Model):
|
|||
name = name.removeprefix("transformer.")
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
@Model.register("NemotronForCausalLM")
|
||||
class NemotronModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.NEMOTRON
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
self.gguf_writer.add_pad_token_id(0)
|
||||
self.gguf_writer.add_unk_token_id(1)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
|
||||
# * Partial RoPE
|
||||
rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
|
||||
# * RopeScaling for Nemotron
|
||||
if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
else:
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
|
||||
# model.layers.{l}.input_layernorm.weight
|
||||
# model.layers.{l}.post_attention_layernorm.weight
|
||||
# model.norm.weight
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("ExaoneForCausalLM")
|
||||
class ExaoneModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.EXAONE
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
|
||||
assert (hparams["activation_function"] == "silu")
|
||||
|
||||
max_position_embeddings = hparams["max_position_embeddings"]
|
||||
embed_dim = hparams["hidden_size"]
|
||||
num_heads = hparams["num_attention_heads"]
|
||||
num_kv_heads = hparams.get("num_key_value_heads", num_heads)
|
||||
layer_norm_eps = hparams["layer_norm_epsilon"]
|
||||
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
|
||||
num_layers = hparams["num_layers"]
|
||||
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
|
||||
# attention_dropout_rate = hparams["attention_dropout"]
|
||||
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
|
||||
# embed_dropout_rate = hparams["embed_dropout"]
|
||||
self.gguf_writer.add_embedding_length(embed_dim)
|
||||
self.gguf_writer.add_head_count(num_heads)
|
||||
self.gguf_writer.add_head_count_kv(num_kv_heads)
|
||||
self.gguf_writer.add_context_length(max_position_embeddings)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_block_count(num_layers)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
|
||||
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||
|
||||
def prepare_tensors(self):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
|
||||
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
|
||||
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
assert low_freq_wavelen != high_freq_wavelen
|
||||
|
||||
rope_factors = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / freq
|
||||
if wavelen < high_freq_wavelen:
|
||||
rope_factors.append(1)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
rope_factors.append(factor)
|
||||
else:
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
|
||||
super().prepare_tensors()
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
# tree of lazy tensors
|
||||
class LazyTorchTensor(gguf.LazyBase):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue