convert-hf : simplify MoE weights stacking

This commit is contained in:
Francis Couture-Harpin 2024-04-30 18:12:01 -04:00
parent 698f0b3479
commit cde9ea65e8

View file

@ -23,7 +23,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf import gguf
from convert import LlamaHfVocab, permute from convert import LlamaHfVocab
###### MODEL DEFINITIONS ###### ###### MODEL DEFINITIONS ######
@ -165,10 +165,10 @@ class Model(Protocol):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
return [(self.map_tensor_name(name), data_torch)] return [(self.map_tensor_name(name), data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool: def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
return False return False
def extra_f16_tensors(self, name: str, new_name: str, bid: int | None) -> bool: def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
return False return False
def write_tensors(self): def write_tensors(self):
@ -199,15 +199,16 @@ class Model(Protocol):
data = data.astype(np.float32) data = data.astype(np.float32)
# when both are true, the tensor keeps its original type # when both are true, the tensor keeps its original type
extra_f32 = self.extra_f32_tensors(name, new_name, bid) extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
extra_f16 = self.extra_f16_tensors(name, new_name, bid) extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
# 1d tensors need to be converted to float32 # 1d tensors need to be converted to float32
# Most of the codebase that takes in 1D tensors only handles F32 tensors
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or extra_f32) and not extra_f16: if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or extra_f32) and not extra_f16:
data = data.astype(np.float32) data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16 # if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and (name.endswith(".weight") and n_dims == 2 or extra_f16) and not extra_f32: if self.ftype == 1 and data_dtype == np.float32 and (name.endswith(".weight") and n_dims >= 2 or extra_f16) and not extra_f32:
data = data.astype(np.float16) data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
@ -1038,8 +1039,8 @@ class PersimmonModel(Model):
# self.gguf_writer.add_bos_token_id(71013) # self.gguf_writer.add_bos_token_id(71013)
# self.gguf_writer.add_eos_token_id(71013) # self.gguf_writer.add_eos_token_id(71013)
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool: def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid # unused del name, new_name, bid, n_dims # unused
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?) # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
return True return True
@ -1072,90 +1073,73 @@ class StableLMModel(Model):
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"])) self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
_q_norms: list[dict[str, Tensor]] | None = None
_k_norms: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME n_head = self.hparams["num_attention_heads"]
return super().modify_tensors(data_torch, name, bid) n_kv_head = self.hparams["num_key_value_heads"]
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
q_norms = dict()
k_norms = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
if name.find("q_layernorm.norms") != -1: if name.find("q_layernorm.norms") != -1:
q_norms[name] = data assert bid is not None
if len(q_norms) >= (block_count * n_head):
self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm") if self._q_norms is None:
continue self._q_norms = [{} for _ in range(self.block_count)]
self._q_norms[bid][name] = data_torch
if len(self._q_norms[bid]) >= n_head:
return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
else:
return []
if name.find("k_layernorm.norms") != -1: if name.find("k_layernorm.norms") != -1:
k_norms[name] = data assert bid is not None
if len(k_norms) >= (block_count * n_kv_head):
self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
continue
# map tensor names if self._k_norms is None:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) self._k_norms = [{} for _ in range(self.block_count)]
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape) self._k_norms[bid][name] = data_torch
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32 if len(self._k_norms[bid]) >= n_kv_head:
if self.ftype == 0 and data_dtype == np.float16: return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
data = data.astype(np.float32) else:
return []
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 return [(self.map_tensor_name(name), data_torch)]
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16 def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2: del name, bid, n_dims # unused
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") return new_name.endswith("_norm.weight")
self.gguf_writer.add_tensor(new_name, data) def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
datas: list[Tensor] = []
def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"): # extract the norms in order
for bid in range(block_count):
datas = []
for xid in range(n_head): for xid in range(n_head):
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight" ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
datas.append(norms[ename]) datas.append(norms[ename])
del norms[ename] del norms[ename]
data = np.stack(datas, axis=0) data_torch = torch.cat(datas, dim=0)
data_dtype = data.dtype
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight" merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) new_name = self.map_tensor_name(merged_name)
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16 return [(new_name, data_torch)]
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") def write_tensors(self):
super().write_tensors()
self.gguf_writer.add_tensor(new_name, data) if self._q_norms is not None or self._k_norms is not None:
# flatten two `list[dict[str, Tensor]]` into a single `list[str]`
norms = (
[k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
) + (
[k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
)
if len(norms) > 0:
raise ValueError(f"Unprocessed norms: {norms}")
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM") @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
@ -1195,108 +1179,69 @@ class LlamaModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME n_head = self.hparams["num_attention_heads"]
return super().modify_tensors(data_torch, name, bid)
# Same as super class, but permuting q_proj, k_proj
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads") n_kv_head = self.hparams.get("num_key_value_heads")
n_experts = self.hparams.get("num_local_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.numpy()
if name.endswith("q_proj.weight"): if name.endswith("q_proj.weight"):
data = permute(data, n_head, n_head) data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"): if name.endswith("k_proj.weight"):
data = permute(data, n_head, n_kv_head) data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
data = data.squeeze()
# process the experts separately # process the experts separately
if name.find("block_sparse_moe.experts") != -1: if name.find("block_sparse_moe.experts") != -1:
experts[name] = data n_experts = self.hparams["num_local_experts"]
if len(experts) >= n_experts:
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(n_experts)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor # merge the experts into a single 3d tensor
for bid in range(block_count): for wid in ["w1", "w2", "w3"]:
for wid in range(1, 4): datas: list[Tensor] = []
full = True
for xid in range(n_experts): for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
if ename not in experts: datas.append(self._experts[bid][ename])
full = False del self._experts[bid][ename]
break
if not full:
continue
datas = [] data_torch = torch.cat(datas, dim=0)
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0) merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16: new_name = self.map_tensor_name(merged_name)
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32: tensors.append((new_name, data_torch))
data = data.astype(np.float16) return tensors
else:
return []
merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight" return [(self.map_tensor_name(name), data_torch)]
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) def write_tensors(self):
if new_name is None: super().write_tensors()
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# 1d tensors need to be converted to float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0: if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts.keys()}") raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("GrokForCausalLM") @Model.register("GrokForCausalLM")
@ -1313,95 +1258,44 @@ class GrokModel(Model):
super().set_gguf_parameters() super().set_gguf_parameters()
self.gguf_writer.add_name("Grok") self.gguf_writer.add_name("Grok")
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME
return super().modify_tensors(data_torch, name, bid)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_experts = self.hparams.get("num_local_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# process the experts separately # process the experts separately
if name.find(".moe.") != -1: if name.find(".moe.") != -1:
experts[name] = data n_experts = self.hparams["num_local_experts"]
if len(experts) >= n_experts:
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(n_experts)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor # merge the experts into a single 3d tensor
for bid in range(block_count):
for wid in ["linear", "linear_1", "linear_v"]: for wid in ["linear", "linear_1", "linear_v"]:
full = True datas: list[Tensor] = []
for xid in range(n_experts): for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight" ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
if ename not in experts: datas.append(self._experts[bid][ename])
full = False del self._experts[bid][ename]
break
if not full:
continue
datas = [] data_torch = torch.cat(datas, dim=0)
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32:
data = data.astype(np.float16)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight" merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) new_name = self.map_tensor_name(merged_name)
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") tensors.append((new_name, data_torch))
return tensors
else:
return []
self.gguf_writer.add_tensor(new_name, data) return [(self.map_tensor_name(name), data_torch)]
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("DbrxForCausalLM") @Model.register("DbrxForCausalLM")
@ -1435,13 +1329,8 @@ class DbrxModel(Model):
print(f"gguf: file type = {self.ftype}") print(f"gguf: file type = {self.ftype}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME del bid # unused
return super().modify_tensors(data_torch, name, bid)
def write_tensors(self):
block_count = self.hparams.get("n_layers")
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
n_expert = self.hparams["ffn_config"]["moe_num_experts"] n_expert = self.hparams["ffn_config"]["moe_num_experts"]
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"] n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
n_embd = self.hparams["d_model"] n_embd = self.hparams["d_model"]
@ -1455,6 +1344,7 @@ class DbrxModel(Model):
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert} "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert} "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
experts = False experts = False
for exp_tensor_name in exp_tensor_names.keys(): for exp_tensor_name in exp_tensor_names.keys():
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1: if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
experts = True experts = True
@ -1463,45 +1353,20 @@ class DbrxModel(Model):
data_torch = data_torch.permute(*permute_tensor) data_torch = data_torch.permute(*permute_tensor)
break break
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names # map tensor names
# In MoE models the ffn tensors are typically most of the model weights, # In MoE models the ffn tensors are typically most of the model weights,
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
# Every other model has the weight names ending in .weight, # Every other model has the weight names ending in .weight,
# let's assume that is the convention which is not the case for dbrx: # let's assume that is the convention which is not the case for dbrx:
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15 # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",)) new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape) return [(new_name, data_torch)]
data_dtype = data.dtype
# Most of the codebase that takes in 1D tensors only handles F32 tensors def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
# and most of the outputs tensors are F32. del name, new_name, bid # unused
if data_dtype != np.float32 and n_dims == 1:
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
sys.exit()
# if f32 desired, convert any float16 to float32 return n_dims > 1;
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("MiniCPMForCausalLM") @Model.register("MiniCPMForCausalLM")
@ -1611,98 +1476,57 @@ class Qwen2MoeModel(Model):
if (n_experts := self.hparams.get("num_experts")) is not None: if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts) self.gguf_writer.add_expert_count(n_experts)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME
return super().modify_tensors(data_torch, name, bid)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_experts = self.hparams.get("num_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# process the experts separately # process the experts separately
if name.find("experts") != -1: if name.find("experts") != -1:
experts[name] = data n_experts = self.hparams["num_experts"]
if len(experts) >= n_experts * 3: assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(n_experts)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor # merge the experts into a single 3d tensor
for bid in range(block_count):
for w_name in ["down_proj", "gate_proj", "up_proj"]: for w_name in ["down_proj", "gate_proj", "up_proj"]:
full = True datas: list[Tensor] = []
for xid in range(n_experts): for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
if ename not in experts: datas.append(self._experts[bid][ename])
full = False del self._experts[bid][ename]
break
if not full:
continue
datas = [] data_torch = torch.cat(datas, dim=0)
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32:
data = data.astype(np.float16)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) new_name = self.map_tensor_name(merged_name)
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") tensors.append((new_name, data_torch))
return tensors
else:
return []
self.gguf_writer.add_tensor(new_name, data) return [(self.map_tensor_name(name), data_torch)]
continue
# map tensor names def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) del name, bid, n_dims # unused
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape) return new_name.endswith("_norm.weight")
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32 def write_tensors(self):
if self.ftype == 0 and data_dtype == np.float16: super().write_tensors()
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0: if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts.keys()}") raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("GPT2LMHeadModel") @Model.register("GPT2LMHeadModel")
@ -2152,8 +1976,8 @@ class BertModel(Model):
return [(self.map_tensor_name(name), data_torch)] return [(self.map_tensor_name(name), data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool: def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del new_name, bid # unused del new_name, bid, n_dims # unused
# not used with get_rows, must be F32 # not used with get_rows, must be F32
return name == "embeddings.token_type_embeddings.weight" return name == "embeddings.token_type_embeddings.weight"
@ -2345,7 +2169,9 @@ class MambaModel(Model):
return [(new_name, data_torch)] return [(new_name, data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None) -> bool: def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del n_dims # unused
return new_name in (self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [ return new_name in (self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
gguf.MODEL_TENSOR.SSM_CONV1D, gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.SSM_X, gguf.MODEL_TENSOR.SSM_X,
@ -2386,54 +2212,17 @@ class OlmoModel(Model):
# Same as super class, but permuting q_proj, k_proj # Same as super class, but permuting q_proj, k_proj
# Copied from: LlamaModel # Copied from: LlamaModel
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# FIXME del bid # unused
return super().modify_tensors(data_torch, name, bid)
def write_tensors(self): n_head = self.hparams["num_attention_heads"]
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads") n_kv_head = self.hparams.get("num_key_value_heads")
for name, data_torch in self.get_tensors():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.numpy()
if name.endswith("q_proj.weight"): if name.endswith("q_proj.weight"):
data = permute(data, n_head, n_head) data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"): if name.endswith("k_proj.weight"):
data = permute(data, n_head, n_kv_head) data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
data = data.squeeze() return [(self.map_tensor_name(name), data_torch)]
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# 1d tensors need to be converted to float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######