improve check-requirements.sh
This commit is contained in:
parent
cb58775719
commit
ce26f49208
3 changed files with 186 additions and 194 deletions
|
@ -1,4 +1,5 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
set -euo pipefail
|
||||||
#
|
#
|
||||||
# check-requirements.sh checks all requirements files for each top-level
|
# check-requirements.sh checks all requirements files for each top-level
|
||||||
# convert*.py script.
|
# convert*.py script.
|
||||||
|
@ -8,7 +9,7 @@
|
||||||
# sized tmpfs /tmp or ramdisk is recommended if running this frequently.
|
# sized tmpfs /tmp or ramdisk is recommended if running this frequently.
|
||||||
#
|
#
|
||||||
# usage: ./check-requirements.sh [<working_dir>]
|
# usage: ./check-requirements.sh [<working_dir>]
|
||||||
# ./check-requirements.sh 'nocleanup' [<working_dir>]
|
# ./check-requirements.sh nocleanup [<working_dir>]
|
||||||
#
|
#
|
||||||
# where:
|
# where:
|
||||||
# - <working_dir> is a directory that can be used as the base for
|
# - <working_dir> is a directory that can be used as the base for
|
||||||
|
@ -20,135 +21,108 @@
|
||||||
# - bash >= 3.2.57
|
# - bash >= 3.2.57
|
||||||
# - shellcheck
|
# - shellcheck
|
||||||
#
|
#
|
||||||
# For each script, it creates a fresh venv, `pip install -r` the
|
# For each script, it creates a fresh venv, `pip install`s the requirements, and
|
||||||
# requirements, and finally executes the python script with no arguments to
|
# finally imports the python script to check for `ImportError`.
|
||||||
# check for a `ModuleNotFoundError`.
|
|
||||||
#
|
#
|
||||||
|
|
||||||
log() {
|
log() {
|
||||||
local level="$1"; shift
|
local level=$1 msg=$2
|
||||||
local format="$1"; shift
|
printf >&2 '%s: %s\n' "$level" "$msg"
|
||||||
# shellcheck disable=SC2059
|
|
||||||
>&2 printf "$level: $format\n" "$@"
|
|
||||||
}
|
}
|
||||||
|
|
||||||
debug () {
|
debug() {
|
||||||
log 'DEBUG' "$@"
|
log DEBUG "$@"
|
||||||
}
|
}
|
||||||
|
|
||||||
info() {
|
info() {
|
||||||
log 'INFO' "$@"
|
log INFO "$@"
|
||||||
}
|
}
|
||||||
|
|
||||||
fatal() {
|
fatal() {
|
||||||
log 'FATAL' "$@"
|
log FATAL "$@"
|
||||||
exit 1
|
exit 1
|
||||||
}
|
}
|
||||||
|
|
||||||
cleanup() {
|
cleanup() {
|
||||||
if [[ -n ${workdir+x} && -d $workdir && -w $workdir ]]; then
|
if [[ -n ${workdir+x} && -d $workdir && -w $workdir ]]; then
|
||||||
info "Removing $workdir"
|
info "Removing $workdir"
|
||||||
(
|
local count=0
|
||||||
count=0
|
rm -rfv -- "$workdir" | while read -r; do
|
||||||
rm -rfv "$workdir" | while read -r; do
|
if (( count++ > 750 )); then
|
||||||
if (( count++ > 750 )); then
|
printf .
|
||||||
printf '.'
|
count=0
|
||||||
count=0
|
fi
|
||||||
fi
|
done
|
||||||
done
|
printf '\n'
|
||||||
printf '\n'
|
info "Removed $workdir"
|
||||||
)&
|
|
||||||
wait $!
|
|
||||||
info "Removed '$workdir'"
|
|
||||||
fi
|
fi
|
||||||
}
|
}
|
||||||
|
|
||||||
abort() {
|
if [[ ${1-} == nocleanup ]]; then
|
||||||
cleanup
|
shift # discard nocleanup arg
|
||||||
exit 1
|
|
||||||
}
|
|
||||||
|
|
||||||
if [[ $1 == nocleanup ]]; then
|
|
||||||
shift # discard nocleanup arg
|
|
||||||
else
|
else
|
||||||
trap abort SIGINT SIGTERM SIGQUIT SIGABRT
|
trap exit INT TERM
|
||||||
trap cleanup EXIT
|
trap cleanup EXIT
|
||||||
fi
|
fi
|
||||||
|
|
||||||
set -eu -o pipefail
|
this=$(realpath -- "$0"); readonly this
|
||||||
this="$(realpath "$0")"; readonly this
|
|
||||||
cd "$(dirname "$this")"
|
cd "$(dirname "$this")"
|
||||||
|
|
||||||
shellcheck "$this"
|
shellcheck "$this"
|
||||||
|
|
||||||
readonly reqs_dir='./requirements'
|
readonly reqs_dir=requirements
|
||||||
|
|
||||||
workdir=
|
if [[ ${1+x} ]]; then
|
||||||
if [[ -n ${1+x} ]]; then
|
tmp_dir=$(realpath -- "$1")
|
||||||
arg_dir="$(realpath "$1")"
|
if [[ ! ( -d $tmp_dir && -w $tmp_dir ) ]]; then
|
||||||
if [[ ! ( -d $arg_dir && -w $arg_dir ) ]]; then
|
fatal "$tmp_dir is not a writable directory"
|
||||||
fatal "$arg_dir is not a valid directory"
|
|
||||||
fi
|
fi
|
||||||
workdir="$(mktemp -d "$arg_dir/check-requirements.XXXX")"
|
|
||||||
else
|
else
|
||||||
workdir="$(mktemp -d "/tmp/check-requirements.XXXX")"
|
tmp_dir=/tmp
|
||||||
fi
|
fi
|
||||||
readonly workdir
|
|
||||||
|
|
||||||
|
workdir=$(mktemp -d "$tmp_dir/check-requirements.XXXX"); readonly workdir
|
||||||
info "Working directory: $workdir"
|
info "Working directory: $workdir"
|
||||||
|
|
||||||
assert_arg_count() {
|
|
||||||
local argcount="$1"; shift
|
|
||||||
if (( $# != argcount )); then
|
|
||||||
fatal "${FUNCNAME[1]}: incorrect number of args"
|
|
||||||
fi
|
|
||||||
}
|
|
||||||
|
|
||||||
check_requirements() {
|
check_requirements() {
|
||||||
assert_arg_count 2 "$@"
|
local reqs=$1
|
||||||
local venv="$1"
|
|
||||||
local reqs="$2"
|
|
||||||
|
|
||||||
info "$reqs: beginning check"
|
info "$reqs: beginning check"
|
||||||
(
|
pip --disable-pip-version-check install -qr "$reqs"
|
||||||
# shellcheck source=/dev/null
|
|
||||||
source "$venv/bin/activate"
|
|
||||||
pip --disable-pip-version-check install -q -r "$reqs"
|
|
||||||
)
|
|
||||||
info "$reqs: OK"
|
info "$reqs: OK"
|
||||||
}
|
}
|
||||||
|
|
||||||
check_convert_script() {
|
check_convert_script() {
|
||||||
assert_arg_count 1 "$@"
|
local py=$1 # e.g. ./convert-hf-to-gguf.py
|
||||||
local py="$1"; shift # e.g. ./convert-hf-to-gguf.py
|
local pyname=${py##*/} # e.g. convert-hf-to-gguf.py
|
||||||
local pyname; pyname="$(basename "$py")" # e.g. convert-hf-to-gguf.py
|
pyname=${pyname%.py} # e.g. convert-hf-to-gguf
|
||||||
pyname="${pyname%.py}" # e.g. convert-hf-to-gguf
|
|
||||||
|
|
||||||
info "$py: beginning check"
|
info "$py: beginning check"
|
||||||
|
|
||||||
local reqs="$reqs_dir/requirements-$pyname.txt"
|
local reqs="$reqs_dir/requirements-$pyname.txt"
|
||||||
if [[ ! -r "$reqs" ]]; then
|
if [[ ! -r $reqs ]]; then
|
||||||
fatal "$py missing requirements. Expected: $reqs"
|
fatal "$py missing requirements. Expected: $reqs"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
local venv="$workdir/$pyname-venv"
|
local venv="$workdir/$pyname-venv"
|
||||||
python3 -m venv "$venv"
|
python3 -m venv "$venv"
|
||||||
|
|
||||||
check_requirements "$venv" "$reqs"
|
(
|
||||||
|
|
||||||
# Because we mask the return value of the subshell,
|
|
||||||
# we don't need to use set +e/-e.
|
|
||||||
# shellcheck disable=SC2155
|
|
||||||
local py_err=$(
|
|
||||||
# shellcheck source=/dev/null
|
# shellcheck source=/dev/null
|
||||||
source "$venv/bin/activate"
|
source "$venv/bin/activate"
|
||||||
python "$py" 2>&1
|
|
||||||
|
check_requirements "$reqs"
|
||||||
|
|
||||||
|
python - "$py" "$pyname" <<EOF
|
||||||
|
import sys
|
||||||
|
from importlib.machinery import SourceFileLoader
|
||||||
|
py, pyname = sys.argv[1:]
|
||||||
|
SourceFileLoader(pyname, py).load_module()
|
||||||
|
EOF
|
||||||
)
|
)
|
||||||
|
|
||||||
# shellcheck disable=SC2181
|
rm -rf -- "$venv"
|
||||||
if grep -Fe 'ModuleNotFoundError' <<< "$py_err"; then
|
|
||||||
fatal "$py: some imports not declared in $reqs"
|
|
||||||
fi
|
|
||||||
info "$py: imports OK"
|
info "$py: imports OK"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -156,25 +130,37 @@ readonly ignore_eq_eq='check_requirements: ignore "=="'
|
||||||
|
|
||||||
for req in "$reqs_dir"/*; do
|
for req in "$reqs_dir"/*; do
|
||||||
# Check that all sub-requirements are added to top-level requirements.txt
|
# Check that all sub-requirements are added to top-level requirements.txt
|
||||||
if ! grep -qFe "$req" ./requirements.txt; then
|
if ! grep -qF "$req" requirements.txt; then
|
||||||
fatal "$req needs to be added to ./requirements.txt"
|
fatal "$req needs to be added to requirements.txt"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
# Make sure exact release versions aren't being pinned in the requirements
|
# Make sure exact release versions aren't being pinned in the requirements
|
||||||
# Filters out the ignore string
|
# Filters out the ignore string
|
||||||
req_no_ignore_eq_eq="$(grep -vF "$ignore_eq_eq" "$req")"
|
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then
|
||||||
if grep -Fe '==' <<< "$req_no_ignore_eq_eq" ; then
|
tab=$'\t'
|
||||||
fatal "Avoid pinning exact package versions. Use '~=' instead.\nYou can suppress this error by appending the following to the line: \n\t# $ignore_eq_eq"
|
cat >&2 <<EOF
|
||||||
|
FATAL: Avoid pinning exact package versions. Use '~=' instead.
|
||||||
|
You can suppress this error by appending the following to the line:
|
||||||
|
$tab# $ignore_eq_eq
|
||||||
|
EOF
|
||||||
|
exit 1
|
||||||
fi
|
fi
|
||||||
done
|
done
|
||||||
|
|
||||||
all_venv="$workdir/all-venv"
|
all_venv="$workdir/all-venv"
|
||||||
python3 -m venv "$all_venv"
|
python3 -m venv "$all_venv"
|
||||||
check_requirements "$all_venv" './requirements.txt'
|
|
||||||
|
|
||||||
check_convert_script './convert.py'
|
(
|
||||||
for py in ./convert-*.py;do
|
# shellcheck source=/dev/null
|
||||||
|
source "$all_venv/bin/activate"
|
||||||
|
check_requirements requirements.txt
|
||||||
|
)
|
||||||
|
|
||||||
|
rm -rf -- "$all_venv"
|
||||||
|
|
||||||
|
check_convert_script convert.py
|
||||||
|
for py in convert-*.py; do
|
||||||
check_convert_script "$py"
|
check_convert_script "$py"
|
||||||
done
|
done
|
||||||
|
|
||||||
info "Done! No issues found."
|
info 'Done! No issues found.'
|
||||||
|
|
|
@ -238,7 +238,7 @@ class Model:
|
||||||
tokens: list[bytearray] = []
|
tokens: list[bytearray] = []
|
||||||
toktypes: list[int] = []
|
toktypes: list[int] = []
|
||||||
|
|
||||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
from transformers import AutoTokenizer
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
assert max(tokenizer.vocab.values()) < vocab_size
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
@ -848,7 +848,7 @@ class StableLMModel(Model):
|
||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
self.gguf_writer.add_name(dir_model.name)
|
self.gguf_writer.add_name(self.dir_model.name)
|
||||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
|
@ -894,7 +894,7 @@ class QwenModel(Model):
|
||||||
tokens: list[bytearray] = []
|
tokens: list[bytearray] = []
|
||||||
toktypes: list[int] = []
|
toktypes: list[int] = []
|
||||||
|
|
||||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
from transformers import AutoTokenizer
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||||
vocab_size = hparams["vocab_size"]
|
vocab_size = hparams["vocab_size"]
|
||||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||||
|
@ -1112,43 +1112,48 @@ def parse_args() -> argparse.Namespace:
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
args = parse_args()
|
def main() -> None:
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
dir_model = args.model
|
dir_model = args.model
|
||||||
if not dir_model.is_dir():
|
if not dir_model.is_dir():
|
||||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
ftype_map = {
|
ftype_map = {
|
||||||
"f32": gguf.GGMLQuantizationType.F32,
|
"f32": gguf.GGMLQuantizationType.F32,
|
||||||
"f16": gguf.GGMLQuantizationType.F16,
|
"f16": gguf.GGMLQuantizationType.F16,
|
||||||
}
|
}
|
||||||
|
|
||||||
if args.outfile is not None:
|
if args.outfile is not None:
|
||||||
fname_out = args.outfile
|
fname_out = args.outfile
|
||||||
else:
|
|
||||||
# output in the same directory as the model by default
|
|
||||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
|
||||||
|
|
||||||
print(f"Loading model: {dir_model.name}")
|
|
||||||
|
|
||||||
hparams = Model.load_hparams(dir_model)
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
|
||||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
|
||||||
|
|
||||||
print("Set model parameters")
|
|
||||||
model_instance.set_gguf_parameters()
|
|
||||||
|
|
||||||
print("Set model tokenizer")
|
|
||||||
model_instance.set_vocab()
|
|
||||||
|
|
||||||
if args.vocab_only:
|
|
||||||
print(f"Exporting model vocab to '{fname_out}'")
|
|
||||||
model_instance.write_vocab()
|
|
||||||
else:
|
else:
|
||||||
print(f"Exporting model to '{fname_out}'")
|
# output in the same directory as the model by default
|
||||||
model_instance.write()
|
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||||
|
|
||||||
print(f"Model successfully exported to '{fname_out}'")
|
print(f"Loading model: {dir_model.name}")
|
||||||
|
|
||||||
|
hparams = Model.load_hparams(dir_model)
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
|
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
||||||
|
|
||||||
|
print("Set model parameters")
|
||||||
|
model_instance.set_gguf_parameters()
|
||||||
|
|
||||||
|
print("Set model tokenizer")
|
||||||
|
model_instance.set_vocab()
|
||||||
|
|
||||||
|
if args.vocab_only:
|
||||||
|
print(f"Exporting model vocab to '{fname_out}'")
|
||||||
|
model_instance.write_vocab()
|
||||||
|
else:
|
||||||
|
print(f"Exporting model to '{fname_out}'")
|
||||||
|
model_instance.write()
|
||||||
|
|
||||||
|
print(f"Model successfully exported to '{fname_out}'")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
|
@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
|
||||||
fout.seek((fout.tell() + 31) & -32)
|
fout.seek((fout.tell() + 31) & -32)
|
||||||
|
|
||||||
|
|
||||||
if len(sys.argv) < 2:
|
if __name__ == '__main__':
|
||||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
if len(sys.argv) < 2:
|
||||||
print(
|
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
print(
|
||||||
)
|
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
)
|
||||||
sys.exit(1)
|
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||||
|
|
||||||
model = torch.load(input_model, map_location="cpu")
|
model = torch.load(input_model, map_location="cpu")
|
||||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||||
|
|
||||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||||
print(f"Error: unsupported architecture {arch_name}")
|
print(f"Error: unsupported architecture {arch_name}")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||||
|
|
||||||
with open(input_json, "r") as f:
|
with open(input_json, "r") as f:
|
||||||
params = json.load(f)
|
params = json.load(f)
|
||||||
|
|
||||||
if params["peft_type"] != "LORA":
|
if params["peft_type"] != "LORA":
|
||||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
if params["fan_in_fan_out"] is True:
|
if params["fan_in_fan_out"] is True:
|
||||||
print("Error: param fan_in_fan_out is not supported")
|
print("Error: param fan_in_fan_out is not supported")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
if params["bias"] is not None and params["bias"] != "none":
|
if params["bias"] is not None and params["bias"] != "none":
|
||||||
print("Error: param bias is not supported")
|
print("Error: param bias is not supported")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
# TODO: these seem to be layers that have been trained but without lora.
|
# TODO: these seem to be layers that have been trained but without lora.
|
||||||
# doesn't seem widely used but eventually should be supported
|
# doesn't seem widely used but eventually should be supported
|
||||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||||
print("Error: param modules_to_save is not supported")
|
print("Error: param modules_to_save is not supported")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
with open(output_path, "wb") as fout:
|
with open(output_path, "wb") as fout:
|
||||||
fout.truncate()
|
fout.truncate()
|
||||||
|
|
||||||
write_file_header(fout, params)
|
write_file_header(fout, params)
|
||||||
for k, v in model.items():
|
for k, v in model.items():
|
||||||
orig_k = k
|
orig_k = k
|
||||||
if k.endswith(".default.weight"):
|
if k.endswith(".default.weight"):
|
||||||
k = k.replace(".default.weight", ".weight")
|
k = k.replace(".default.weight", ".weight")
|
||||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||||
continue
|
continue
|
||||||
if k.endswith("lora_A.weight"):
|
if k.endswith("lora_A.weight"):
|
||||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||||
|
v = v.float()
|
||||||
|
v = v.T
|
||||||
|
else:
|
||||||
v = v.float()
|
v = v.float()
|
||||||
v = v.T
|
|
||||||
else:
|
|
||||||
v = v.float()
|
|
||||||
|
|
||||||
t = v.detach().numpy()
|
t = v.detach().numpy()
|
||||||
|
|
||||||
prefix = "base_model.model."
|
prefix = "base_model.model."
|
||||||
if k.startswith(prefix):
|
if k.startswith(prefix):
|
||||||
k = k[len(prefix) :]
|
k = k[len(prefix) :]
|
||||||
|
|
||||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||||
if k.endswith(lora_suffixes):
|
if k.endswith(lora_suffixes):
|
||||||
suffix = k[-len(lora_suffixes[0]):]
|
suffix = k[-len(lora_suffixes[0]):]
|
||||||
k = k[: -len(lora_suffixes[0])]
|
k = k[: -len(lora_suffixes[0])]
|
||||||
else:
|
else:
|
||||||
print(f"Error: unrecognized tensor name {orig_k}")
|
print(f"Error: unrecognized tensor name {orig_k}")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
tname = name_map.get_name(k)
|
tname = name_map.get_name(k)
|
||||||
if tname is None:
|
if tname is None:
|
||||||
print(f"Error: could not map tensor name {orig_k}")
|
print(f"Error: could not map tensor name {orig_k}")
|
||||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
if suffix == ".lora_A.weight":
|
if suffix == ".lora_A.weight":
|
||||||
tname += ".weight.loraA"
|
tname += ".weight.loraA"
|
||||||
elif suffix == ".lora_B.weight":
|
elif suffix == ".lora_B.weight":
|
||||||
tname += ".weight.loraB"
|
tname += ".weight.loraB"
|
||||||
else:
|
else:
|
||||||
assert False
|
assert False
|
||||||
|
|
||||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||||
t.tofile(fout)
|
t.tofile(fout)
|
||||||
|
|
||||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue