llama : support InternLM2 (#5184)
* support InternLM2 inference * add add_space_prefix KV pair
This commit is contained in:
parent
1cfb5372cf
commit
ce32060198
5 changed files with 387 additions and 5 deletions
205
llama.cpp
205
llama.cpp
|
@ -204,6 +204,7 @@ enum llm_arch {
|
|||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
@ -226,6 +227,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
{ LLM_ARCH_ORION, "orion" },
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
};
|
||||
|
||||
enum llm_kv {
|
||||
|
@ -278,6 +280,7 @@ enum llm_kv {
|
|||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
};
|
||||
|
@ -332,6 +335,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
|||
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
|
||||
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
};
|
||||
|
@ -669,7 +673,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
|
||||
{
|
||||
LLM_ARCH_INTERNLM2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
@ -1377,6 +1397,7 @@ enum e_model {
|
|||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_34B,
|
||||
MODEL_40B,
|
||||
|
@ -1618,6 +1639,8 @@ struct llama_vocab {
|
|||
id special_suffix_id = 32008;
|
||||
id special_eot_id = 32010;
|
||||
|
||||
bool add_space_prefix = true;
|
||||
|
||||
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
||||
GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
||||
GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
||||
|
@ -2731,6 +2754,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_40B: return "40B";
|
||||
|
@ -2743,6 +2767,14 @@ static const char * llama_model_type_name(e_model type) {
|
|||
default: return "?B";
|
||||
}
|
||||
}
|
||||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||||
switch (type) {
|
||||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||||
default: return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
||||
model.arch = ml.get_arch();
|
||||
|
@ -3006,6 +3038,15 @@ static void llm_load_hparams(
|
|||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 48: model.type = e_model::MODEL_20B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
|
@ -3057,6 +3098,11 @@ static void llm_load_vocab(
|
|||
vocab.special_unk_id = 0;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
} // The default value of add_space_prefix is true.
|
||||
} else if (tokenizer_name == "gpt2") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
||||
|
||||
|
@ -3269,7 +3315,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
// hparams
|
||||
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
|
||||
LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
|
||||
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
|
||||
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
|
||||
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||||
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
|
||||
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
|
||||
|
@ -4018,8 +4064,35 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
// layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
@ -6588,6 +6661,126 @@ struct llm_build_context {
|
|||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_internlm2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
static struct ggml_cgraph * llama_build_graph(
|
||||
|
@ -6746,6 +6939,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
{
|
||||
result = llm.build_orion();
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
result = llm.build_internlm2();
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -7688,7 +7885,9 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
//
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
if (&fragment == &fragment_buffer.front()) {
|
||||
raw_text = " " + raw_text; // prefix with space if the first token is not special
|
||||
if (vocab.add_space_prefix) {
|
||||
raw_text = " " + raw_text; // prefix with space if the first token is not special
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue