Merge branch 'master' into compilade/bitnet-ternary
This commit is contained in:
commit
cb6d9962c4
77 changed files with 4681 additions and 2212 deletions
|
@ -271,7 +271,7 @@ struct tokenized_prompt {
|
|||
size_t max_seq_len;
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
|
|
|
@ -127,7 +127,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|||
}
|
||||
|
||||
static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
|
|
|
@ -433,8 +433,8 @@ static void process_logits(
|
|||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
|
|
|
@ -203,8 +203,8 @@ int main(int argc, char ** argv) {
|
|||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
|
|
@ -16,8 +16,8 @@ Convert PyTorch model to gguf files (You can also download the converted [gguf](
|
|||
|
||||
```bash
|
||||
python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5
|
||||
python ./convert-hf-to-gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
|
|
107
examples/llava/README-minicpmv2.6.md
Normal file
107
examples/llava/README-minicpmv2.6.md
Normal file
|
@ -0,0 +1,107 @@
|
|||
## MiniCPM-V 2.6
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
cd llama.cpp
|
||||
git checkout minicpmv-main
|
||||
```
|
||||
|
||||
### Usage of MiniCPM-V 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-V-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-2_6 --minicpmv-projector ../MiniCPM-V-2_6/minicpmv.projector --output-dir ../MiniCPM-V-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 3
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make llama-minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Video
|
||||
Install FFmpeg
|
||||
```
|
||||
brew install ffmpeg
|
||||
brew install pkg-config
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
|
@ -20,6 +20,10 @@
|
|||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
|
@ -81,6 +85,7 @@ static std::string format(const char * fmt, ...) {
|
|||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
|
@ -526,6 +531,7 @@ struct clip_ctx {
|
|||
bool has_vision_encoder = false;
|
||||
bool has_llava_projector = false;
|
||||
bool has_minicpmv_projector = false;
|
||||
int minicpmv_version = 2;
|
||||
|
||||
struct clip_vision_model vision_model;
|
||||
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
||||
|
@ -641,7 +647,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
if (ctx->has_minicpmv_projector) {
|
||||
int pos_w = image_size_width/patch_size;
|
||||
int pos_h = image_size_height/patch_size;
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
|
||||
}
|
||||
ggml_set_name(pos_embed, "pos_embed");
|
||||
ggml_set_input(pos_embed);
|
||||
}
|
||||
|
@ -768,8 +779,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
embeddings = ggml_gelu(ctx0, embeddings);
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
||||
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
||||
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||
}
|
||||
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
||||
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
|
||||
|
@ -949,10 +960,20 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
}
|
||||
|
||||
{ // attention
|
||||
const int hidden_size = 4096;
|
||||
int hidden_size = 4096;
|
||||
const int d_head = 128;
|
||||
const int n_head = hidden_size/d_head;
|
||||
const int num_query = 96;
|
||||
int n_head = hidden_size/d_head;
|
||||
int num_query = 96;
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
hidden_size = 4096;
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 96;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
hidden_size = 3584;
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 64;
|
||||
}
|
||||
|
||||
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
|
@ -1091,7 +1112,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
}
|
||||
}
|
||||
|
||||
clip_ctx * new_clip = new clip_ctx;
|
||||
clip_ctx * new_clip = new clip_ctx{};
|
||||
|
||||
// update projector type
|
||||
{
|
||||
|
@ -1125,6 +1146,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
new_clip->backend = ggml_backend_vk_init(0);
|
||||
LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
|
||||
#endif
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
|
@ -1149,6 +1174,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
|
||||
}
|
||||
|
||||
idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
|
||||
if (idx != -1) {
|
||||
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
|
||||
}
|
||||
|
||||
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
|
||||
|
||||
GGML_ASSERT(new_clip->has_vision_encoder);
|
||||
|
@ -1910,10 +1940,12 @@ int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
|
|||
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
||||
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||
if (clip_is_minicpmv(ctx)) {
|
||||
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
|
||||
|
||||
if(clip_is_minicpmv(ctx)){
|
||||
int max_slice_nums = 9;
|
||||
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
|
||||
res_imgs->size = 0;
|
||||
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||
for (size_t i = 0; i < imgs.size(); ++i){
|
||||
res_imgs->size += imgs[i].size();
|
||||
}
|
||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||
|
@ -2146,7 +2178,12 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
|||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
n_patches /= 4;
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
n_patches = 96;
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
n_patches = 96;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
n_patches = 64;
|
||||
}
|
||||
}
|
||||
|
||||
return n_patches;
|
||||
|
@ -2282,6 +2319,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
if(ctx->load_image_size==nullptr){
|
||||
ctx->load_image_size= clip_image_size_init();
|
||||
}
|
||||
const int pos_w = ctx->load_image_size->width/patch_size;
|
||||
const int pos_h = ctx->load_image_size->height/patch_size;
|
||||
|
||||
{
|
||||
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
|
@ -2316,8 +2358,18 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = std::floor(70.0*i/num_positions);
|
||||
int bucket_coords_h[70];
|
||||
int bucket_coords_w[70];
|
||||
for (int i = 0; i < pos_h; i++){
|
||||
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
|
||||
}
|
||||
for (int i = 0; i < pos_w; i++){
|
||||
bucket_coords_w[i] = std::floor(70.0*i/pos_w);
|
||||
}
|
||||
for (int i = 0, id = 0; i < pos_h; i++){
|
||||
for (int j = 0; j < pos_w; j++){
|
||||
positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
|
@ -2328,12 +2380,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
|
||||
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
|
||||
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
|
||||
if(ctx->load_image_size==nullptr){
|
||||
ctx->load_image_size= clip_image_size_init();
|
||||
}
|
||||
int pos_w = ctx->load_image_size->width/patch_size;
|
||||
int pos_h = ctx->load_image_size->height/patch_size;
|
||||
int embed_dim = 4096;
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
embed_dim = 4096;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
embed_dim = 3584;
|
||||
}
|
||||
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||
|
||||
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
|
||||
|
@ -2346,7 +2399,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
|
||||
free(pos_embed_data);
|
||||
}
|
||||
} else {
|
||||
}
|
||||
else{
|
||||
{
|
||||
if (ctx->has_class_embedding) {
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
|
@ -2548,13 +2602,21 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
return ctx->vision_model.mm_3_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||
return 4096;
|
||||
if (ctx->minicpmv_version == 2) {
|
||||
return 4096;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
return 3584;
|
||||
}
|
||||
}
|
||||
|
||||
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||
}
|
||||
|
||||
bool clip_is_minicpmv(const struct clip_ctx * ctx) {
|
||||
return ctx->has_minicpmv_projector;
|
||||
int clip_is_minicpmv(const struct clip_ctx * ctx) {
|
||||
if (ctx->has_minicpmv_projector) {
|
||||
return ctx->minicpmv_version;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -85,7 +85,7 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
|
|||
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API bool clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -256,7 +256,14 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||
load_image_size->width = img_res_v.data[i].nx;
|
||||
load_image_size->height = img_res_v.data[i].ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
bool encoded = false;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
if (!encoded) {
|
||||
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
|
|
|
@ -134,7 +134,13 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
|||
std::string system_prompt;
|
||||
int idx = 0;
|
||||
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
system_prompt = "<|im_start|>user\n";
|
||||
}
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
|
@ -210,10 +216,24 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
|||
|
||||
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (!is_first) {
|
||||
if (has_minicpmv_projector == 2) {
|
||||
user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
user_prompt = "<|im_start|>user\n" + prompt;
|
||||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
|
||||
}
|
||||
|
||||
// generate the response
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
|
|
@ -1,9 +1,416 @@
|
|||
import argparse
|
||||
# coding=utf-8
|
||||
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch Siglip model. """
|
||||
# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn.init import _calculate_fan_in_and_fan_out
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import (
|
||||
logging,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
class SiglipVisionConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
||||
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
||||
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
Args:
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
intermediate_size (`int`, *optional*, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_channels (`int`, *optional*, defaults to 3):
|
||||
Number of channels in the input images.
|
||||
image_size (`int`, *optional*, defaults to 224):
|
||||
The size (resolution) of each image.
|
||||
patch_size (`int`, *optional*, defaults to 16):
|
||||
The size (resolution) of each patch.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the layer normalization layers.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
Example:
|
||||
```python
|
||||
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
||||
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
||||
>>> configuration = SiglipVisionConfig()
|
||||
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
||||
>>> model = SiglipVisionModel(configuration)
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "siglip_vision_model"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=768,
|
||||
intermediate_size=3072,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
num_channels=3,
|
||||
image_size=224,
|
||||
patch_size=16,
|
||||
hidden_act="gelu_pytorch_tanh",
|
||||
layer_norm_eps=1e-6,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_channels = num_channels
|
||||
self.patch_size = patch_size
|
||||
self.image_size = image_size
|
||||
self.attention_dropout = attention_dropout
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.hidden_act = hidden_act
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
||||
|
||||
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"google/siglip-base-patch16-224",
|
||||
# See all SigLIP models at https://huggingface.co/models?filter=siglip
|
||||
]
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
||||
def _get_unpad_data(attention_mask):
|
||||
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
||||
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||||
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
||||
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
||||
return (
|
||||
indices,
|
||||
cu_seqlens,
|
||||
max_seqlen_in_batch,
|
||||
)
|
||||
|
||||
|
||||
def _trunc_normal_(tensor, mean, std, a, b):
|
||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||||
def norm_cdf(x):
|
||||
# Computes standard normal cumulative distribution function
|
||||
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
||||
|
||||
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||||
warnings.warn(
|
||||
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
||||
"The distribution of values may be incorrect.",
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
# Values are generated by using a truncated uniform distribution and
|
||||
# then using the inverse CDF for the normal distribution.
|
||||
# Get upper and lower cdf values
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
# Uniformly fill tensor with values from [l, u], then translate to
|
||||
# [2l-1, 2u-1].
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
|
||||
# Use inverse cdf transform for normal distribution to get truncated
|
||||
# standard normal
|
||||
if tensor.dtype in [torch.float16, torch.bfloat16]:
|
||||
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
||||
og_dtype = tensor.dtype
|
||||
tensor = tensor.to(torch.float32)
|
||||
tensor.erfinv_()
|
||||
tensor = tensor.to(og_dtype)
|
||||
else:
|
||||
tensor.erfinv_()
|
||||
|
||||
# Transform to proper mean, std
|
||||
tensor.mul_(std * math.sqrt(2.0))
|
||||
tensor.add_(mean)
|
||||
|
||||
# Clamp to ensure it's in the proper range
|
||||
if tensor.dtype == torch.float16:
|
||||
# The `clamp_` op is not (yet?) defined in float16+cpu
|
||||
tensor = tensor.to(torch.float32)
|
||||
tensor.clamp_(min=a, max=b)
|
||||
tensor = tensor.to(torch.float16)
|
||||
else:
|
||||
tensor.clamp_(min=a, max=b)
|
||||
|
||||
|
||||
def trunc_normal_tf_(
|
||||
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
||||
):
|
||||
"""Fills the input Tensor with values drawn from a truncated
|
||||
normal distribution. The values are effectively drawn from the
|
||||
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
||||
with values outside :math:`[a, b]` redrawn until they are within
|
||||
the bounds. The method used for generating the random values works
|
||||
best when :math:`a \\leq \text{mean} \\leq b`.
|
||||
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
||||
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
||||
and the result is subsquently scaled and shifted by the mean and std args.
|
||||
Args:
|
||||
tensor: an n-dimensional `torch.Tensor`
|
||||
mean: the mean of the normal distribution
|
||||
std: the standard deviation of the normal distribution
|
||||
a: the minimum cutoff value
|
||||
b: the maximum cutoff value
|
||||
"""
|
||||
with torch.no_grad():
|
||||
_trunc_normal_(tensor, 0, 1.0, a, b)
|
||||
tensor.mul_(std).add_(mean)
|
||||
|
||||
|
||||
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||
denom = fan_in
|
||||
if mode == "fan_in":
|
||||
denom = fan_in
|
||||
elif mode == "fan_out":
|
||||
denom = fan_out
|
||||
elif mode == "fan_avg":
|
||||
denom = (fan_in + fan_out) / 2
|
||||
|
||||
variance = scale / denom
|
||||
|
||||
if distribution == "truncated_normal":
|
||||
# constant is stddev of standard normal truncated to (-2, 2)
|
||||
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
||||
elif distribution == "normal":
|
||||
with torch.no_grad():
|
||||
tensor.normal_(std=math.sqrt(variance))
|
||||
elif distribution == "uniform":
|
||||
bound = math.sqrt(3 * variance)
|
||||
with torch.no_grad():
|
||||
tensor.uniform_(-bound, bound)
|
||||
else:
|
||||
raise ValueError(f"invalid distribution {distribution}")
|
||||
|
||||
|
||||
def lecun_normal_(tensor):
|
||||
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
||||
|
||||
|
||||
def default_flax_embed_init(tensor):
|
||||
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
||||
|
||||
class SiglipVisionEmbeddings(nn.Module):
|
||||
def __init__(self, config: SiglipVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
self.image_size = config.image_size
|
||||
self.patch_size = config.patch_size
|
||||
|
||||
self.patch_embedding = nn.Conv2d(
|
||||
in_channels=config.num_channels,
|
||||
out_channels=self.embed_dim,
|
||||
kernel_size=self.patch_size,
|
||||
stride=self.patch_size,
|
||||
padding="valid",
|
||||
)
|
||||
|
||||
self.num_patches_per_side = self.image_size // self.patch_size
|
||||
self.num_patches = self.num_patches_per_side**2
|
||||
self.num_positions = self.num_patches
|
||||
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||||
|
||||
class SiglipAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_heads
|
||||
if self.head_dim * self.num_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||||
f" {self.num_heads})."
|
||||
)
|
||||
self.scale = self.head_dim**-0.5
|
||||
self.dropout = config.attention_dropout
|
||||
|
||||
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||||
|
||||
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
||||
class SiglipMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.activation_fn = ACT2FN[config.hidden_act]
|
||||
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
|
||||
|
||||
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
||||
class SiglipEncoderLayer(nn.Module):
|
||||
def __init__(self, config: SiglipVisionConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.hidden_size
|
||||
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
||||
self.self_attn = (
|
||||
SiglipAttention(config)
|
||||
)
|
||||
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
self.mlp = SiglipMLP(config)
|
||||
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||||
|
||||
class SiglipPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = SiglipVisionConfig
|
||||
base_model_prefix = "siglip"
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
|
||||
if isinstance(module, SiglipVisionEmbeddings):
|
||||
width = self.config.hidden_size
|
||||
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
||||
elif isinstance(module, nn.Embedding):
|
||||
default_flax_embed_init(module.weight)
|
||||
elif isinstance(module, SiglipAttention):
|
||||
nn.init.normal_(module.q_proj.weight)
|
||||
nn.init.normal_(module.k_proj.weight)
|
||||
nn.init.normal_(module.v_proj.weight)
|
||||
nn.init.normal_(module.out_proj.weight)
|
||||
nn.init.zeros_(module.q_proj.bias)
|
||||
nn.init.zeros_(module.k_proj.bias)
|
||||
nn.init.zeros_(module.v_proj.bias)
|
||||
nn.init.zeros_(module.out_proj.bias)
|
||||
elif isinstance(module, SiglipMLP):
|
||||
nn.init.normal_(module.fc1.weight)
|
||||
nn.init.normal_(module.fc2.weight)
|
||||
nn.init.normal_(module.fc1.bias, std=1e-6)
|
||||
nn.init.normal_(module.fc2.bias, std=1e-6)
|
||||
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
lecun_normal_(module.weight)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
SIGLIP_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
Parameters:
|
||||
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
|
||||
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||||
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
||||
class SiglipEncoder(nn.Module):
|
||||
"""
|
||||
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||||
[`SiglipEncoderLayer`].
|
||||
Args:
|
||||
config: SiglipConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: SiglipVisionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
class SiglipVisionTransformer(SiglipPreTrainedModel):
|
||||
config_class = SiglipVisionConfig
|
||||
main_input_name = "pixel_values"
|
||||
_supports_flash_attn_2 = True
|
||||
|
||||
def __init__(self, config: SiglipVisionConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
embed_dim = config.hidden_size
|
||||
|
||||
self.embeddings = SiglipVisionEmbeddings(config)
|
||||
self.encoder = SiglipEncoder(config)
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||||
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self) -> nn.Module:
|
||||
return self.embeddings.patch_embedding
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
||||
|
@ -94,6 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
|||
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
|
@ -135,6 +543,15 @@ if args.use_f32:
|
|||
# model = CLIPModel.from_pretrained(dir_model)
|
||||
# processor = CLIPProcessor.from_pretrained(dir_model)
|
||||
|
||||
minicpmv_version = args.minicpmv_version
|
||||
emb_dim = 4096
|
||||
if minicpmv_version == 1:
|
||||
emb_dim = 2304
|
||||
elif minicpmv_version == 2:
|
||||
emb_dim = 4096
|
||||
elif minicpmv_version == 3:
|
||||
emb_dim = 3584
|
||||
|
||||
default_vision_config = {
|
||||
"hidden_size": 1152,
|
||||
"image_size": 980,
|
||||
|
@ -144,8 +561,12 @@ default_vision_config = {
|
|||
"num_hidden_layers": 27,
|
||||
"patch_size": 14,
|
||||
}
|
||||
|
||||
vision_config = Idefics2VisionConfig(**default_vision_config)
|
||||
model = Idefics2VisionTransformer(vision_config)
|
||||
if minicpmv_version == 3:
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
|
||||
processor = None
|
||||
# if model.attn_pool is not None:
|
||||
|
@ -158,6 +579,7 @@ fname_middle = None
|
|||
has_text_encoder = True
|
||||
has_vision_encoder = True
|
||||
has_minicpmv_projector = False
|
||||
|
||||
if args.text_only:
|
||||
fname_middle = "text-"
|
||||
has_vision_encoder = False
|
||||
|
@ -165,6 +587,7 @@ elif args.minicpmv_projector is not None:
|
|||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_minicpmv_projector = True
|
||||
minicpmv_version = 3
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
|
@ -189,6 +612,7 @@ elif has_minicpmv_projector:
|
|||
fout.add_description("image encoder for MiniCPM-V")
|
||||
# add projector type
|
||||
fout.add_string("clip.projector_type", "resampler")
|
||||
fout.add_int32("clip.minicpmv_version", minicpmv_version)
|
||||
else:
|
||||
fout.add_description("two-tower CLIP model")
|
||||
|
||||
|
@ -274,11 +698,11 @@ def _replace_name_resampler(s, v):
|
|||
if re.match("resampler.pos_embed", s):
|
||||
return {
|
||||
s: v,
|
||||
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
|
||||
}
|
||||
if re.match("resampler.proj", s):
|
||||
return {
|
||||
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
|
||||
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
||||
}
|
||||
if re.match("resampler.attn.in_proj_.*", s):
|
||||
|
|
|
@ -4,7 +4,7 @@ import torch
|
|||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model")
|
||||
ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
|
@ -29,7 +29,6 @@ if len(clip_tensors) > 0:
|
|||
f.write("{}\n")
|
||||
|
||||
config = model.llm.config
|
||||
config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5"
|
||||
config.auto_map = {
|
||||
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
||||
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
||||
|
@ -40,7 +39,6 @@ config.auto_map = {
|
|||
model.llm.save_pretrained(f"{args.model}/model")
|
||||
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
||||
tok.save_pretrained(f"{args.model}/model")
|
||||
# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py")
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||
|
|
|
@ -267,9 +267,9 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
if (!llama_model_has_encoder(model)) {
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
}
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
|
|
|
@ -340,8 +340,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
|
@ -480,8 +480,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
|
||||
std::ofstream logits_stream;
|
||||
if (!params.logits_file.empty()) {
|
||||
|
@ -1733,8 +1733,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
|||
const int n_batch = params.n_batch;
|
||||
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
|
||||
const int nv = 2*((n_vocab + 1)/2) + 4;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
|
||||
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
|
||||
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
|
|
|
@ -34,7 +34,7 @@ Run the quantized model:
|
|||
|
||||
```bash
|
||||
# start inference on a gguf model
|
||||
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
||||
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -cnv -p "You are a helpful assistant"
|
||||
```
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
|
|
|
@ -253,6 +253,8 @@ int main(int argc, char ** argv) {
|
|||
chunks[i].tokens.clear();
|
||||
}
|
||||
|
||||
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
// start loop, receive query and return top k similar chunks based on cosine similarity
|
||||
std::string query;
|
||||
while (true) {
|
||||
|
@ -260,7 +262,6 @@ int main(int argc, char ** argv) {
|
|||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
|
||||
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
|
@ -293,6 +294,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// clean up
|
||||
llama_batch_free(query_batch);
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
|
|
@ -247,6 +247,25 @@ logging:
|
|||
--log-append Don't truncate the old log file.
|
||||
```
|
||||
|
||||
Available environment variables (if specified, these variables will override parameters specified in arguments):
|
||||
|
||||
- `LLAMA_CACHE` (cache directory, used by `--hf-repo`)
|
||||
- `HF_TOKEN` (Hugging Face access token, used when accessing a gated model with `--hf-repo`)
|
||||
- `LLAMA_ARG_MODEL`
|
||||
- `LLAMA_ARG_THREADS`
|
||||
- `LLAMA_ARG_CTX_SIZE`
|
||||
- `LLAMA_ARG_N_PARALLEL`
|
||||
- `LLAMA_ARG_BATCH`
|
||||
- `LLAMA_ARG_UBATCH`
|
||||
- `LLAMA_ARG_N_GPU_LAYERS`
|
||||
- `LLAMA_ARG_THREADS_HTTP`
|
||||
- `LLAMA_ARG_CHAT_TEMPLATE`
|
||||
- `LLAMA_ARG_N_PREDICT`
|
||||
- `LLAMA_ARG_ENDPOINT_METRICS`
|
||||
- `LLAMA_ARG_ENDPOINT_SLOTS`
|
||||
- `LLAMA_ARG_EMBEDDINGS`
|
||||
- `LLAMA_ARG_FLASH_ATTN`
|
||||
- `LLAMA_ARG_DEFRAG_THOLD`
|
||||
|
||||
## Build
|
||||
|
||||
|
@ -368,15 +387,16 @@ node index.js
|
|||
|
||||
## API Endpoints
|
||||
|
||||
### GET `/health`: Returns the current state of the server
|
||||
### GET `/health`: Returns heath check result
|
||||
|
||||
- 503 -> `{"status": "loading model"}` if the model is still being loaded.
|
||||
- 500 -> `{"status": "error"}` if the model failed to load.
|
||||
- 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available.
|
||||
**Response format**
|
||||
|
||||
If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set.
|
||||
- HTTP status code 503
|
||||
- Body: `{"error": {"code": 503, "message": "Loading model", "type": "unavailable_error"}}`
|
||||
- Explanation: the model is still being loaded.
|
||||
- HTTP status code 200
|
||||
- Body: `{"status": "ok" }`
|
||||
- Explanation: the model is successfully loaded and the server is ready.
|
||||
|
||||
### POST `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
|
@ -639,10 +659,16 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
|||
}'
|
||||
```
|
||||
|
||||
### GET `/slots`: Returns the current slots processing state. Can be disabled with `--slots-endpoint-disable`.
|
||||
### GET `/slots`: Returns the current slots processing state
|
||||
|
||||
This endpoint can be disabled with `--no-slots`
|
||||
|
||||
If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots.
|
||||
|
||||
**Response format**
|
||||
|
||||
Example:
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
|
@ -702,7 +728,13 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
|||
]
|
||||
```
|
||||
|
||||
### GET `/metrics`: Prometheus compatible metrics exporter endpoint if `--metrics` is enabled:
|
||||
Possible values for `slot[i].state` are:
|
||||
- `0`: SLOT_STATE_IDLE
|
||||
- `1`: SLOT_STATE_PROCESSING
|
||||
|
||||
### GET `/metrics`: Prometheus compatible metrics exporter
|
||||
|
||||
This endpoint is only accessible if `--metrics` is set.
|
||||
|
||||
Available metrics:
|
||||
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
|
||||
|
@ -767,6 +799,10 @@ Available metrics:
|
|||
|
||||
### GET `/lora-adapters`: Get list of all LoRA adapters
|
||||
|
||||
This endpoint returns the loaded LoRA adapters. You can add adapters using `--lora` when starting the server, for example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...`
|
||||
|
||||
By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply`
|
||||
|
||||
If an adapter is disabled, the scale will be set to 0.
|
||||
|
||||
**Response format**
|
||||
|
|
|
@ -15,6 +15,8 @@
|
|||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
// mime type for sending response
|
||||
#define MIMETYPE_JSON "application/json; charset=utf-8"
|
||||
|
||||
// auto generated files (update with ./deps.sh)
|
||||
#include "colorthemes.css.hpp"
|
||||
|
@ -67,7 +69,6 @@ enum slot_command {
|
|||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
SERVER_STATE_ERROR // An error occurred, load_model failed
|
||||
};
|
||||
|
||||
enum server_task_type {
|
||||
|
@ -693,8 +694,8 @@ struct server_context {
|
|||
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
add_bos_token = llama_should_add_bos_token(model);
|
||||
has_eos_token = llama_add_eos_token(model) != 1;
|
||||
add_bos_token = llama_add_bos_token(model);
|
||||
has_eos_token = !llama_add_eos_token(model);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -754,13 +755,13 @@ struct server_context {
|
|||
default_generation_settings_for_props = get_formated_generation(slots.front());
|
||||
default_generation_settings_for_props["seed"] = -1;
|
||||
|
||||
// the update_slots() logic will always submit a maximum of n_batch tokens
|
||||
// the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
|
||||
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
|
||||
{
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
|
||||
// only a single seq_id per token is needed
|
||||
batch = llama_batch_init(n_batch, 0, 1);
|
||||
batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
|
||||
}
|
||||
|
||||
metrics.init();
|
||||
|
@ -1137,28 +1138,19 @@ struct server_context {
|
|||
if (!system_prompt.empty()) {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int i = 0; i < (int)system_tokens.size(); ++i) {
|
||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
const int32_t n_tokens_prompt = system_tokens.size();
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
|
||||
|
||||
if (llama_decode(ctx, batch_view) != 0) {
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int32_t j = 0; j < n_tokens; ++j) {
|
||||
llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_ERROR("llama_decode() failed", {});
|
||||
return;
|
||||
}
|
||||
|
@ -1331,7 +1323,7 @@ struct server_context {
|
|||
|
||||
return json {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_predict", slot.n_predict},
|
||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||
{"model", params.model_alias},
|
||||
{"seed", slot.sparams.seed},
|
||||
{"temperature", slot.sparams.temp},
|
||||
|
@ -1353,7 +1345,7 @@ struct server_context {
|
|||
{"mirostat_eta", slot.sparams.mirostat_eta},
|
||||
{"penalize_nl", slot.sparams.penalize_nl},
|
||||
{"stop", slot.params.antiprompt},
|
||||
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
|
||||
{"max_tokens", slot.params.n_predict}, // User configured n_predict
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_discard", slot.params.n_discard},
|
||||
{"ignore_eos", ignore_eos},
|
||||
|
@ -1861,6 +1853,8 @@ struct server_context {
|
|||
llama_lora_adapters_apply(ctx, lora_adapters);
|
||||
server_task_result result;
|
||||
result.id = task.id;
|
||||
result.stop = true;
|
||||
result.error = false;
|
||||
result.data = json{{ "success", true }};
|
||||
queue_results.send(result);
|
||||
} break;
|
||||
|
@ -2045,7 +2039,7 @@ struct server_context {
|
|||
slot.t_start_generation = 0;
|
||||
|
||||
if (slot.infill) {
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
bool suff_rm_leading_spc = true;
|
||||
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
|
@ -2513,6 +2507,9 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
// parse arguments from environment variables
|
||||
gpt_params_parse_from_env(params);
|
||||
|
||||
// TODO: not great to use extern vars
|
||||
server_log_json = params.log_json;
|
||||
server_verbose = params.verbosity > 0;
|
||||
|
@ -2563,19 +2560,19 @@ int main(int argc, char ** argv) {
|
|||
svr->set_default_headers({{"Server", "llama.cpp"}});
|
||||
|
||||
// CORS preflight
|
||||
svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
|
||||
// Access-Control-Allow-Origin is already set by middleware
|
||||
res.set_header("Access-Control-Allow-Credentials", "true");
|
||||
res.set_header("Access-Control-Allow-Methods", "POST");
|
||||
res.set_header("Access-Control-Allow-Headers", "*");
|
||||
return res.set_content("", "application/json; charset=utf-8");
|
||||
return res.set_content("", "text/html"); // blank response, no data
|
||||
});
|
||||
|
||||
svr->set_logger(log_server_request);
|
||||
|
||||
auto res_error = [](httplib::Response & res, json error_data) {
|
||||
json final_response {{"error", error_data}};
|
||||
res.set_content(final_response.dump(), "application/json; charset=utf-8");
|
||||
res.set_content(final_response.dump(), MIMETYPE_JSON);
|
||||
res.status = json_value(error_data, "code", 500);
|
||||
};
|
||||
|
||||
|
@ -2605,11 +2602,6 @@ int main(int argc, char ** argv) {
|
|||
svr->set_read_timeout (params.timeout_read);
|
||||
svr->set_write_timeout(params.timeout_write);
|
||||
|
||||
if (!svr->bind_to_port(params.hostname, params.port)) {
|
||||
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
|
||||
log_data["hostname"] = params.hostname;
|
||||
|
@ -2625,35 +2617,6 @@ int main(int argc, char ** argv) {
|
|||
// Necessary similarity of prompt for slot selection
|
||||
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
|
||||
|
||||
// load the model
|
||||
if (!ctx_server.load_model(params)) {
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
} else {
|
||||
ctx_server.init();
|
||||
state.store(SERVER_STATE_READY);
|
||||
}
|
||||
|
||||
LOG_INFO("model loaded", {});
|
||||
|
||||
const auto model_meta = ctx_server.model_meta();
|
||||
|
||||
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
||||
if (params.chat_template.empty()) {
|
||||
if (!ctx_server.validate_model_chat_template()) {
|
||||
LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
||||
params.chat_template = "chatml";
|
||||
}
|
||||
}
|
||||
|
||||
// print sample chat example to make it clear which template is used
|
||||
{
|
||||
LOG_INFO("chat template", {
|
||||
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
|
||||
{"built_in", params.chat_template.empty()},
|
||||
});
|
||||
}
|
||||
|
||||
//
|
||||
// Middlewares
|
||||
//
|
||||
|
@ -2697,8 +2660,6 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// API key is invalid or not provided
|
||||
// TODO: make another middleware for CORS related logic
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
|
||||
|
||||
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
||||
|
@ -2706,8 +2667,21 @@ int main(int argc, char ** argv) {
|
|||
return false;
|
||||
};
|
||||
|
||||
auto middleware_server_state = [&res_error, &state](const httplib::Request &, httplib::Response & res) {
|
||||
server_state current_state = state.load();
|
||||
if (current_state == SERVER_STATE_LOADING_MODEL) {
|
||||
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
// register server middlewares
|
||||
svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) {
|
||||
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!middleware_server_state(req, res)) {
|
||||
return httplib::Server::HandlerResponse::Handled;
|
||||
}
|
||||
if (!middleware_validate_api_key(req, res)) {
|
||||
return httplib::Server::HandlerResponse::Handled;
|
||||
}
|
||||
|
@ -2718,62 +2692,15 @@ int main(int argc, char ** argv) {
|
|||
// Route handlers (or controllers)
|
||||
//
|
||||
|
||||
const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
|
||||
server_state current_state = state.load();
|
||||
switch (current_state) {
|
||||
case SERVER_STATE_READY:
|
||||
{
|
||||
// request slots data using task queue
|
||||
server_task task;
|
||||
task.id = ctx_server.queue_tasks.get_new_id();
|
||||
task.type = SERVER_TASK_TYPE_METRICS;
|
||||
task.id_target = -1;
|
||||
|
||||
ctx_server.queue_results.add_waiting_task_id(task.id);
|
||||
ctx_server.queue_tasks.post(task);
|
||||
|
||||
// get the result
|
||||
server_task_result result = ctx_server.queue_results.recv(task.id);
|
||||
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
||||
|
||||
const int n_idle_slots = result.data.at("idle");
|
||||
const int n_processing_slots = result.data.at("processing");
|
||||
|
||||
json health = {
|
||||
{"status", "ok"},
|
||||
{"slots_idle", n_idle_slots},
|
||||
{"slots_processing", n_processing_slots}
|
||||
};
|
||||
|
||||
res.status = 200; // HTTP OK
|
||||
if (params.endpoint_slots && req.has_param("include_slots")) {
|
||||
health["slots"] = result.data.at("slots");
|
||||
}
|
||||
|
||||
if (n_idle_slots == 0) {
|
||||
health["status"] = "no slot available";
|
||||
if (req.has_param("fail_on_no_slot")) {
|
||||
res.status = 503; // HTTP Service Unavailable
|
||||
}
|
||||
}
|
||||
|
||||
res.set_content(health.dump(), "application/json");
|
||||
break;
|
||||
}
|
||||
case SERVER_STATE_LOADING_MODEL:
|
||||
{
|
||||
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
|
||||
} break;
|
||||
case SERVER_STATE_ERROR:
|
||||
{
|
||||
res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
|
||||
} break;
|
||||
}
|
||||
const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
|
||||
// error and loading states are handled by middleware
|
||||
json health = {{"status", "ok"}};
|
||||
res.set_content(health.dump(), "application/json");
|
||||
};
|
||||
|
||||
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
|
||||
const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
|
||||
if (!params.endpoint_slots) {
|
||||
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
||||
res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -2791,13 +2718,22 @@ int main(int argc, char ** argv) {
|
|||
server_task_result result = ctx_server.queue_results.recv(task.id);
|
||||
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
||||
|
||||
res.set_content(result.data.at("slots").dump(), "application/json");
|
||||
// optionally return "fail_on_no_slot" error
|
||||
const int n_idle_slots = result.data.at("idle");
|
||||
if (req.has_param("fail_on_no_slot")) {
|
||||
if (n_idle_slots == 0) {
|
||||
res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
res.set_content(result.data.at("slots").dump(), MIMETYPE_JSON);
|
||||
res.status = 200; // HTTP OK
|
||||
};
|
||||
|
||||
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
|
||||
if (!params.endpoint_metrics) {
|
||||
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
|
||||
res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -2922,7 +2858,7 @@ int main(int argc, char ** argv) {
|
|||
if (result.error) {
|
||||
res_error(res, result.data);
|
||||
} else {
|
||||
res.set_content(result.data.dump(), "application/json");
|
||||
res.set_content(result.data.dump(), MIMETYPE_JSON);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -2952,7 +2888,7 @@ int main(int argc, char ** argv) {
|
|||
if (result.error) {
|
||||
res_error(res, result.data);
|
||||
} else {
|
||||
res.set_content(result.data.dump(), "application/json");
|
||||
res.set_content(result.data.dump(), MIMETYPE_JSON);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -2972,13 +2908,11 @@ int main(int argc, char ** argv) {
|
|||
if (result.error) {
|
||||
res_error(res, result.data);
|
||||
} else {
|
||||
res.set_content(result.data.dump(), "application/json");
|
||||
res.set_content(result.data.dump(), MIMETYPE_JSON);
|
||||
}
|
||||
};
|
||||
|
||||
const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
std::string id_slot_str = req.path_params.at("id_slot");
|
||||
int id_slot;
|
||||
|
||||
|
@ -3002,7 +2936,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
};
|
||||
|
||||
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
||||
const auto handle_props = [&ctx_server](const httplib::Request &, httplib::Response & res) {
|
||||
std::string template_key = "tokenizer.chat_template", curr_tmpl;
|
||||
int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0);
|
||||
if (tlen > 0) {
|
||||
|
@ -3011,7 +2945,6 @@ int main(int argc, char ** argv) {
|
|||
curr_tmpl = std::string(curr_tmpl_buf.data(), tlen);
|
||||
}
|
||||
}
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = {
|
||||
{ "system_prompt", ctx_server.system_prompt.c_str() },
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
|
@ -3019,7 +2952,7 @@ int main(int argc, char ** argv) {
|
|||
{ "chat_template", curr_tmpl.c_str() }
|
||||
};
|
||||
|
||||
res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
res.set_content(data.dump(), MIMETYPE_JSON);
|
||||
};
|
||||
|
||||
const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
|
@ -3028,8 +2961,6 @@ int main(int argc, char ** argv) {
|
|||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
json data = json::parse(req.body);
|
||||
|
||||
const int id_task = ctx_server.queue_tasks.get_new_id();
|
||||
|
@ -3040,7 +2971,7 @@ int main(int argc, char ** argv) {
|
|||
if (!json_value(data, "stream", false)) {
|
||||
server_task_result result = ctx_server.queue_results.recv(id_task);
|
||||
if (!result.error && result.stop) {
|
||||
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
||||
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
|
||||
} else {
|
||||
res_error(res, result.data);
|
||||
}
|
||||
|
@ -3103,9 +3034,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
};
|
||||
|
||||
const auto handle_models = [¶ms, &model_meta](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) {
|
||||
json models = {
|
||||
{"object", "list"},
|
||||
{"data", {
|
||||
|
@ -3114,12 +3043,12 @@ int main(int argc, char ** argv) {
|
|||
{"object", "model"},
|
||||
{"created", std::time(0)},
|
||||
{"owned_by", "llamacpp"},
|
||||
{"meta", model_meta}
|
||||
{"meta", ctx_server.model_meta()}
|
||||
},
|
||||
}}
|
||||
};
|
||||
|
||||
res.set_content(models.dump(), "application/json; charset=utf-8");
|
||||
res.set_content(models.dump(), MIMETYPE_JSON);
|
||||
};
|
||||
|
||||
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
|
@ -3127,8 +3056,6 @@ int main(int argc, char ** argv) {
|
|||
res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
|
||||
|
||||
const int id_task = ctx_server.queue_tasks.get_new_id();
|
||||
|
@ -3143,7 +3070,7 @@ int main(int argc, char ** argv) {
|
|||
if (!result.error && result.stop) {
|
||||
json result_oai = format_final_response_oaicompat(data, result.data, completion_id);
|
||||
|
||||
res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
||||
res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
|
||||
} else {
|
||||
res_error(res, result.data);
|
||||
}
|
||||
|
@ -3205,8 +3132,6 @@ int main(int argc, char ** argv) {
|
|||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
json data = json::parse(req.body);
|
||||
|
||||
const int id_task = ctx_server.queue_tasks.get_new_id();
|
||||
|
@ -3217,7 +3142,7 @@ int main(int argc, char ** argv) {
|
|||
if (!json_value(data, "stream", false)) {
|
||||
server_task_result result = ctx_server.queue_results.recv(id_task);
|
||||
if (!result.error && result.stop) {
|
||||
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
||||
res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
|
||||
} else {
|
||||
res_error(res, result.data);
|
||||
}
|
||||
|
@ -3265,7 +3190,6 @@ int main(int argc, char ** argv) {
|
|||
};
|
||||
|
||||
const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
const json body = json::parse(req.body);
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
|
@ -3274,11 +3198,10 @@ int main(int argc, char ** argv) {
|
|||
tokens = ctx_server.tokenize(body.at("content"), add_special);
|
||||
}
|
||||
const json data = format_tokenizer_response(tokens);
|
||||
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
return res.set_content(data.dump(), MIMETYPE_JSON);
|
||||
};
|
||||
|
||||
const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
const json body = json::parse(req.body);
|
||||
|
||||
std::string content;
|
||||
|
@ -3288,12 +3211,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
const json data = format_detokenized_response(content);
|
||||
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
return res.set_content(data.dump(), MIMETYPE_JSON);
|
||||
};
|
||||
|
||||
const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
const json body = json::parse(req.body);
|
||||
bool is_openai = false;
|
||||
|
||||
|
@ -3339,11 +3260,10 @@ int main(int argc, char ** argv) {
|
|||
json root = is_openai
|
||||
? format_embeddings_response_oaicompat(body, responses)
|
||||
: responses[0];
|
||||
return res.set_content(root.dump(), "application/json; charset=utf-8");
|
||||
return res.set_content(root.dump(), MIMETYPE_JSON);
|
||||
};
|
||||
|
||||
const auto handle_lora_adapters_list = [&](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
|
||||
json result = json::array();
|
||||
for (size_t i = 0; i < ctx_server.lora_adapters.size(); ++i) {
|
||||
auto & la = ctx_server.lora_adapters[i];
|
||||
|
@ -3353,13 +3273,11 @@ int main(int argc, char ** argv) {
|
|||
{"scale", la.scale},
|
||||
});
|
||||
}
|
||||
res.set_content(result.dump(), "application/json");
|
||||
res.set_content(result.dump(), MIMETYPE_JSON);
|
||||
res.status = 200; // HTTP OK
|
||||
};
|
||||
|
||||
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
const std::vector<json> body = json::parse(req.body);
|
||||
int max_idx = ctx_server.lora_adapters.size();
|
||||
|
||||
|
@ -3387,7 +3305,7 @@ int main(int argc, char ** argv) {
|
|||
server_task_result result = ctx_server.queue_results.recv(id_task);
|
||||
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
||||
|
||||
res.set_content(result.data.dump(), "application/json");
|
||||
res.set_content(result.data.dump(), MIMETYPE_JSON);
|
||||
res.status = 200; // HTTP OK
|
||||
};
|
||||
|
||||
|
@ -3463,35 +3381,75 @@ int main(int argc, char ** argv) {
|
|||
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
|
||||
svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// clean up function, to be called before exit
|
||||
auto clean_up = [&svr]() {
|
||||
svr->stop();
|
||||
llama_backend_free();
|
||||
};
|
||||
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]() {
|
||||
if (!svr->listen_after_bind()) {
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
// bind HTTP listen port, run the HTTP server in a thread
|
||||
if (!svr->bind_to_port(params.hostname, params.port)) {
|
||||
LOG_ERROR("couldn't bind HTTP server socket", {
|
||||
{"hostname", params.hostname},
|
||||
{"port", params.port},
|
||||
});
|
||||
clean_up();
|
||||
LOG_ERROR("exiting due to HTTP server error", {});
|
||||
return 1;
|
||||
}
|
||||
std::thread t([&]() { svr->listen_after_bind(); });
|
||||
svr->wait_until_ready();
|
||||
|
||||
LOG_INFO("HTTP server is listening", log_data);
|
||||
|
||||
// load the model
|
||||
LOG_INFO("loading model", log_data);
|
||||
if (!ctx_server.load_model(params)) {
|
||||
clean_up();
|
||||
t.join();
|
||||
LOG_ERROR("exiting due to model loading error", {});
|
||||
return 1;
|
||||
} else {
|
||||
ctx_server.init();
|
||||
state.store(SERVER_STATE_READY);
|
||||
|
||||
LOG_INFO("model loaded", {});
|
||||
|
||||
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
||||
if (params.chat_template.empty()) {
|
||||
if (!ctx_server.validate_model_chat_template()) {
|
||||
LOG_WARNING("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
||||
params.chat_template = "chatml";
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
});
|
||||
// print sample chat example to make it clear which template is used
|
||||
{
|
||||
LOG_INFO("chat template", {
|
||||
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
|
||||
{"built_in", params.chat_template.empty()},
|
||||
});
|
||||
}
|
||||
|
||||
ctx_server.queue_tasks.on_new_task(std::bind(
|
||||
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
||||
ctx_server.queue_tasks.on_finish_multitask(std::bind(
|
||||
&server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
|
||||
ctx_server.queue_tasks.on_update_slots(std::bind(
|
||||
&server_context::update_slots, &ctx_server));
|
||||
ctx_server.queue_results.on_multitask_update(std::bind(
|
||||
&server_queue::update_multitask,
|
||||
&ctx_server.queue_tasks,
|
||||
std::placeholders::_1,
|
||||
std::placeholders::_2,
|
||||
std::placeholders::_3
|
||||
));
|
||||
ctx_server.queue_tasks.on_new_task(std::bind(
|
||||
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
||||
ctx_server.queue_tasks.on_finish_multitask(std::bind(
|
||||
&server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
|
||||
ctx_server.queue_tasks.on_update_slots(std::bind(
|
||||
&server_context::update_slots, &ctx_server));
|
||||
ctx_server.queue_results.on_multitask_update(std::bind(
|
||||
&server_queue::update_multitask,
|
||||
&ctx_server.queue_tasks,
|
||||
std::placeholders::_1,
|
||||
std::placeholders::_2,
|
||||
std::placeholders::_3
|
||||
));
|
||||
|
||||
shutdown_handler = [&](int) {
|
||||
ctx_server.queue_tasks.terminate();
|
||||
};
|
||||
shutdown_handler = [&](int) {
|
||||
ctx_server.queue_tasks.terminate();
|
||||
};
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
}
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
|
@ -3507,12 +3465,8 @@ int main(int argc, char ** argv) {
|
|||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
|
||||
svr->stop();
|
||||
clean_up();
|
||||
t.join();
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -205,27 +205,20 @@ def step_start_server(context):
|
|||
async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
|
||||
match expecting_status:
|
||||
case 'healthy':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
timeout=30)
|
||||
await wait_for_slots_status(context, context.base_url, 200,
|
||||
timeout=30)
|
||||
|
||||
case 'ready' | 'idle':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
timeout=30,
|
||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0,
|
||||
expected_slots=[{'id': slot_id, 'state': 0}
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
await wait_for_slots_status(context, context.base_url, 200,
|
||||
timeout=30,
|
||||
params={'fail_on_no_slot': 1},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0)
|
||||
case 'busy':
|
||||
await wait_for_health_status(context, context.base_url, 503,
|
||||
'no slot available',
|
||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||
slots_idle=0,
|
||||
slots_processing=context.n_slots,
|
||||
expected_slots=[{'id': slot_id, 'state': 1}
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
await wait_for_slots_status(context, context.base_url, 503,
|
||||
params={'fail_on_no_slot': 1},
|
||||
slots_idle=0,
|
||||
slots_processing=context.n_slots)
|
||||
case _:
|
||||
assert False, "unknown status"
|
||||
|
||||
|
@ -1187,17 +1180,15 @@ async def gather_tasks_results(context):
|
|||
return n_completions
|
||||
|
||||
|
||||
async def wait_for_health_status(context,
|
||||
base_url,
|
||||
expected_http_status_code,
|
||||
expected_health_status,
|
||||
timeout=3,
|
||||
params=None,
|
||||
slots_idle=None,
|
||||
slots_processing=None,
|
||||
expected_slots=None):
|
||||
async def wait_for_slots_status(context,
|
||||
base_url,
|
||||
expected_http_status_code,
|
||||
timeout=3,
|
||||
params=None,
|
||||
slots_idle=None,
|
||||
slots_processing=None):
|
||||
if context.debug:
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}")
|
||||
print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
|
||||
interval = 0.5
|
||||
counter = 0
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
|
@ -1205,26 +1196,19 @@ async def wait_for_health_status(context,
|
|||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
while True:
|
||||
async with await session.get(f'{base_url}/health', params=params) as health_response:
|
||||
status_code = health_response.status
|
||||
health = await health_response.json()
|
||||
async with await session.get(f'{base_url}/slots', params=params) as slots_response:
|
||||
status_code = slots_response.status
|
||||
slots = await slots_response.json()
|
||||
if context.debug:
|
||||
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
|
||||
f"'{base_url}/health'?{params} is {health}\n")
|
||||
if (status_code == expected_http_status_code
|
||||
and health['status'] == expected_health_status
|
||||
and (slots_idle is None or health['slots_idle'] == slots_idle)
|
||||
and (slots_processing is None or health['slots_processing'] == slots_processing)):
|
||||
if expected_slots is not None:
|
||||
assert_slots_status(health['slots'], expected_slots)
|
||||
return
|
||||
if (status_code == expected_http_status_code
|
||||
and health['status'] == expected_health_status
|
||||
and (slots_idle is None or health['slots_idle'] == slots_idle)
|
||||
and (slots_processing is None or health['slots_processing'] == slots_processing)):
|
||||
if expected_slots is not None:
|
||||
assert_slots_status(health['slots'], expected_slots)
|
||||
print(f"slots responses {slots}\n")
|
||||
if status_code == 503 and status_code == expected_http_status_code:
|
||||
return
|
||||
if status_code == 200 and status_code == expected_http_status_code:
|
||||
n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
|
||||
n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
|
||||
if ((slots_idle is None or slots_idle == n_slots_idle)
|
||||
and (slots_processing is None or slots_processing == n_slots_processing)):
|
||||
return
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
counter += interval
|
||||
|
@ -1238,7 +1222,7 @@ async def wait_for_health_status(context,
|
|||
if n_completions > 0:
|
||||
return
|
||||
|
||||
assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
|
||||
assert False, f'slots check timeout exceeded {counter}s>={timeout}'
|
||||
|
||||
|
||||
def assert_embeddings(embeddings):
|
||||
|
|
|
@ -362,7 +362,7 @@ int main(int raw_argc, char ** raw_argv) {
|
|||
prompt = stdin_buffer.str();
|
||||
}
|
||||
|
||||
const bool model_wants_add_bos = llama_should_add_bos_token(model);
|
||||
const bool model_wants_add_bos = llama_add_bos_token(model);
|
||||
const bool add_bos = model_wants_add_bos && !no_bos;
|
||||
const bool parse_special = !no_parse_special;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue