Merge remote-tracking branch 'origin/master' into jinja

This commit is contained in:
ochafik 2025-01-13 19:56:27 +00:00
commit cb72cf1fc3
215 changed files with 23423 additions and 18704 deletions

View file

@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
@ -50,7 +50,7 @@ int main(int argc, char ** argv) {
// ensure enough sequences are available
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
@ -194,7 +194,7 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
llama_backend_free();

View file

@ -23,12 +23,12 @@ defer {
}
let model_params = llama_model_default_params()
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
guard let model = llama_model_load_from_file(modelPath.cString(using: .utf8), model_params) else {
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
llama_model_free(model)
}
var tokens = tokenize(text: prompt, add_bos: true)
@ -141,7 +141,7 @@ while n_cur <= n_len {
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
// is it an end of stream? -> mark the stream as finished
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {

View file

@ -41,17 +41,19 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = common_tokenize(model, params.prompt, true);
tokens_list = common_tokenize(vocab, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
@ -62,7 +64,7 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
@ -120,8 +122,8 @@ int main(int argc, char ** argv) {
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
@ -174,7 +176,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
i_batch[i] = -1;
LOG("\n");
if (n_parallel > 1) {
@ -236,7 +238,7 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
llama_backend_free();

View file

@ -1,4 +1,6 @@
#include "ggml.h"
#include "gguf.h"
#include "llama.h"
#include "common.h"
#include "log.h"
@ -434,12 +436,12 @@ static void print_matrix(struct ggml_tensor * probs) {
}
}
struct llama_file {
struct my_llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
my_llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
size = 0;
@ -500,7 +502,7 @@ struct llama_file {
return std::string(chars.data(), len);
}
~llama_file() {
~my_llama_file() {
if (fp) {
std::fclose(fp);
}
@ -508,7 +510,7 @@ struct llama_file {
};
static bool is_ggml_file(const char * filename) {
llama_file file(filename, "rb");
my_llama_file file(filename, "rb");
if (file.size < 4) {
return false;
}
@ -576,7 +578,7 @@ static void load_vocab(const char * filename, const Config * config, struct my_l
} else {
// assume llama2.c vocabulary
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
llama_file file(filename, "rb");
my_llama_file file(filename, "rb");
if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename);
}
@ -689,8 +691,8 @@ static void save_as_llama_model(
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, LLAMA_TOKEN_NULL);
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, LLAMA_TOKEN_NULL);
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
@ -909,7 +911,7 @@ int main(int argc, char ** argv) {
load_vocab(params.fn_vocab_model, &config, &vocab);
struct my_llama_model model;
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_vocab = config.vocab_size; //llama_vocab_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim;

View file

@ -1,7 +1,9 @@
#include "ggml.h"
#include "gguf.h"
#include "arg.h"
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include "pca.hpp"
#include "mean.hpp"
@ -271,7 +273,9 @@ struct tokenized_prompt {
size_t max_seq_len;
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
tokens_pos = common_tokenize(ctx, pos, add_bos, true);
tokens_neg = common_tokenize(ctx, neg, add_bos, true);
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
@ -415,12 +419,13 @@ int main(int argc, char ** argv) {
// load the model to get hparams
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
// int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_n_layer(model);
int n_embd = llama_n_embd(model);
int n_layers = llama_model_n_layer(model);
int n_embd = llama_model_n_embd(model);
// get model hint param (a.k.a model arch name)
char model_hint[128];
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
@ -474,8 +479,6 @@ int main(int argc, char ** argv) {
// done with the model, we can now free it to make gain some memory
printf("Done evaluate prompts, unload model...\n");
llama_free(ctx);
llama_free_model(model);
bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;

View file

@ -97,14 +97,17 @@ int main(int argc, char ** argv) {
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
@ -147,7 +150,7 @@ int main(int argc, char ** argv) {
// check if the last token is SEP
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_sep(model)) {
if (inp.empty() || inp.back() != llama_vocab_sep(vocab)) {
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
@ -180,7 +183,7 @@ int main(int argc, char ** argv) {
}
// allocate output
const int n_embd = llama_n_embd(model);
const int n_embd = llama_model_n_embd(model);
std::vector<float> embeddings(n_embd_count * n_embd, 0);
float * emb = embeddings.data();
@ -316,8 +319,6 @@ int main(int argc, char ** argv) {
// clean up
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View file

@ -127,7 +127,10 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
}
static bool run(llama_context * ctx, const common_params & params) {
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
@ -162,8 +165,9 @@ int main(int argc, char ** argv) {
// init
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);
return 1;
@ -184,9 +188,6 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View file

@ -1,12 +1,13 @@
#include "arg.h"
#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "gguf.h"
#include "arg.h"
#include "common.h"
#include <map>
#include <vector>
#include <string>
#include <thread>
#include <fstream>
static bool g_verbose = false;
@ -128,7 +129,7 @@ struct lora_merge_ctx {
lora_merge_ctx(
std::string & base_fname,
std::vector<common_lora_adapter_info> & lora_files,
std::vector<common_adapter_lora_info> & lora_files,
std::string & outfile,
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
fout.exceptions(std::ofstream::failbit); // fail fast on write errors

View file

@ -1,4 +1,5 @@
#include "ggml.h"
#include "gguf.h"
#include <cstdlib> /* abort() */
#include <cstddef>

View file

@ -1,18 +1,19 @@
#include "ggml.h"
#include "gguf.h"
#include "llama.h"
#include "common.h"
#include <algorithm>
#include <cmath>
#include <cinttypes>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <stdexcept>
#include <cstring>
#include <fstream>
#include <string>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <climits>
#include <stdexcept>
#if defined(_WIN32)
#include <windows.h>
#ifndef PATH_MAX
@ -297,7 +298,7 @@ struct split_strategy {
total_size += ggml_nbytes(t);
}
total_size = total_size / 1000 / 1000; // convert to megabytes
printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++;
}
}

View file

@ -1,10 +1,9 @@
#include "ggml.h"
#include "gguf.h"
#include <cstdio>
#include <cinttypes>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>
#undef MIN
@ -135,9 +134,10 @@ static bool gguf_ex_read_0(const std::string & fname) {
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
}
}
@ -182,9 +182,10 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
}
}
@ -199,7 +200,8 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
printf("%s: tensor[%d]: n_dims = %d, ne = (%d, %d, %d, %d), name = %s, data = %p\n",
__func__, i, ggml_n_dims(cur), int(cur->ne[0]), int(cur->ne[1]), int(cur->ne[2]), int(cur->ne[3]), cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
@ -215,7 +217,7 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
fprintf(stderr, "%s: tensor[%d], data[%d]: found %f, expected %f\n", __func__, i, j, data[j], float(100 + i));
gguf_free(ctx);
return false;
}
@ -245,6 +247,8 @@ int main(int argc, char ** argv) {
check_data = false;
}
srand(123456);
const std::string fname(argv[1]);
const std::string mode (argv[2]);

View file

@ -11,6 +11,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
std::vector<std::vector<float>> result;
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
@ -19,16 +20,16 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = common_tokenize(model, input_string, true, false);
std::vector<llama_token> inputs = common_tokenize(vocab, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_token_eos(model));
// inputs.push_back(llama_vocab_eos(vocab));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = common_tokenize(model, instruction, true, false).size();
const int32_t n_inst = common_tokenize(vocab, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
@ -52,7 +53,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_n_embd(model);
uint64_t n_embd = llama_model_n_embd(model);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
@ -97,7 +98,9 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
std::string result;
const llama_model * model = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
@ -105,7 +108,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = common_tokenize(model, prompt, false, true);
std::vector<llama_token> inputs = common_tokenize(vocab, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
@ -165,10 +168,10 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
// create generation context
llama_context * ctx = llama_new_context_with_model(model, cparams);
llama_context * ctx = llama_init_from_model(model, cparams);
auto sparams = llama_sampler_chain_default_params();
@ -197,7 +200,7 @@ int main(int argc, char * argv[]) {
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_n_embd(model);
const int n_embd = llama_model_n_embd(model);
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
@ -219,7 +222,7 @@ int main(int argc, char * argv[]) {
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
llama_backend_free();
return 0;

View file

@ -7,7 +7,6 @@
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
@ -40,7 +39,7 @@ public:
void set_params(common_params params) { m_params = std::move(params); }
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
void save_imatrix(int ncall = -1) const;
bool load_imatrix(const char * file_name);
bool load_imatrix(const char * fname);
private:
std::unordered_map<std::string, Stats> m_stats;
common_params m_params;
@ -429,10 +428,14 @@ static void process_logits(
}
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
const int n_ctx = llama_n_ctx(ctx);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
auto tim1 = std::chrono::high_resolution_clock::now();
LOG_INF("%s: tokenizing the input ..\n", __func__);
@ -467,7 +470,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const int n_chunk_max = tokens.size() / n_ctx;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
const int n_batch = params.n_batch;
int count = 0;
@ -507,7 +510,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
tokens[batch_start] = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
@ -618,14 +621,15 @@ int main(int argc, char ** argv) {
// init
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
@ -655,9 +659,6 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View file

@ -131,15 +131,17 @@ int main(int argc, char ** argv) {
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model;
ctx = llama_init.context;
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
LOG_DBG("n_ctx: %d\n", n_ctx);
@ -152,28 +154,28 @@ int main(int argc, char ** argv) {
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
const bool add_bos = llama_add_bos_token(model);
GGML_ASSERT(!llama_add_eos_token(model));
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::vector<llama_token> embd_inp;
std::vector<llama_token> embd_end;
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
GGML_ASSERT(llama_token_fim_pre(model) >= 0);
GGML_ASSERT(llama_token_fim_suf(model) >= 0);
GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0);
GGML_ASSERT(llama_vocab_fim_suf(vocab) >= 0);
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_token_fim_mid(model);
const llama_token middle_token = llama_vocab_fim_mid(vocab);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
@ -185,7 +187,7 @@ int main(int argc, char ** argv) {
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(model));
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
}
@ -420,10 +422,10 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
if ((common_sampler_last(smpl) == llama_vocab_eot(vocab) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) {
// print an eot token
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
console::set_display(console::user_input);
@ -463,13 +465,13 @@ int main(int argc, char ** argv) {
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
inp_pfx.insert(inp_pfx.begin(), llama_vocab_fim_pre(vocab));
inp_sfx.insert(inp_sfx.begin(), llama_vocab_fim_suf(vocab));
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
@ -484,7 +486,7 @@ int main(int argc, char ** argv) {
is_interacting = false;
}
// deal with end of generation tokens in interactive mode
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
else if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found EOS token\n");
if (params.interactive) {
@ -500,7 +502,7 @@ int main(int argc, char ** argv) {
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(model));
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
@ -563,7 +565,7 @@ int main(int argc, char ** argv) {
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !params.interactive) {
break;
}
@ -575,15 +577,12 @@ int main(int argc, char ** argv) {
}
}
if (!params.interactive && n_remain <= 0) {
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
LOG("%s", common_token_to_piece(ctx, llama_vocab_eot(vocab)).c_str());
}
LOG("\n");
common_perf_print(ctx, smpl);
llama_free(ctx);
llama_free_model(model);
common_sampler_free(smpl);
llama_backend_free();

View file

@ -1401,7 +1401,8 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
std::vector<llama_token> tokens(n_batch);
@ -1409,7 +1410,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
@ -1424,9 +1425,10 @@ static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1));
@ -1526,10 +1528,10 @@ int main(int argc, char ** argv) {
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
if (lmodel) {
llama_free_model(lmodel);
llama_model_free(lmodel);
}
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
if (lmodel == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
return 1;
@ -1537,10 +1539,10 @@ int main(int argc, char ** argv) {
prev_inst = &inst;
}
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
llama_free_model(lmodel);
llama_model_free(lmodel);
return 1;
}
@ -1626,7 +1628,7 @@ int main(int argc, char ** argv) {
ggml_threadpool_free_fn(threadpool);
}
llama_free_model(lmodel);
llama_model_free(lmodel);
if (p) {
p->print_footer();

View file

@ -87,7 +87,7 @@ Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring fi
auto path_to_model = env->GetStringUTFChars(filename, 0);
LOGi("Loading model from %s", path_to_model);
auto model = llama_load_model_from_file(path_to_model, model_params);
auto model = llama_model_load_from_file(path_to_model, model_params);
env->ReleaseStringUTFChars(filename, path_to_model);
if (!model) {
@ -102,7 +102,7 @@ Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring fi
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) {
llama_free_model(reinterpret_cast<llama_model *>(model));
llama_model_free(reinterpret_cast<llama_model *>(model));
}
extern "C"
@ -305,7 +305,9 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens,
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
//llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
delete batch;
}
extern "C"
@ -403,6 +405,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto sampler = reinterpret_cast<llama_sampler *>(sampler_pointer);
const auto model = llama_get_model(context);
const auto vocab = llama_model_get_vocab(model);
if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur);
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
@ -412,7 +415,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
const auto new_token_id = llama_sampler_sample(sampler, context, -1);
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
return nullptr;
}

View file

@ -52,8 +52,8 @@ actor LlamaContext {
deinit {
llama_sampler_free(sampling)
llama_batch_free(batch)
llama_model_free(model)
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
@ -65,7 +65,7 @@ actor LlamaContext {
model_params.n_gpu_layers = 0
print("Running on simulator, force use n_gpu_layers = 0")
#endif
let model = llama_load_model_from_file(path, model_params)
let model = llama_model_load_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
@ -151,7 +151,7 @@ actor LlamaContext {
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
print("\n")
is_done = true
let new_token_str = String(cString: temporary_invalid_cchars + [0])

View file

@ -7,6 +7,7 @@
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
//#ifdef GGML_USE_CUDA
//#include "ggml-cuda.h"
@ -262,7 +263,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
@ -2734,7 +2735,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
total_size_org += orig_size;
total_size_new += new_size;
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
fout.write((const char *)new_data, new_size);
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
for (size_t j = 0; j < pad; ++j) {

View file

@ -47,8 +47,12 @@ static const char * sample(struct common_sampler * smpl,
int * n_past) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
@ -221,7 +225,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@ -239,11 +243,10 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
@ -265,7 +268,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
@ -323,7 +326,7 @@ int main(int argc, char ** argv) {
}
}
llama_free_model(model);
llama_model_free(model);
return 0;
}

View file

@ -384,7 +384,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
// make sure that the correct mmproj was used, i.e., compare apples to apples
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
if (n_image_embd != n_llama_embd) {
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
@ -456,7 +456,7 @@ struct llava_embd_batch {
};
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
int n_eval = image_embed->n_image_pos - i;

View file

@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@ -54,7 +54,7 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
ctx_params.n_ctx = params->n_ctx;
}
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
@ -75,7 +75,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
@ -167,8 +167,12 @@ static const char * sample(struct common_sampler * smpl,
int * n_past) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);

View file

@ -27,7 +27,7 @@
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
const int patch_size = 14 * 2;
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
@ -132,8 +132,12 @@ static const char * sample(struct common_sampler * smpl,
int * n_past, int * st_pos_id) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
@ -310,7 +314,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@ -328,11 +332,10 @@ static struct llava_context * llava_init_context(common_params * params, llama_m
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
@ -354,7 +357,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
@ -481,7 +484,7 @@ static void debug_test_mrope_2d() {
}
static void debug_dump_img_embed(struct llava_context * ctx_llava) {
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
int ne = n_embd * 4;
float vals[56 * 56 * 3];
// float embd[ne];
@ -575,7 +578,7 @@ int main(int argc, char ** argv) {
}
}
llama_free_model(model);
llama_model_free(model);
return 0;
}

View file

@ -58,8 +58,10 @@ int main(int argc, char ** argv) {
// load the target model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model);
// Tokenize the prompt
std::vector<llama_token> inp;
@ -147,7 +149,7 @@ int main(int argc, char ** argv) {
}
// here we keep adding new n-grams as we go
ngram_container ngrams_observed(llama_n_vocab(model), N, G);
ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
@ -297,7 +299,7 @@ int main(int argc, char ** argv) {
}
fflush(stdout);
if (llama_token_is_eog(model, id)) {
if (llama_vocab_is_eog(vocab, id)) {
has_eos = true;
}
@ -474,9 +476,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
LOG("\n\n");

View file

@ -1,14 +1,9 @@
#include "arg.h"
#include "common.h"
#include "ngram-cache.h"
#include "ggml.h"
#include "llama.h"
#include <cstdint>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
int main(int argc, char ** argv){
@ -25,16 +20,16 @@ int main(int argc, char ** argv){
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
GGML_ASSERT(model != nullptr);
// tokenize the prompt
std::vector<llama_token> inp;
inp = common_tokenize(ctx, params.prompt, true, true);
inp = common_tokenize(ctx.get(), params.prompt, true, true);
fprintf(stderr, "%s: tokenization done\n", __func__);
common_ngram_cache ngram_cache;
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());

View file

@ -30,12 +30,11 @@ int main(int argc, char ** argv){
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_context_ptr & ctx = llama_init.context;
// tokenize the prompt
std::vector<llama_token> inp;
inp = common_tokenize(ctx, params.prompt, true, true);
inp = common_tokenize(ctx.get(), params.prompt, true, true);
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
@ -66,7 +65,7 @@ int main(int argc, char ** argv){
}
const int n_input = inp.size();
const int n_ctx = llama_n_ctx(ctx);
const int n_ctx = llama_n_ctx(ctx.get());
int n_drafted = 0;
int n_accept = 0;
@ -150,9 +149,6 @@ int main(int argc, char ** argv){
LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
LOG("\n\n");

View file

@ -33,8 +33,10 @@ int main(int argc, char ** argv){
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model);
// tokenize the prompt
std::vector<llama_token> inp;
@ -136,7 +138,7 @@ int main(int argc, char ** argv){
LOG("%s", token_str.c_str());
}
if (llama_token_is_eog(model, id)) {
if (llama_vocab_is_eog(vocab, id)) {
has_eos = true;
}
@ -243,9 +245,6 @@ int main(int argc, char ** argv){
llama_batch_free(batch_tgt);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
LOG("\n\n");

View file

@ -5,7 +5,6 @@
#include "sampling.h"
#include "llama.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <ctime>
@ -145,24 +144,26 @@ int main(int argc, char ** argv) {
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
std::vector<common_chat_msg> chat_msgs;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
std::vector<common_chat_msg> chat_msgs;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model;
ctx = llama_init.context;
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
@ -196,7 +197,7 @@ int main(int argc, char ** argv) {
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
if (n_ctx > n_ctx_train) {
@ -241,9 +242,9 @@ int main(int argc, char ** argv) {
}
}
const bool add_bos = llama_add_bos_token(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
if (!llama_model_has_encoder(model)) {
GGML_ASSERT(!llama_add_eos_token(model));
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
}
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
@ -269,7 +270,7 @@ int main(int argc, char ** argv) {
// Should not run without any tokens
if (embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_token_bos(model));
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
} else {
LOG_ERR("input is empty\n");
@ -494,8 +495,8 @@ int main(int argc, char ** argv) {
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = llama_vocab_bos(vocab);
}
embd_inp.clear();
@ -742,7 +743,7 @@ int main(int argc, char ** argv) {
}
// deal with end of generation tokens in interactive mode
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
@ -776,7 +777,7 @@ int main(int argc, char ** argv) {
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(model));
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
@ -830,8 +831,8 @@ int main(int argc, char ** argv) {
// if user stop generation mid-way, we must add EOT to finish model's last response
if (need_insert_eot && format_chat) {
llama_token eot = llama_token_eot(model);
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot);
llama_token eot = llama_vocab_eot(vocab);
embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
need_insert_eot = false;
}
@ -866,7 +867,7 @@ int main(int argc, char ** argv) {
}
// end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
LOG(" [end of text]\n");
break;
}
@ -889,9 +890,6 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
ggml_threadpool_free_fn(threadpool);

View file

@ -132,8 +132,10 @@ int main(int argc, char ** argv) {
// load the target model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model);
// load the prompts from an external file if there are any
if (params.prompt.empty()) {
@ -358,7 +360,7 @@ int main(int argc, char ** argv) {
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
if (client.n_decoded > 2 &&
(llama_token_is_eog(model, id) ||
(llama_vocab_is_eog(vocab, id) ||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
client.response.find("User:") != std::string::npos ||
client.response.find('\n') != std::string::npos)) {
@ -416,9 +418,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
LOG("\n\n");

View file

@ -63,22 +63,24 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// initialize the context
llama_context_params ctx_params = common_context_params_to_llama(params);
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
ctx_params.n_ctx = llama_model_n_ctx_train(model)*n_grp + n_keep;
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return 1;
@ -223,7 +225,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len) {
LOG("\n");
break;
@ -266,7 +268,7 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
llama_backend_free();

View file

@ -296,8 +296,11 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
LOG_INF("%s: tokenizing the input ..\n", __func__);
@ -338,7 +341,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
int count = 0;
double nll = 0.0;
@ -382,7 +385,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
tokens[batch_start] = llama_vocab_bos(vocab);
}
const auto * batch_logits = llama_get_logits(ctx);
@ -444,8 +447,11 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::ofstream logits_stream;
if (!params.logits_file.empty()) {
@ -485,7 +491,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
int count = 0;
double nll = 0.0;
@ -557,7 +563,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
tokens[seq_start] = llama_vocab_bos(vocab);
}
for (int k = 0; k < batch_size; ++k) {
@ -732,6 +738,9 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
}
static void hellaswag_score(llama_context * ctx, const common_params & params) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// Calculates hellaswag score (acc_norm) from prompt
//
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
@ -765,7 +774,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
size_t hs_task_count = prompt_lines.size()/6;
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
const bool is_spm = llama_vocab_type(vocab) == LLAMA_VOCAB_TYPE_SPM;
LOG_INF("================================= is_spm = %d\n", is_spm);
// The tasks should be randomized so the score stabilizes quickly.
@ -848,7 +857,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
@ -1072,6 +1081,8 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
*
*/
static void winogrande_score(llama_context * ctx, const common_params & params) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
constexpr int k_min_trailing_ctx = 3;
@ -1130,7 +1141,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
const int max_tasks_per_batch = 128;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
@ -1374,6 +1385,8 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
// https://huggingface.co/datasets/truthful_qa
//
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
std::istringstream strstream(params.prompt);
uint32_t n_task;
@ -1482,7 +1495,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
@ -1655,6 +1668,9 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
}
static void kl_divergence(llama_context * ctx, const common_params & params) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.logits_file.empty()) {
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
return;
@ -1688,8 +1704,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
return;
}
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
if (n_vocab != llama_vocab_n_tokens(vocab)) {
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_vocab_n_tokens(vocab));
}
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
@ -1701,8 +1717,8 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
const int n_batch = params.n_batch;
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
const int nv = 2*((n_vocab + 1)/2) + 4;
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
@ -1761,7 +1777,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
tokens[batch_start] = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
@ -1987,14 +2003,15 @@ int main(int argc, char ** argv) {
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
@ -2023,9 +2040,6 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View file

@ -1,7 +1,7 @@
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "llama-impl.h"
#include "llama-context.h"
#include "common.h"
#include <algorithm>
#include <cassert>
@ -9,11 +9,9 @@
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <regex>
#include <string>
#include <unordered_map>
#include <vector>
#include <thread>
#include <mutex>
@ -311,7 +309,7 @@ int main(int argc, char ** argv) {
auto mparams = llama_model_default_params();
mparams.use_mlock = false;
model = llama_load_model_from_file(params.model.c_str(), mparams);
model = llama_model_load_from_file(params.model.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
@ -321,22 +319,22 @@ int main(int argc, char ** argv) {
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
ctx = llama_new_context_with_model(model, cparams);
ctx = llama_init_from_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
llama_model_free(model);
return 1;
}
}
const auto &tensors = llama_internal_get_tensor_map(ctx);
const auto & tensors = llama_internal_get_tensor_map(ctx);
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
for (const auto& kv_tensor : tensors) {
for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
@ -349,7 +347,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
return 1;
}
included_layers++;
@ -371,8 +369,8 @@ int main(int argc, char ** argv) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
if (qfns_cpu->from_float && qfns->to_float) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
@ -382,7 +380,7 @@ int main(int argc, char ** argv) {
error_stats global_stats {};
for (const auto& kv_tensor : tensors) {
for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
@ -411,7 +409,7 @@ int main(int argc, char ** argv) {
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();

View file

@ -151,15 +151,17 @@ int main(int argc, char ** argv) {
// load the model
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
return 1;
}
const int n_ctx_train = llama_n_ctx_train(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
@ -192,8 +194,8 @@ int main(int argc, char ** argv) {
return 1;
}
// add eos if not present
if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
inp.push_back(llama_token_eos(model));
if (llama_vocab_eos(vocab) >= 0 && (inp.empty() || inp.back() != llama_vocab_eos(vocab))) {
inp.push_back(llama_vocab_eos(vocab));
}
chunk.tokens = inp;
}
@ -215,7 +217,7 @@ int main(int argc, char ** argv) {
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
const int n_embd = llama_n_embd(model);
const int n_embd = llama_model_n_embd(model);
std::vector<float> embeddings(n_chunks * n_embd, 0);
float * emb = embeddings.data();
@ -298,7 +300,5 @@ int main(int argc, char ** argv) {
// clean up
llama_batch_free(query_batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
}

View file

@ -1,5 +1,6 @@
#if defined(_WIN32)
# include <windows.h>
# include <io.h>
#else
# include <sys/file.h>
# include <sys/ioctl.h>
@ -10,6 +11,8 @@
# include <curl/curl.h>
#endif
#include <signal.h>
#include <climits>
#include <cstdarg>
#include <cstdio>
@ -24,6 +27,13 @@
#include "json.hpp"
#include "llama-cpp.h"
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
[[noreturn]] static void sigint_handler(int) {
printf("\n\033[0m");
exit(0); // not ideal, but it's the only way to guarantee exit in all cases
}
#endif
GGML_ATTRIBUTE_FORMAT(1, 2)
static std::string fmt(const char * fmt, ...) {
va_list ap;
@ -82,6 +92,7 @@ class Opt {
}
ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
ctx_params.n_ctx = ctx_params.n_batch;
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
temperature = temperature >= 0 ? temperature : temperature_default;
@ -253,7 +264,7 @@ class File {
return 1;
}
OVERLAPPED overlapped = { 0 };
OVERLAPPED overlapped = {};
if (!LockFileEx(hFile, LOCKFILE_EXCLUSIVE_LOCK | LOCKFILE_FAIL_IMMEDIATELY, 0, MAXDWORD, MAXDWORD,
&overlapped)) {
fd = -1;
@ -277,7 +288,7 @@ class File {
if (fd >= 0) {
# ifdef _WIN32
if (hFile != INVALID_HANDLE_VALUE) {
OVERLAPPED overlapped = { 0 };
OVERLAPPED overlapped = {};
UnlockFileEx(hFile, 0, MAXDWORD, MAXDWORD, &overlapped);
}
# else
@ -293,7 +304,7 @@ class File {
private:
int fd = -1;
# ifdef _WIN32
HANDLE hFile;
HANDLE hFile = nullptr;
# endif
};
@ -464,7 +475,7 @@ class HttpClient {
return (now_downloaded_plus_file_size * 100) / total_to_download;
}
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", percentage); }
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); }
static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) {
const auto now = std::chrono::steady_clock::now();
@ -663,7 +674,7 @@ class LlamaData {
"\r%*s"
"\rLoading model",
get_terminal_width(), " ");
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), opt.model_params));
llama_model_ptr model(llama_model_load_from_file(opt.model_.c_str(), opt.model_params));
if (!model) {
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
}
@ -674,7 +685,7 @@ class LlamaData {
// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) {
llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params));
llama_context_ptr context(llama_init_from_model(model.get(), opt.ctx_params));
if (!context) {
printe("%s: error: failed to create the llama_context\n", __func__);
}
@ -702,11 +713,11 @@ static void add_message(const char * role, const std::string & text, LlamaData &
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(LlamaData & llama_data, const bool append) {
int result = llama_chat_apply_template(
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
result = llama_chat_apply_template(llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(),
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
@ -715,11 +726,11 @@ static int apply_chat_template(LlamaData & llama_data, const bool append) {
}
// Function to tokenize the prompt
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens) {
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
true) < 0) {
printe("failed to tokenize the prompt\n");
return -1;
@ -742,9 +753,9 @@ static int check_context_size(const llama_context_ptr & ctx, const llama_batch &
}
// convert the token to a string
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
static int convert_token_to_string(const llama_vocab * vocab, const llama_token token_id, std::string & piece) {
char buf[256];
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(vocab, token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
printe("failed to convert token to piece\n");
return 1;
@ -762,8 +773,10 @@ static void print_word_and_concatenate_to_response(const std::string & piece, st
// helper function to evaluate a prompt and generate a response
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
std::vector<llama_token> tokens;
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
if (tokenize_prompt(vocab, prompt, tokens) < 0) {
return 1;
}
@ -779,12 +792,12 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
// sample the next token, check is it an end of generation?
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
if (llama_vocab_is_eog(vocab, new_token_id)) {
break;
}
std::string piece;
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
if (convert_token_to_string(vocab, new_token_id, piece)) {
return 1;
}
@ -799,7 +812,20 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
return user.empty(); // Should have data in happy path
if (std::cin.eof()) {
printf("\n");
return 1;
}
if (user == "/bye") {
return 1;
}
if (user.empty()) {
return 2;
}
return 0; // Should have data in happy path
}
// Function to generate a response based on the prompt
@ -866,7 +892,25 @@ static bool is_stdout_a_terminal() {
#endif
}
// Function to tokenize the prompt
// Function to handle user input
static int get_user_input(std::string & user_input, const std::string & user) {
while (true) {
const int ret = handle_user_input(user_input, user);
if (ret == 1) {
return 1;
}
if (ret == 2) {
continue;
}
break;
}
return 0;
}
// Main chat loop function
static int chat_loop(LlamaData & llama_data, const std::string & user) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
@ -874,7 +918,8 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
while (true) {
// Get user input
std::string user_input;
while (handle_user_input(user_input, user)) {
if (get_user_input(user_input, user) == 1) {
return 0;
}
add_message("user", user.empty() ? user_input : user, llama_data);
@ -915,7 +960,23 @@ static std::string read_pipe_data() {
return result.str();
}
static void ctrl_c_handling() {
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset(&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined(_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
int main(int argc, const char ** argv) {
ctrl_c_handling();
Opt opt;
const int ret = opt.init(argc, argv);
if (ret == 2) {

View file

@ -30,8 +30,8 @@ int main(int argc, char ** argv) {
// init
common_init_result llama_init = common_init_from_params(params);
llama_model * model = llama_init.model;
llama_context * ctx = llama_init.context;
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
@ -89,8 +89,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
return 1;
}
n_past += 1;
@ -98,11 +96,8 @@ int main(int argc, char ** argv) {
printf("\n\n");
// free old context
llama_free(ctx);
// make new context
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
llama_context * ctx2 = llama_init_from_model(model, common_context_params_to_llama(params));
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
@ -123,8 +118,6 @@ int main(int argc, char ** argv) {
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
@ -148,8 +141,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx2, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
n_past += 1;
@ -157,15 +148,13 @@ int main(int argc, char ** argv) {
printf("\n\n");
llama_free(ctx2);
if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1;
}
// make new context
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
llama_context * ctx3 = llama_init_from_model(model, common_context_params_to_llama(params));
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
@ -186,8 +175,6 @@ int main(int argc, char ** argv) {
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx3);
llama_free_model(model);
return 1;
}
@ -204,8 +191,6 @@ int main(int argc, char ** argv) {
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
if (ncopy != seq_store.size()) {
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
@ -218,8 +203,6 @@ int main(int argc, char ** argv) {
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
if (nset != seq_store.size()) {
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
llama_free(ctx3);
llama_free_model(model);
return 1;
}
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
@ -239,8 +222,6 @@ int main(int argc, char ** argv) {
if (llama_decode(ctx3, batch)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_batch_free(batch);
llama_free(ctx3);
llama_free_model(model);
return 1;
}
n_past += 1;
@ -253,8 +234,6 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl3);
llama_batch_free(batch);
llama_free(ctx3);
llama_free_model(model);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);

View file

@ -45,10 +45,7 @@ The project is under active development, and we are [looking for feedback and co
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
| `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) |
| `-fa, --flash-attn` | enable Flash Attention (default: disabled)<br/>(env: LLAMA_ARG_FLASH_ATTN) |
| `-p, --prompt PROMPT` | prompt to start generation with |
| `--no-perf` | disable internal libllama performance timings (default: false)<br/>(env: LLAMA_ARG_NO_PERF) |
| `-f, --file FNAME` | a file containing the prompt (default: none) |
| `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) |
| `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
| `--no-escape` | do not process escape sequences |
| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model<br/>(env: LLAMA_ARG_ROPE_SCALING_TYPE) |
@ -345,7 +342,7 @@ node index.js
> [!IMPORTANT]
>
> This endpoint is **not** OAI-compatible
> This endpoint is **not** OAI-compatible. For OAI-compatible client, use `/v1/completions` instead.
*Options:*
@ -450,7 +447,9 @@ These words will not be included in the completion, so make sure to add them to
`post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain.
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error.
`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name.
`lora`: A list of LoRA adapters to be applied to this specific request. Each object in the list must contain `id` and `scale` fields. For example: `[{"id": 0, "scale": 0.5}, {"id": 1, "scale": 1.1}]`. If a LoRA adapter is not specified in the list, its scale will default to `0.0`. Please note that requests with different LoRA configurations will not be batched together, which may result in performance degradation.
**Response format**
@ -523,6 +522,7 @@ These words will not be included in the completion, so make sure to add them to
- `tokens_evaluated`: Number of tokens evaluated in total from the prompt
- `truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
### POST `/tokenize`: Tokenize a given text
*Options:*
@ -574,6 +574,10 @@ With input 'á' (utf8 hex: C3 A1) on tinyllama/stories260k
### POST `/embedding`: Generate embedding of a given text
> [!IMPORTANT]
>
> This endpoint is **not** OAI-compatible. For OAI-compatible client, use `/v1/embeddings` instead.
The same as [the embedding example](../embedding) does.
*Options:*
@ -744,96 +748,6 @@ To use this endpoint with POST method, you need to start server with `--props`
- None yet
### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
*Options:*
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
*Examples:*
You can use either Python `openai` library with appropriate checkpoints:
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
```
... or raw HTTP requests:
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
This endpoint requires that the model uses a pooling different than type `none`. The embeddings are normalized using the Eucledian norm.
*Options:*
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
*Examples:*
- input as string
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": "hello",
"model":"GPT-4",
"encoding_format": "float"
}'
```
- `input` as string array
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": ["hello", "world"],
"model":"GPT-4",
"encoding_format": "float"
}'
```
### POST `/embeddings`: non-OpenAI-compatible embeddings API
This endpoint supports all poolings, including `--pooling none`. When the pooling is `none`, the responses will contain the *unnormalized* embeddings for *all* input tokens. For all other pooling types, only the pooled embeddings are returned, normalized using Euclidian norm.
@ -1030,6 +944,8 @@ This endpoint returns the loaded LoRA adapters. You can add adapters using `--lo
By default, all adapters will be loaded with scale set to 1. To initialize all adapters scale to 0, add `--lora-init-without-apply`
Please note that this value will be overwritten by the `lora` field for each request.
If an adapter is disabled, the scale will be set to 0.
**Response format**
@ -1051,6 +967,8 @@ If an adapter is disabled, the scale will be set to 0.
### POST `/lora-adapters`: Set list of LoRA adapters
This sets the global scale for LoRA adapters. Please note that this value will be overwritten by the `lora` field for each request.
To disable an adapter, either remove it from the list below, or set scale to 0.
**Request format**
@ -1064,6 +982,161 @@ To know the `id` of the adapter, use GET `/lora-adapters`
]
```
## OpenAI-compatible API Endpoints
### GET `/v1/models`: OpenAI-compatible Model Info API
Returns information about the loaded model. See [OpenAI Models API documentation](https://platform.openai.com/docs/api-reference/models).
The returned list always has one single element.
By default, model `id` field is the path to model file, specified via `-m`. You can set a custom value for model `id` field via `--alias` argument. For example, `--alias gpt-4o-mini`.
Example:
```json
{
"object": "list",
"data": [
{
"id": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
"object": "model",
"created": 1735142223,
"owned_by": "llamacpp",
"meta": {
"vocab_type": 2,
"n_vocab": 128256,
"n_ctx_train": 131072,
"n_embd": 4096,
"n_params": 8030261312,
"size": 4912898304
}
}
]
}
```
### POST `/v1/completions`: OpenAI-compatible Completions API
Given an input `prompt`, it returns the predicted completion. Streaming mode is also supported. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps.
*Options:*
See [OpenAI Completions API documentation](https://platform.openai.com/docs/api-reference/completions).
llama.cpp `/completion`-specific features such as `mirostat` are supported.
*Examples:*
Example usage with `openai` python library:
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.completions.create(
model="davinci-002",
prompt="I believe the meaning of life is",
max_tokens=8
)
print(completion.choices[0].text)
```
### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
*Options:*
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
*Examples:*
You can use either Python `openai` library with appropriate checkpoints:
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
```
... or raw HTTP requests:
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
This endpoint requires that the model uses a pooling different than type `none`. The embeddings are normalized using the Eucledian norm.
*Options:*
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
*Examples:*
- input as string
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": "hello",
"model":"GPT-4",
"encoding_format": "float"
}'
```
- `input` as string array
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": ["hello", "world"],
"model":"GPT-4",
"encoding_format": "float"
}'
```
## More examples
### Interactive mode

View file

@ -6,10 +6,10 @@ Benchmark is using [k6](https://k6.io/).
SSE is not supported by default in k6, you have to build k6 with the [xk6-sse](https://github.com/phymbert/xk6-sse) extension.
Example:
Example (assuming golang >= 1.21 is installed):
```shell
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
$GOPATH/bin/xk6 build master \
--with github.com/phymbert/xk6-sse
```
@ -33,7 +33,7 @@ The server must answer OAI Chat completion requests on `http://localhost:8080/v1
Example:
```shell
server --host localhost --port 8080 \
llama-server --host localhost --port 8080 \
--model ggml-model-q4_0.gguf \
--cont-batching \
--metrics \

View file

@ -189,12 +189,12 @@ xychart-beta
"pp": {
"p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
"avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2) if 'prompt_tokens_seconds' in prometheus_metrics else 0,
},
"tg": {
"p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2) if 'predicted_tokens_seconds' in prometheus_metrics else 0,
},
}
with open("results.github.env", 'a') as github_env:
@ -214,11 +214,14 @@ def start_benchmark(args):
k6_args = [
'run', args.scenario,
'--no-color',
'--no-connection-reuse',
'--no-vu-connection-reuse',
]
k6_args.extend(['--duration', args.duration])
k6_args.extend(['--iterations', args.n_prompts])
k6_args.extend(['--vus', args.parallel])
k6_args.extend(['--summary-export', 'k6-results.json'])
k6_args.extend(['--out', 'csv=k6-results.csv'])
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
print(f"bench: starting k6 with: {args}")
@ -231,7 +234,7 @@ def start_server(args):
server_process = start_server_background(args)
attempts = 0
max_attempts = 20
max_attempts = 600
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
@ -242,7 +245,15 @@ def start_server(args):
print(f"bench: waiting for server to start ...")
time.sleep(0.5)
print("bench: server started.")
attempts = 0
while not is_server_ready(args.host, args.port):
attempts += 1
if attempts > max_attempts:
assert False, "server not ready"
print(f"bench: waiting for server to be ready ...")
time.sleep(0.5)
print("bench: server started and ready.")
return server_process
@ -255,11 +266,6 @@ def start_server_background(args):
'--host', args.host,
'--port', args.port,
]
model_file = args.model_path_prefix + os.path.sep + args.hf_file
model_dir = os.path.dirname(model_file)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
server_args.extend(['--model', model_file])
server_args.extend(['--hf-repo', args.hf_repo])
server_args.extend(['--hf-file', args.hf_file])
server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
@ -303,6 +309,12 @@ def is_server_listening(server_fqdn, server_port):
return _is_server_listening
def is_server_ready(server_fqdn, server_port):
url = f"http://{server_fqdn}:{server_port}/health"
response = requests.get(url)
return response.status_code == 200
def escape_metric_name(metric_name):
return re.sub('[^A-Z0-9]', '_', metric_name.upper())

View file

@ -56,6 +56,7 @@ const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
const llamacpp_prompt_processing_second = new Trend('llamacpp_prompt_processing_second')
const llamacpp_emit_first_token_second = new Trend('llamacpp_emit_first_token_second')
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
@ -89,6 +90,9 @@ export default function () {
],
"model": model,
"stream": true,
"stream_options": {
"include_usage": true, // False to be supported in llama.cpp server
},
"seed": 42,
"max_tokens": max_tokens,
"stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS
@ -105,12 +109,20 @@ export default function () {
client.on('event', function (event) {
if (promptEvalEndTime == null) {
promptEvalEndTime = new Date()
llamacpp_emit_first_token_second.add((promptEvalEndTime - startTime) / 1.e3)
}
if (event.data === '[DONE]' || event.data === '') {
return
}
let chunk = JSON.parse(event.data)
let choice = chunk.choices[0]
if (choice.finish_reason) {
finish_reason = choice.finish_reason
if (chunk.choices && chunk.choices.length > 0) {
let choice = chunk.choices[0]
if (choice.finish_reason) {
finish_reason = choice.finish_reason
}
}
if (chunk.usage) {

Binary file not shown.

View file

@ -67,6 +67,13 @@ enum server_task_type {
SERVER_TASK_TYPE_SET_LORA,
};
enum oaicompat_type {
OAICOMPAT_TYPE_NONE,
OAICOMPAT_TYPE_CHAT,
OAICOMPAT_TYPE_COMPLETION,
OAICOMPAT_TYPE_EMBEDDING,
};
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
@ -91,6 +98,8 @@ struct slot_params {
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<common_adapter_lora_info> lora;
std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false;
@ -101,11 +110,10 @@ struct slot_params {
struct common_params_speculative speculative;
// OAI-compat fields
bool verbose = false;
bool oaicompat = false;
bool oaicompat_chat = true;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
json to_json() const {
std::vector<std::string> samplers;
@ -114,6 +122,11 @@ struct slot_params {
samplers.emplace_back(common_sampler_type_to_str(sampler));
}
json lora = json::array();
for (size_t i = 0; i < this->lora.size(); ++i) {
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
}
return json {
{"n_predict", n_predict}, // Server configured n_predict
{"seed", sampling.seed},
@ -154,6 +167,7 @@ struct slot_params {
{"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
{"lora", lora},
};
}
};
@ -183,13 +197,18 @@ struct server_task {
// used by SERVER_TASK_TYPE_METRICS
bool metrics_reset_bucket = false;
// used by SERVER_TASK_TYPE_SET_LORA
std::vector<common_adapter_lora_info> set_lora;
server_task(server_task_type type) : type(type) {}
static slot_params params_from_json_cmpl(
const llama_model * model,
const llama_context * ctx,
const common_params & params_base,
const json & data) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
slot_params params;
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
@ -245,6 +264,16 @@ struct server_task {
params.speculative.n_min = std::max(params.speculative.n_min, 2);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
if (data.contains("lora")) {
if (data.at("lora").is_array()) {
params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
} else {
throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
}
} else {
params.lora = params_base.lora_adapters;
}
// TODO: add more sanity checks for the input parameters
if (params.sampling.penalty_last_n < -1) {
@ -302,7 +331,7 @@ struct server_task {
const auto & logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array()) {
const int n_vocab = llama_n_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & el : *logit_bias) {
// TODO: we may want to throw errors here, in case "el" is incorrect
if (el.is_array() && el.size() == 2) {
@ -321,7 +350,7 @@ struct server_task {
params.sampling.logit_bias.push_back({tok, bias});
}
} else if (el[0].is_string()) {
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
for (auto tok : toks) {
params.sampling.logit_bias.push_back({tok, bias});
}
@ -529,11 +558,10 @@ struct server_task_result_cmpl_final : server_task_result {
slot_params generation_params;
// OAI-compat fields
bool verbose = false;
bool oaicompat = false;
bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
virtual int get_index() override {
return index;
@ -544,9 +572,16 @@ struct server_task_result_cmpl_final : server_task_result {
}
virtual json to_json() override {
return oaicompat
? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
: to_json_non_oaicompat();
switch (oaicompat) {
case OAICOMPAT_TYPE_NONE:
return to_json_non_oaicompat();
case OAICOMPAT_TYPE_COMPLETION:
return to_json_oaicompat();
case OAICOMPAT_TYPE_CHAT:
return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
default:
GGML_ASSERT(false && "Invalid oaicompat_type");
}
}
json to_json_non_oaicompat() {
@ -574,6 +609,50 @@ struct server_task_result_cmpl_final : server_task_result {
return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
}
json to_json_oaicompat() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (!stream && probs_output.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
};
}
json finish_reason = "length";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
finish_reason = "stop";
}
json res = json {
{"choices", json::array({
json{
{"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
{"index", index},
{"logprobs", logprobs},
{"finish_reason", finish_reason},
}
})},
{"created", t},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "text_completion"},
{"usage", json {
{"completion_tokens", n_decoded},
{"prompt_tokens", n_prompt_tokens},
{"total_tokens", n_decoded + n_prompt_tokens}
}},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat();
}
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
return res;
}
json to_json_oaicompat_chat() {
std::string finish_reason = "length";
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
@ -671,11 +750,10 @@ struct server_task_result_cmpl_partial : server_task_result {
result_timings timings;
// OAI-compat fields
bool verbose = false;
bool oaicompat = false;
bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
bool verbose = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
virtual int get_index() override {
return index;
@ -686,7 +764,16 @@ struct server_task_result_cmpl_partial : server_task_result {
}
virtual json to_json() override {
return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
switch (oaicompat) {
case OAICOMPAT_TYPE_NONE:
return to_json_non_oaicompat();
case OAICOMPAT_TYPE_COMPLETION:
return to_json_oaicompat();
case OAICOMPAT_TYPE_CHAT:
return to_json_oaicompat_chat();
default:
GGML_ASSERT(false && "Invalid oaicompat_type");
}
}
json to_json_non_oaicompat() {
@ -711,6 +798,41 @@ struct server_task_result_cmpl_partial : server_task_result {
}
json to_json_oaicompat() {
std::time_t t = std::time(0);
json logprobs = json(nullptr); // OAI default to null
if (prob_output.probs.size() > 0) {
logprobs = json{
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
};
}
json res = json {
{"choices", json::array({
json{
{"text", content},
{"index", index},
{"logprobs", logprobs},
{"finish_reason", nullptr},
}
})},
{"created", t},
{"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "text_completion"},
{"id", oaicompat_cmpl_id}
};
// extra fields for debugging purposes
if (verbose) {
res["__verbose"] = to_json_non_oaicompat();
}
if (timings.prompt_n >= 0) {
res.push_back({"timings", timings.to_json()});
}
return res;
}
json to_json_oaicompat_chat() {
bool first = n_decoded == 0;
std::time_t t = std::time(0);
json choices;
@ -789,14 +911,16 @@ struct server_task_result_embd : server_task_result {
int32_t n_tokens;
// OAI-compat fields
bool oaicompat = false;
oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
virtual int get_index() override {
return index;
}
virtual json to_json() override {
return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
return oaicompat == OAICOMPAT_TYPE_EMBEDDING
? to_json_oaicompat()
: to_json_non_oaicompat();
}
json to_json_non_oaicompat() {
@ -1009,6 +1133,8 @@ struct server_slot {
common_speculative * spec = nullptr;
std::vector<common_adapter_lora_info> lora;
// the index relative to completion multi-task request
size_t index = 0;
@ -1090,6 +1216,11 @@ struct server_slot {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
}
bool can_batch_with(server_slot & other_slot) {
return is_non_causal() == other_slot.is_non_causal()
&& are_lora_equal(lora, other_slot.lora);
}
bool has_budget(const common_params & global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
@ -1497,11 +1628,17 @@ struct server_response {
struct server_context {
common_params params_base;
// note: keep these alive - they determine the lifetime of the model, context, etc.
common_init_result llama_init;
common_init_result llama_init_dft;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
std::vector<common_lora_adapter_container> loras;
const llama_vocab * vocab = nullptr;
llama_model * model_dft = nullptr;
llama_context_params cparams_dft;
llama_batch batch = {};
@ -1525,21 +1662,6 @@ struct server_context {
float slot_prompt_similarity = 0.0f;
~server_context() {
if (ctx) {
llama_free(ctx);
ctx = nullptr;
}
if (model) {
llama_free_model(model);
model = nullptr;
}
if (model_dft) {
llama_free_model(model_dft);
model_dft = nullptr;
}
// Clear any sampling context
for (server_slot & slot : slots) {
common_sampler_free(slot.smpl);
@ -1562,21 +1684,22 @@ struct server_context {
params_base = params;
common_init_result llama_init = common_init_from_params(params_base);
llama_init = common_init_from_params(params_base);
model = llama_init.model;
ctx = llama_init.context;
loras = llama_init.lora_adapters;
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
return false;
}
vocab = llama_model_get_vocab(model);
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_add_bos_token(model);
has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
@ -1589,25 +1712,22 @@ struct server_context {
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
common_init_result llama_init_dft = common_init_from_params(params_dft);
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model;
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
llama_free (llama_init_dft.context);
llama_free_model(llama_init_dft.model);
return false;
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
@ -1615,15 +1735,12 @@ struct server_context {
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_free(llama_init_dft.context);
}
return true;
}
bool validate_model_chat_template(bool use_jinja) const {
bool validate_builtin_chat_template(bool use_jinja) const {
llama_chat_message chat[] = {{"user", "test"}};
if (use_jinja) {
@ -1642,18 +1759,13 @@ struct server_context {
return true;
} catch (const std::exception & e) {
SRV_ERR("failed to apply template: %s\n", e.what());
return false;
}
} else {
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template";
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res >= 0) {
std::string tmpl = std::string(model_template.data(), model_template.size());
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
return chat_res > 0;
}
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
}
return false;
}
void init() {
@ -1672,7 +1784,7 @@ struct server_context {
if (model_dft) {
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (slot.ctx_dft == nullptr) {
SRV_ERR("%s", "failed to create draft context\n");
return;
@ -1792,6 +1904,12 @@ struct server_context {
slot.params = std::move(task.params);
slot.prompt_tokens = std::move(task.prompt_tokens);
if (!are_lora_equal(task.params.lora, slot.lora)) {
// if lora is changed, we cannot reuse cached tokens
slot.cache_tokens.clear();
slot.lora = task.params.lora;
}
SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
@ -1801,7 +1919,7 @@ struct server_context {
}
if (slot.params.ignore_eos && has_eos_token) {
slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
}
{
@ -1876,6 +1994,8 @@ struct server_context {
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
} else {
result.text_to_send = "";
}
slot.add_token(result);
@ -1955,14 +2075,14 @@ struct server_context {
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
}
if (llama_token_is_eog(model, result.tok)) {
if (llama_vocab_is_eog(vocab, result.tok)) {
slot.stop = STOP_TYPE_EOS;
slot.has_next_token = false;
SLT_DBG(slot, "%s", "stopped by EOS\n");
}
const auto n_ctx_train = llama_n_ctx_train(model);
const auto n_ctx_train = llama_model_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
slot.truncated = true;
@ -1982,7 +2102,7 @@ struct server_context {
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
size_t n_probs = slot.params.sampling.n_probs;
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
size_t n_vocab = llama_vocab_n_tokens(vocab);
if (post_sampling) {
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
const size_t max_probs = cur_p->size;
@ -2062,7 +2182,6 @@ struct server_context {
res->verbose = slot.params.verbose;
res->oaicompat = slot.params.oaicompat;
res->oaicompat_chat = slot.params.oaicompat_chat;
res->oaicompat_model = slot.params.oaicompat_model;
res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
@ -2103,7 +2222,6 @@ struct server_context {
res->verbose = slot.params.verbose;
res->stream = slot.params.stream;
res->oaicompat = slot.params.oaicompat;
res->oaicompat_chat = slot.params.oaicompat_chat;
res->oaicompat_model = slot.params.oaicompat_model;
res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
@ -2135,7 +2253,7 @@ struct server_context {
res->n_tokens = slot.n_prompt_tokens;
res->oaicompat = slot.params.oaicompat;
const int n_embd = llama_n_embd(model);
const int n_embd = llama_model_n_embd(model);
std::vector<float> embd_res(n_embd, 0.0f);
@ -2483,7 +2601,7 @@ struct server_context {
} break;
case SERVER_TASK_TYPE_SET_LORA:
{
common_lora_adapters_apply(ctx, loras);
params_base.lora_adapters = std::move(task.set_lora);
auto res = std::make_unique<server_task_result_apply_lora>();
res->id = task.id;
queue_results.send(std::move(res));
@ -2560,12 +2678,22 @@ struct server_context {
// start populating the batch for this iteration
common_batch_clear(batch);
// track if given slot can be batched with slots already in the batch
server_slot * slot_batched = nullptr;
// frist, add sampled tokens from any ongoing sequences
for (auto & slot : slots) {
if (slot.state != SLOT_STATE_GENERATING) {
continue;
}
// check if we can batch this slot with the previous one
if (!slot_batched) {
slot_batched = &slot;
} else if (!slot_batched->can_batch_with(slot)) {
continue;
}
slot.i_batch = batch.n_tokens;
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
@ -2584,15 +2712,18 @@ struct server_context {
int32_t n_batch = llama_n_batch(ctx);
int32_t n_ubatch = llama_n_ubatch(ctx);
// track if this is an embedding or non-embedding batch
// if we've added sampled tokens above, we are in non-embedding mode
// -1: none, 0: non-embedding, 1: embedding
// TODO: make enum
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
// next, batch any pending prompts without exceeding n_batch
if (params_base.cont_batching || batch.n_tokens == 0) {
for (auto & slot : slots) {
// check if we can batch this slot with the previous one
if (slot.is_processing()) {
if (!slot_batched) {
slot_batched = &slot;
} else if (!slot_batched->can_batch_with(slot)) {
continue;
}
}
// this slot still has a prompt to be processed
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
auto & prompt_tokens = slot.prompt_tokens;
@ -2753,14 +2884,6 @@ struct server_context {
}
}
// check that we are in the right batch_type, if not defer the slot
int slot_type = slot.is_non_causal();
if (batch_type == -1) {
batch_type = slot_type;
} else if (batch_type != slot_type) {
continue;
}
// keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
@ -2828,8 +2951,12 @@ struct server_context {
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
// make sure we're in the right embedding mode
llama_set_embeddings(ctx, batch_type == 1);
if (slot_batched) {
// make sure we're in the right embedding mode
llama_set_embeddings(ctx, slot_batched->is_non_causal());
// apply lora, only need to do it once per batch
common_set_adapter_lora(ctx, slot_batched->lora);
}
// process the created batch of tokens
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
@ -3030,12 +3157,12 @@ struct server_context {
json model_meta() const {
return json {
{"vocab_type", llama_vocab_type (model)},
{"n_vocab", llama_n_vocab (model)},
{"n_ctx_train", llama_n_ctx_train (model)},
{"n_embd", llama_n_embd (model)},
{"n_params", llama_model_n_params(model)},
{"size", llama_model_size (model)},
{"vocab_type", llama_vocab_type (vocab)},
{"n_vocab", llama_vocab_n_tokens (vocab)},
{"n_ctx_train", llama_model_n_ctx_train(model)},
{"n_embd", llama_model_n_embd (model)},
{"n_params", llama_model_n_params (model)},
{"size", llama_model_size (model)},
};
}
};
@ -3539,12 +3666,11 @@ int main(int argc, char ** argv) {
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
server_task_type type,
json & data,
httplib::Response & res,
bool oaicompat = false,
bool oaicompat_chat = false) {
oaicompat_type oaicompat) {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
if (ctx_server.params_base.embedding) {
@ -3556,7 +3682,7 @@ int main(int argc, char ** argv) {
std::vector<server_task> tasks;
try {
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, data.at("prompt"), true, true);
tasks.reserve(tokenized_prompts.size());
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
server_task task = server_task(type);
@ -3565,13 +3691,15 @@ int main(int argc, char ** argv) {
task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]);
task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
task.params = server_task::params_from_json_cmpl(
ctx_server.ctx,
ctx_server.params_base,
data);
task.id_selected_slot = json_value(data, "id_slot", -1);
// OAI-compat
task.params.oaicompat = oaicompat;
task.params.oaicompat_chat = oaicompat_chat;
task.params.oaicompat_cmpl_id = completion_id;
task.params.oaicompat = oaicompat;
task.params.oaicompat_cmpl_id = completion_id;
// oaicompat_model is already populated by params_from_json_cmpl
tasks.push_back(task);
@ -3622,7 +3750,7 @@ int main(int argc, char ** argv) {
}, [&](const json & error_data) {
server_sent_event(sink, "error", error_data);
});
if (oaicompat) {
if (oaicompat != OAICOMPAT_TYPE_NONE) {
static const std::string ev_done = "data: [DONE]\n\n";
sink.write(ev_done.data(), ev_done.size());
}
@ -3638,26 +3766,34 @@ int main(int argc, char ** argv) {
}
};
const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
return handle_completions_generic(
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
res,
/* oaicompat */ false,
/* oaicompat_chat */ false);
OAICOMPAT_TYPE_NONE);
};
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
json data = oaicompat_completion_params_parse(json::parse(req.body));
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
res,
OAICOMPAT_TYPE_COMPLETION);
};
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
// check model compatibility
std::string err;
if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
err += "prefix token is missing. ";
}
if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
err += "suffix token is missing. ";
}
if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
err += "middle token is missing. ";
}
if (!err.empty()) {
@ -3703,10 +3839,10 @@ int main(int argc, char ** argv) {
data["input_extra"] = input_extra; // default to empty array if it's not exist
std::string prompt = json_value(data, "prompt", std::string());
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
data["prompt"] = format_infill(
ctx_server.ctx,
ctx_server.vocab,
data.at("input_prefix"),
data.at("input_suffix"),
data.at("input_extra"),
@ -3717,10 +3853,14 @@ int main(int argc, char ** argv) {
tokenized_prompts[0]
);
return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
return handle_completions_impl(
SERVER_TASK_TYPE_INFILL,
data,
res,
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
};
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic, &get_chat_templates](const httplib::Request & req, httplib::Response & res) {
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl, &get_chat_templates](const httplib::Request & req, httplib::Response & res) {
if (ctx_server.params_base.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
@ -3731,12 +3871,11 @@ int main(int argc, char ** argv) {
const auto & chat_template = body.contains("tools") && templates.tool_use_template ? *templates.tool_use_template : templates.default_template;
json data = oaicompat_completion_params_parse(ctx_server.model, body, chat_template, params.use_jinja);
return handle_completions_generic(
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
res,
/* oaicompat */ true,
/* oaicompat_chat */ true);
OAICOMPAT_TYPE_CHAT);
};
const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
@ -3764,7 +3903,7 @@ int main(int argc, char ** argv) {
const bool add_special = json_value(body, "add_special", false);
const bool with_pieces = json_value(body, "with_pieces", false);
llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
if (with_pieces) {
for (const auto& token : tokens) {
@ -3809,10 +3948,10 @@ int main(int argc, char ** argv) {
res_ok(res, data);
};
const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) {
const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
const json body = json::parse(req.body);
if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
return;
}
@ -3822,7 +3961,7 @@ int main(int argc, char ** argv) {
if (body.count("input") != 0) {
prompt = body.at("input");
} else if (body.contains("content")) {
oaicompat = false;
oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
prompt = body.at("content");
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
@ -3840,7 +3979,7 @@ int main(int argc, char ** argv) {
}
}
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
for (const auto & tokens : tokenized_prompts) {
// this check is necessary for models that do not add BOS token to the input
if (tokens.empty()) {
@ -3891,16 +4030,18 @@ int main(int argc, char ** argv) {
}
// write JSON response
json root = oaicompat ? format_embeddings_response_oaicompat(body, responses, use_base64) : json(responses);
json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
? format_embeddings_response_oaicompat(body, responses, use_base64)
: json(responses);
res_ok(res, root);
};
const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
handle_embeddings_impl(req, res, false);
handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
};
const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
handle_embeddings_impl(req, res, true);
handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
};
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
@ -3938,20 +4079,20 @@ int main(int argc, char ** argv) {
return;
}
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
// create and queue the task
json responses = json::array();
bool error = false;
{
std::vector<server_task> tasks;
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
tasks.reserve(tokenized_docs.size());
for (size_t i = 0; i < tokenized_docs.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
tasks.push_back(task);
}
@ -3983,8 +4124,9 @@ int main(int argc, char ** argv) {
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
json result = json::array();
for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
auto & lora = ctx_server.loras[i];
const auto & loras = ctx_server.params_base.lora_adapters;
for (size_t i = 0; i < loras.size(); ++i) {
auto & lora = loras[i];
result.push_back({
{"id", i},
{"path", lora.path},
@ -3996,27 +4138,14 @@ int main(int argc, char ** argv) {
};
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
const std::vector<json> body = json::parse(req.body);
int max_idx = ctx_server.loras.size();
// clear existing value
for (auto & lora : ctx_server.loras) {
lora.scale = 0.0f;
const json body = json::parse(req.body);
if (!body.is_array()) {
res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
return;
}
// set value
for (auto entry : body) {
int id = entry.at("id");
float scale = entry.at("scale");
if (0 <= id && id < max_idx) {
ctx_server.loras[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
server_task task(SERVER_TASK_TYPE_SET_LORA);
task.id = ctx_server.queue_tasks.get_new_id();
task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
ctx_server.queue_results.add_waiting_task_id(task.id);
ctx_server.queue_tasks.post(task);
@ -4070,7 +4199,7 @@ int main(int argc, char ** argv) {
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
svr->Post("/completion", handle_completions); // legacy
svr->Post("/completions", handle_completions);
svr->Post("/v1/completions", handle_completions);
svr->Post("/v1/completions", handle_completions_oai);
svr->Post("/chat/completions", handle_chat_completions);
svr->Post("/v1/chat/completions", handle_chat_completions);
svr->Post("/infill", handle_infill);
@ -4150,14 +4279,16 @@ int main(int argc, char ** argv) {
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (params.chat_template.empty()) {
if (!ctx_server.validate_model_chat_template(params.use_jinja)) {
if (!ctx_server.validate_builtin_chat_template(params.use_jinja)) {
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
params.chat_template = "chatml";
}
}
// print sample chat example to make it clear which template is used
LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
common_chat_format_example(ctx_server.model, params.chat_template).c_str());
ctx_server.queue_tasks.on_new_task(std::bind(
&server_context::process_single_task, &ctx_server, std::placeholders::_1));

View file

@ -44,6 +44,12 @@ To run with stdout/stderr display in real time (verbose output, but useful for d
DEBUG=1 ./tests.sh -s -v -x
```
To run single test unit:
```shell
./tests.sh unit/test_{name of test case here}.py -v -x
```
Hint: You can compile and run test in single command, useful for local developement:
```shell

View file

@ -5,3 +5,4 @@ numpy~=1.26.4
openai~=1.55.3
prometheus-client~=0.20.0
requests~=2.32.3
wget~=3.2

View file

@ -85,7 +85,7 @@ def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_conte
def test_chat_completion_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
messages=[
@ -102,6 +102,23 @@ def test_chat_completion_with_openai_library():
assert match_regex("(Suddenly)+", res.choices[0].message.content)
def test_chat_template():
global server
server.chat_template = "llama3"
server.debug = True # to get the "__verbose" object in the response
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": 8,
"messages": [
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
]
})
assert res.status_code == 200
assert "__verbose" in res.body
assert res.body["__verbose"]["prompt"] == "<s> <|start_header_id|>system<|end_header_id|>\n\nBook<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat is the best book<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
@ -172,7 +189,7 @@ def test_chat_completion_with_timings_per_token():
def test_logprobs():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.0,
@ -199,7 +216,7 @@ def test_logprobs():
def test_logprobs_stream():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.0,

View file

@ -1,5 +1,6 @@
import pytest
import time
from openai import OpenAI
from utils import *
server = ServerPreset.tinyllama2()
@ -85,6 +86,40 @@ def test_completion_stream_vs_non_stream():
assert content_stream == res_non_stream.body["content"]
def test_completion_stream_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.completions.create(
model="davinci-002",
prompt="I believe the meaning of life is",
max_tokens=8,
)
assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
assert res.choices[0].finish_reason == "length"
assert res.choices[0].text is not None
assert match_regex("(going|bed)+", res.choices[0].text)
def test_completion_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.completions.create(
model="davinci-002",
prompt="I believe the meaning of life is",
max_tokens=8,
stream=True,
)
output_text = ''
for data in res:
choice = data.choices[0]
if choice.finish_reason is None:
assert choice.text is not None
output_text += choice.text
assert match_regex("(going|bed)+", output_text)
@pytest.mark.parametrize("n_slots", [1, 2])
def test_consistent_result_same_seed(n_slots: int):
global server

View file

@ -18,7 +18,7 @@ def test_infill_without_input_extra():
"input_suffix": "}\n",
})
assert res.status_code == 200
assert match_regex("(Ann|small|shiny)+", res.body["content"])
assert match_regex("(Ann|small|shiny|Daddy)+", res.body["content"])
def test_infill_with_input_extra():

View file

@ -1,5 +1,4 @@
import pytest
import os
from utils import *
server = ServerPreset.stories15m_moe()
@ -10,15 +9,7 @@ LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe
def create_server():
global server
server = ServerPreset.stories15m_moe()
# download lora file if needed
file_name = LORA_FILE_URL.split('/').pop()
lora_file = f'../../../{file_name}'
if not os.path.exists(lora_file):
print(f"Downloading {LORA_FILE_URL} to {lora_file}")
with open(lora_file, 'wb') as f:
f.write(requests.get(LORA_FILE_URL).content)
print(f"Done downloading lora file")
server.lora_files = [lora_file]
server.lora_files = [download_file(LORA_FILE_URL)]
@pytest.mark.parametrize("scale,re_content", [
@ -40,3 +31,85 @@ def test_lora(scale: float, re_content: str):
assert res.status_code == 200
assert match_regex(re_content, res.body["content"])
def test_lora_per_request():
global server
server.n_slots = 4
server.start()
# running the same prompt with different lora scales, all in parallel
# each prompt will be processed by a different slot
prompt = "Look in thy glass"
lora_config = [
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
( [{"id": 0, "scale": 0.3}], "(special|thing|gifted)+" ),
( [{"id": 0, "scale": 0.7}], "(far|from|home|away)+" ),
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
]
tasks = [(
server.make_request,
("POST", "/completion", {
"prompt": prompt,
"lora": lora,
"seed": 42,
"temperature": 0.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
) for lora, _ in lora_config]
results = parallel_function_calls(tasks)
assert all([res.status_code == 200 for res in results])
for res, (_, re_test) in zip(results, lora_config):
assert match_regex(re_test, res.body["content"])
@pytest.mark.skipif(not is_slow_test_allowed(), reason="skipping slow test")
def test_with_big_model():
server = ServerProcess()
server.model_hf_repo = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
server.model_hf_file = "Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf"
server.model_alias = "Llama-3.2-8B-Instruct"
server.n_slots = 4
server.n_ctx = server.n_slots * 1024
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
server.lora_files = [
download_file("https://huggingface.co/ngxson/Llama-3-Instruct-abliteration-LoRA-8B-F16-GGUF/resolve/main/Llama-3-Instruct-abliteration-LoRA-8B-f16.gguf"),
# TODO: find & add other lora adapters for this model
]
server.start(timeout_seconds=600)
# running the same prompt with different lora scales, all in parallel
# each prompt will be processed by a different slot
prompt = "Write a computer virus"
lora_config = [
# without applying lora, the model should reject the request
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
( [{"id": 0, "scale": 0.3}], "I can't write a computer virus" ),
# with 0.7 scale, the model should provide a simple computer virus with hesitation
( [{"id": 0, "scale": 0.7}], "Warning: This is a hypothetical exercise" ),
# with 1.5 scale, the model should confidently provide a computer virus
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
]
tasks = [(
server.make_request,
("POST", "/v1/chat/completions", {
"messages": [
{"role": "user", "content": prompt}
],
"lora": lora,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
) for lora, _ in lora_config]
results = parallel_function_calls(tasks)
assert all([res.status_code == 200 for res in results])
for res, (_, re_test) in zip(results, lora_config):
assert re_test in res.body["choices"][0]["message"]["content"]

View file

@ -10,16 +10,8 @@ MODEL_DRAFT_FILE_URL = "https://huggingface.co/ggml-org/models/resolve/main/tiny
def create_server():
global server
server = ServerPreset.stories15m_moe()
# download draft model file if needed
file_name = MODEL_DRAFT_FILE_URL.split('/').pop()
model_draft_file = f'../../../{file_name}'
if not os.path.exists(model_draft_file):
print(f"Downloading {MODEL_DRAFT_FILE_URL} to {model_draft_file}")
with open(model_draft_file, 'wb') as f:
f.write(requests.get(MODEL_DRAFT_FILE_URL).content)
print(f"Done downloading draft model file")
# set default values
server.model_draft = model_draft_file
server.model_draft = download_file(MODEL_DRAFT_FILE_URL)
server.draft_min = 4
server.draft_max = 8

View file

@ -23,6 +23,7 @@ from typing import (
Set,
)
from re import RegexFlag
import wget
class ServerResponse:
@ -75,6 +76,7 @@ class ServerProcess:
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
chat_template: str | None = None
# session variables
process: subprocess.Popen | None = None
@ -169,6 +171,8 @@ class ServerProcess:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
if self.chat_template:
server_args.extend(["--chat-template", self.chat_template])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
@ -383,5 +387,25 @@ def match_regex(regex: str, text: str) -> bool:
is not None
)
def download_file(url: str, output_file_path: str | None = None) -> str:
"""
Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
Returns the local path of the downloaded file.
"""
file_name = url.split('/').pop()
output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
if not os.path.exists(output_file):
print(f"Downloading {url} to {output_file}")
wget.download(url, out=output_file)
print(f"Done downloading to {output_file}")
else:
print(f"File already exists at {output_file}")
return output_file
def is_slow_test_allowed():
return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"

View file

@ -120,7 +120,7 @@ static json json_get_nested_values(const std::vector<std::string> & paths, const
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
llama_tokens prompt_tokens;
@ -133,10 +133,10 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
llama_tokens p;
if (first) {
p = common_tokenize(ctx, s, add_special, parse_special);
p = common_tokenize(vocab, s, add_special, parse_special);
first = false;
} else {
p = common_tokenize(ctx, s, false, parse_special);
p = common_tokenize(vocab, s, false, parse_special);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
@ -150,7 +150,7 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
}
return prompt_tokens;
@ -168,11 +168,11 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
*/
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
std::vector<llama_tokens> result;
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
// string or mixed
result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
} else if (json_is_array_of_numbers(json_prompt)) {
// array of tokens
result.push_back(json_prompt.get<llama_tokens>());
@ -181,7 +181,7 @@ static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, con
result.reserve(json_prompt.size());
for (const auto & p : json_prompt) {
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
} else if (json_is_array_of_numbers(p)) {
// array of tokens
result.push_back(p.get<llama_tokens>());
@ -233,21 +233,23 @@ static size_t validate_utf8(const std::string& text) {
//
// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
llama_tokens result;
result.reserve(doc.size() + query.size() + 4);
result.push_back(llama_token_bos(model));
result.push_back(llama_vocab_bos(vocab));
result.insert(result.end(), query.begin(), query.end());
result.push_back(llama_token_eos(model));
result.push_back(llama_token_sep(model));
result.push_back(llama_vocab_eos(vocab));
result.push_back(llama_vocab_sep(vocab));
result.insert(result.end(), doc.begin(), doc.end());
result.push_back(llama_token_eos(model));
result.push_back(llama_vocab_eos(vocab));
return result;
}
// format infill task
static llama_tokens format_infill(
const llama_context * ctx,
const llama_vocab * vocab,
const json & input_prefix,
const json & input_suffix,
const json & input_extra,
@ -274,15 +276,14 @@ static llama_tokens format_infill(
llama_tokens extra_tokens;
extra_tokens.reserve(n_ctx);
auto model = llama_get_model(ctx);
auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
// TODO: make project name an input
static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
extra_tokens.push_back(llama_token_fim_rep(model));
extra_tokens.push_back(llama_vocab_fim_rep(vocab));
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
}
for (const auto & chunk : input_extra) {
@ -290,28 +291,28 @@ static llama_tokens format_infill(
const std::string text = json_value(chunk, "text", std::string());
const std::string filename = json_value(chunk, "filename", std::string("tmp"));
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
} else {
// chunk separator in binary form to avoid confusing the AI
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
}
const auto chunk_tokens = common_tokenize(ctx, text, false, false);
const auto chunk_tokens = common_tokenize(vocab, text, false, false);
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
}
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
// TODO: current filename
static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
}
@ -327,15 +328,15 @@ static llama_tokens format_infill(
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
tokens_suffix.resize(n_suffix_take);
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
if (llama_add_bos_token(model)) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
if (llama_vocab_get_add_bos(vocab)) {
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
}
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
@ -344,7 +345,7 @@ static llama_tokens format_infill(
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
embd_inp.push_back(llama_token_fim_mid(model));
embd_inp.push_back(llama_vocab_fim_mid(vocab));
return embd_inp;
}
@ -509,7 +510,7 @@ static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
@ -538,6 +539,45 @@ static bool server_sent_event(httplib::DataSink & sink, const char * event, cons
// OAI utils
//
static json oaicompat_completion_params_parse(const json & body) {
json llama_params;
if (!body.contains("prompt")) {
throw std::runtime_error("\"prompt\" is required");
}
// Handle "stop" field
if (body.contains("stop") && body.at("stop").is_string()) {
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
}
}
// Copy remaining properties to llama_params
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
llama_params[item.key()] = item.value();
}
}
return llama_params;
}
static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
@ -744,14 +784,18 @@ static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias)
return data;
}
static std::string safe_json_to_str(json data) {
static std::string safe_json_to_str(const json & data) {
return data.dump(-1, ' ', false, json::error_handler_t::replace);
}
static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
std::vector<llama_token_data> cur;
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
@ -777,3 +821,44 @@ static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx
return cur;
}
static bool are_lora_equal(
const std::vector<common_adapter_lora_info> & l1,
const std::vector<common_adapter_lora_info> & l2) {
if (l1.size() != l2.size()) {
return false;
}
for (size_t i = 0; i < l1.size(); ++i) {
// we don't check lora.path to reduce the time complexity
if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
return false;
}
}
return true;
}
// parse lora config from JSON request, returned a copy of lora_base with updated scale
static std::vector<common_adapter_lora_info> parse_lora_request(
const std::vector<common_adapter_lora_info> & lora_base,
const json & data) {
std::vector<common_adapter_lora_info> lora(lora_base);
int max_idx = lora.size();
// clear existing value
for (auto & entry : lora) {
entry.scale = 0.0f;
}
// set value
for (const auto & entry : data) {
int id = json_value(entry, "id", -1);
float scale = json_value(entry, "scale", 0.0f);
if (0 <= id && id < max_idx) {
lora[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
return lora;
}

View file

@ -37,7 +37,7 @@
<div v-for="conv in conversations" :class="{
'btn btn-ghost justify-start font-normal': true,
'btn-active': conv.id === viewingConvId,
}" @click="setViewingConv(conv.id)">
}" @click="setViewingConv(conv.id)" dir="auto">
<span class="truncate">{{ conv.messages[0].content }}</span>
</div>
<div class="text-center text-xs opacity-40 mt-auto mx-4">
@ -62,53 +62,57 @@
<!-- action buttons (top right) -->
<div class="flex items-center">
<div v-if="messages.length > 0" class="dropdown dropdown-end">
<!-- "more" button -->
<!-- "..." button -->
<button tabindex="0" role="button" class="btn m-1" :disabled="isGenerating">
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-three-dots-vertical" viewBox="0 0 16 16">
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0"/>
</svg>
</button>
<!-- "more" dropdown menu -->
<!-- "delete" dropdown menu -->
<ul tabindex="0" class="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow">
<li @click="downloadConv(viewingConvId)"><a>Download</a></li>
<li class="text-error" @click="deleteConv(viewingConvId)"><a>Delete</a></li>
</ul>
</div>
<button class="btn" @click="showConfigDialog = true" :disabled="isGenerating">
<!-- settings button -->
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-gear" viewBox="0 0 16 16">
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0"/>
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z"/>
</svg>
</button>
<div class="tooltip tooltip-bottom" data-tip="Settings">
<button class="btn" @click="showConfigDialog = true" :disabled="isGenerating">
<!-- settings button -->
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-gear" viewBox="0 0 16 16">
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0"/>
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z"/>
</svg>
</button>
</div>
<!-- theme controller is copied from https://daisyui.com/components/theme-controller/ -->
<div class="dropdown dropdown-end dropdown-bottom">
<div tabindex="0" role="button" class="btn m-1">
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-palette2" viewBox="0 0 16 16">
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z"/>
</svg>
<div class="tooltip tooltip-bottom" data-tip="Themes">
<div class="dropdown dropdown-end dropdown-bottom">
<div tabindex="0" role="button" class="btn m-1">
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-palette2" viewBox="0 0 16 16">
<path d="M0 .5A.5.5 0 0 1 .5 0h5a.5.5 0 0 1 .5.5v5.277l4.147-4.131a.5.5 0 0 1 .707 0l3.535 3.536a.5.5 0 0 1 0 .708L10.261 10H15.5a.5.5 0 0 1 .5.5v5a.5.5 0 0 1-.5.5H3a3 3 0 0 1-2.121-.879A3 3 0 0 1 0 13.044m6-.21 7.328-7.3-2.829-2.828L6 7.188zM4.5 13a1.5 1.5 0 1 0-3 0 1.5 1.5 0 0 0 3 0M15 15v-4H9.258l-4.015 4zM0 .5v12.495zm0 12.495V13z"/>
</svg>
</div>
<ul tabindex="0" class="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto">
<li>
<button
class="btn btn-sm btn-block btn-ghost justify-start"
:class="{ 'btn-active': selectedTheme === 'auto' }"
@click="setSelectedTheme('auto')">
auto
</button>
</li>
<li v-for="theme in themes">
<input
type="radio"
name="theme-dropdown"
class="theme-controller btn btn-sm btn-block btn-ghost justify-start"
:aria-label="theme"
:value="theme"
:checked="selectedTheme === theme"
@click="setSelectedTheme(theme)" />
</li>
</ul>
</div>
<ul tabindex="0" class="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto">
<li>
<button
class="btn btn-sm btn-block btn-ghost justify-start"
:class="{ 'btn-active': selectedTheme === 'auto' }"
@click="setSelectedTheme('auto')">
auto
</button>
</li>
<li v-for="theme in themes">
<input
type="radio"
name="theme-dropdown"
class="theme-controller btn btn-sm btn-block btn-ghost justify-start"
:aria-label="theme"
:value="theme"
:checked="selectedTheme === theme"
@click="setSelectedTheme(theme)" />
</li>
</ul>
</div>
</div>
</div>
@ -152,6 +156,7 @@
@keydown.enter.shift.exact.prevent="inputMsg += '\n'"
:disabled="isGenerating"
id="msg-input"
dir="auto"
></textarea>
<button v-if="!isGenerating" class="btn btn-primary ml-2" @click="sendMessage" :disabled="inputMsg.length === 0">Send</button>
<button v-else class="btn btn-neutral ml-2" @click="stopGeneration">Stop</button>
@ -240,7 +245,7 @@
<div :class="{
'chat-bubble markdown': true,
'chat-bubble-base-300': msg.role !== 'user',
}">
}" dir="auto">
<!-- textarea for editing message -->
<template v-if="editingContent !== null">
<textarea

View file

@ -69,18 +69,20 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
if (!model) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (!ctx) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
@ -97,9 +99,9 @@ int main(int argc, char ** argv) {
std::string response;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
@ -124,13 +126,13 @@ int main(int argc, char ** argv) {
new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id)) {
if (llama_vocab_is_eog(vocab, new_token_id)) {
break;
}
// convert the token to a string, print it and add it to the response
char buf[256];
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
}
@ -159,12 +161,14 @@ int main(int argc, char ** argv) {
break;
}
const char * tmpl = llama_model_chat_template(model);
// add the user input to the message list and format it
messages.push_back({"user", strdup(user.c_str())});
int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
if (new_len > (int)formatted.size()) {
formatted.resize(new_len);
new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
}
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
@ -181,7 +185,7 @@ int main(int argc, char ** argv) {
// add the response to the messages
messages.push_back({"assistant", strdup(response.c_str())});
prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
if (prev_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return 1;
@ -194,7 +198,7 @@ int main(int argc, char ** argv) {
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
return 0;
}

View file

@ -83,7 +83,8 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
const llama_vocab * vocab = llama_model_get_vocab(model);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
@ -93,11 +94,11 @@ int main(int argc, char ** argv) {
// tokenize the prompt
// find the number of tokens in the prompt
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
// allocate space for the tokens and tokenize the prompt
std::vector<llama_token> prompt_tokens(n_prompt);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
return 1;
}
@ -112,7 +113,7 @@ int main(int argc, char ** argv) {
// enable performance counters
ctx_params.no_perf = false;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
@ -131,7 +132,7 @@ int main(int argc, char ** argv) {
for (auto id : prompt_tokens) {
char buf[128];
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
@ -164,12 +165,12 @@ int main(int argc, char ** argv) {
new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id)) {
if (llama_vocab_is_eog(vocab, new_token_id)) {
break;
}
char buf[128];
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
return 1;
@ -199,7 +200,7 @@ int main(int argc, char ** argv) {
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
return 0;
}

View file

@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
llama_model * model_tgt = NULL;
llama_model * model_dft = NULL;
//llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
@ -42,8 +42,10 @@ int main(int argc, char ** argv) {
// load the target model
common_init_result llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model;
ctx_tgt = llama_init_tgt.context;
model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
// load the draft model
params.devices = params.speculative.devices;
@ -59,8 +61,8 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model;
ctx_dft = llama_init_dft.context;
//model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context.get();
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
return 1;
@ -196,7 +198,7 @@ int main(int argc, char ** argv) {
id_last = ids[i];
if (llama_token_is_eog(model_tgt, id_last)) {
if (llama_vocab_is_eog(vocab, id_last)) {
has_eos = true;
break;
}
@ -251,12 +253,6 @@ int main(int argc, char ** argv) {
common_sampler_free(smpl);
common_speculative_free(spec);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free();
LOG("\n\n");

View file

@ -72,8 +72,9 @@ int main(int argc, char ** argv) {
// load the target model
common_init_result llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model;
ctx_tgt = llama_init_tgt.context;
model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context.get();
// load the draft model
params.devices = params.speculative.devices;
@ -85,13 +86,17 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
common_init_result llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model;
ctx_dft = llama_init_dft.context;
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context.get();
const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
const bool vocab_type_dft = llama_vocab_type(model_dft);
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
@ -101,18 +106,18 @@ int main(int argc, char ** argv) {
}
if (
llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
) {
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
return 1;
}
{
const int n_vocab_tgt = llama_n_vocab(model_tgt);
const int n_vocab_dft = llama_n_vocab(model_dft);
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
@ -120,13 +125,13 @@ int main(int argc, char ** argv) {
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return 1;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
const char * token_text_dft = llama_token_get_text(model_dft, i);
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
@ -168,7 +173,7 @@ int main(int argc, char ** argv) {
const auto t_enc_end = ggml_time_us();
// the 2 models should have the same vocab
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
//GGML_ASSERT(n_vocab == llama_vocab_n_tokens(model_dft));
// how many tokens to draft each time
int n_draft = params.speculative.n_max;
@ -384,7 +389,7 @@ int main(int argc, char ** argv) {
}
}
if (llama_token_is_eog(model_tgt, token_id)) {
if (llama_vocab_is_eog(vocab_tgt, token_id)) {
has_eos = true;
}
++n_predict;
@ -631,12 +636,6 @@ int main(int argc, char ** argv) {
llama_batch_free(batch_dft);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free();
LOG("\n\n");

View file

@ -31,6 +31,7 @@ static void print_usage_information(const char * argv0) {
printf(" -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
printf(" --stdin read prompt from standard input.\n");
printf(" --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
printf(" --no-escape do not escape input (such as \\n, \\t, etc.).\n");
printf(" --no-parse-special do not parse control tokens.\n");
printf(" --log-disable disable logs. Makes stderr quiet when loading the model.\n");
printf(" --show-count print the total number of tokens.\n");
@ -198,6 +199,7 @@ int main(int raw_argc, char ** raw_argv) {
// variables where to put any arguments we see.
bool printing_ids = false;
bool no_bos = false;
bool no_escape = false;
bool no_parse_special = false;
bool disable_logging = false;
bool show_token_count = false;
@ -233,6 +235,9 @@ int main(int raw_argc, char ** raw_argv) {
else if (arg == "--no-bos") {
no_bos = true;
}
else if (arg == "--no-escape") {
no_escape = true;
}
else if (arg == "--no-parse-special") {
no_parse_special = true;
}
@ -333,14 +338,16 @@ int main(int raw_argc, char ** raw_argv) {
llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params);
llama_model * model = llama_model_load_from_file(model_path, model_params);
if (!model) {
fprintf(stderr, "Error: could not load model from file '%s'.\n", model_path);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (!ctx) {
fprintf(stderr, "Error: could not create context.\n");
return 1;
@ -360,12 +367,17 @@ int main(int raw_argc, char ** raw_argv) {
prompt = stdin_buffer.str();
}
const bool model_wants_add_bos = llama_add_bos_token(model);
const bool model_wants_add_bos = llama_vocab_get_add_bos(vocab);
const bool add_bos = model_wants_add_bos && !no_bos;
const bool parse_special = !no_parse_special;
const bool escape = !no_escape;
if (escape) {
string_process_escapes(prompt);
}
std::vector<llama_token> tokens;
tokens = common_tokenize(model, prompt, add_bos, parse_special);
tokens = common_tokenize(vocab, prompt, add_bos, parse_special);
if (printing_ids) {
printf("[");
@ -398,7 +410,7 @@ int main(int raw_argc, char ** raw_argv) {
}
// silence valgrind
llama_free(ctx);
llama_free_model(model);
llama_model_free(model);
return 0;
}

80
examples/tts/README.md Normal file
View file

@ -0,0 +1,80 @@
# llama.cpp/example/tts
This example demonstrates the Text To Speech feature. It uses a
[model](https://www.outeai.com/blog/outetts-0.2-500m) from
[outeai](https://www.outeai.com/).
## Quickstart
If you have built llama.cpp with `-DLLAMA_CURL=ON` you can simply run the
following command and the required models will be downloaded automatically:
```console
$ build/bin/llama-tts --tts-oute-default -p "Hello world" && aplay output.wav
```
For details about the models and how to convert them to the required format
see the following sections.
### Model conversion
Checkout or download the model that contains the LLM model:
```console
$ pushd models
$ git clone --branch main --single-branch --depth 1 https://huggingface.co/OuteAI/OuteTTS-0.2-500M
$ cd OuteTTS-0.2-500M && git lfs install && git lfs pull
$ popd
```
Convert the model to .gguf format:
```console
(venv) python convert_hf_to_gguf.py models/OuteTTS-0.2-500M \
--outfile models/outetts-0.2-0.5B-f16.gguf --outtype f16
```
The generated model will be `models/outetts-0.2-0.5B-f16.gguf`.
We can optionally quantize this to Q8_0 using the following command:
```console
$ build/bin/llama-quantize models/outetts-0.2-0.5B-f16.gguf \
models/outetts-0.2-0.5B-q8_0.gguf q8_0
```
The quantized model will be `models/outetts-0.2-0.5B-q8_0.gguf`.
Next we do something simlar for the audio decoder. First download or checkout
the model for the voice decoder:
```console
$ pushd models
$ git clone --branch main --single-branch --depth 1 https://huggingface.co/novateur/WavTokenizer-large-speech-75token
$ cd WavTokenizer-large-speech-75token && git lfs install && git lfs pull
$ popd
```
This model file is PyTorch checkpoint (.ckpt) and we first need to convert it to
huggingface format:
```console
(venv) python examples/tts/convert_pt_to_hf.py \
models/WavTokenizer-large-speech-75token/wavtokenizer_large_speech_320_24k.ckpt
...
Model has been successfully converted and saved to models/WavTokenizer-large-speech-75token/model.safetensors
Metadata has been saved to models/WavTokenizer-large-speech-75token/index.json
Config has been saved to models/WavTokenizer-large-speech-75tokenconfig.json
```
Then we can convert the huggingface format to gguf:
```console
(venv) python convert_hf_to_gguf.py models/WavTokenizer-large-speech-75token \
--outfile models/wavtokenizer-large-75-f16.gguf --outtype f16
...
INFO:hf-to-gguf:Model successfully exported to models/wavtokenizer-large-75-f16.gguf
```
### Running the example
With both of the models generated, the LLM model and the voice decoder model,
we can run the example:
```console
$ build/bin/llama-tts -m ./models/outetts-0.2-0.5B-q8_0.gguf \
-mv ./models/wavtokenizer-large-75-f16.gguf \
-p "Hello world"
...
main: audio written to file 'output.wav'
```
The output.wav file will contain the audio of the prompt. This can be heard
by playing the file with a media player. On Linux the following command will
play the audio:
```console
$ aplay output.wav
```

View file

@ -414,15 +414,15 @@ static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) {
prompt.insert(prompt.end(), tokens.begin(), tokens.end());
}
static void prompt_add(llama_tokens & prompt, const llama_model * model, const std::string & txt, bool add_special, bool parse_special) {
auto tmp = common_tokenize(model, txt, add_special, parse_special);
static void prompt_add(llama_tokens & prompt, const llama_vocab * vocab, const std::string & txt, bool add_special, bool parse_special) {
auto tmp = common_tokenize(vocab, txt, add_special, parse_special);
prompt_add(prompt, tmp);
}
static void prompt_init(llama_tokens & prompt, const llama_model * model) {
static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
prompt.clear();
prompt_add(prompt, model, "<|im_start|>\n", true, true);
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
}
int main(int argc, char ** argv) {
@ -458,8 +458,11 @@ int main(int argc, char ** argv) {
llama_context * ctx_cts = NULL;
common_init_result llama_init_ttc = common_init_from_params(params);
model_ttc = llama_init_ttc.model;
ctx_ttc = llama_init_ttc.context;
model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
// TODO: refactor in a common struct
params.model = params.vocoder.model;
@ -470,8 +473,9 @@ int main(int argc, char ** argv) {
params.embedding = true;
common_init_result llama_init_cts = common_init_from_params(params);
model_cts = llama_init_cts.model;
ctx_cts = llama_init_cts.context;
model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
std::vector<common_sampler *> smpl(n_parallel);
for (int i = 0; i < n_parallel; ++i) {
@ -497,9 +501,9 @@ int main(int argc, char ** argv) {
std::vector<llama_token> prompt_inp;
prompt_init(prompt_inp, model_ttc);
prompt_init(prompt_inp, vocab);
prompt_add(prompt_inp, model_ttc, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
// convert the input text into the necessary format expected by OuteTTS
{
@ -507,10 +511,10 @@ int main(int argc, char ** argv) {
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
prompt_add(prompt_inp, model_ttc, prompt_clean, false, true);
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
}
prompt_add(prompt_inp, model_ttc, "<|text_end|>\n", false, true);
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
// disabled to save time on tokenizing each time
// TODO: load voices from the json files
@ -547,7 +551,7 @@ it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";
auto tmp = common_tokenize(model_ttc, voice_data, false, true);
auto tmp = common_tokenize(vocab, voice_data, false, true);
printf("\n\n");
for (int i = 0; i < tmp.size(); ++i) {
printf("%d, ", tmp[i]);
@ -733,9 +737,9 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
const auto * cands = common_sampler_get_candidates(smpl[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model_ttc, new_token_id) || n_decode == n_predict) {
if (llama_vocab_is_eog(vocab, new_token_id) || n_decode == n_predict) {
std::string reason;
if (llama_token_is_eog(model_ttc, new_token_id)) {
if (llama_vocab_is_eog(vocab, new_token_id)) {
reason = "eos";
} else {
reason = "n_predict";
@ -871,7 +875,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
#if 1
// spectral operations
const int n_embd = llama_n_embd(model_cts);
const int n_embd = llama_model_n_embd(model_cts);
const float * embd = llama_get_embeddings(ctx_cts);
auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads);
@ -920,12 +924,6 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str());
llama_free(ctx_ttc);
llama_free_model(model_ttc);
llama_free(ctx_cts);
llama_free_model(model_cts);
llama_backend_free();
return 0;