change function use_*_bits into difquant_*_tensors
this to clarify what it does, especially with the 5 additional levels of difquant
This commit is contained in:
parent
cfe866e152
commit
ce86019770
1 changed files with 86 additions and 73 deletions
159
src/llama.cpp
159
src/llama.cpp
|
@ -15866,23 +15866,33 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
const llm_arch arch = qs.model.arch;
|
||||
const auto tn = LLM_TN(arch);
|
||||
|
||||
auto use_few_bits = [](int i_layer, int n_layers) -> bool {
|
||||
// difquant_init_tensors has a broad 12.5% bump to the upper quant.
|
||||
auto difquant_init_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8;
|
||||
};
|
||||
// difquant_init_end_tensors has a broad 25% bump to the upper quant.
|
||||
auto difquant_init_end_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8 || i_layer > 7*n_layers/8;
|
||||
};
|
||||
//few_bits has a broad 25% bump to the upper quant.
|
||||
auto use_some_bits = [](int i_layer, int n_layers) -> bool {
|
||||
// difquant_three_eights_tensors has a broad 37.5% bump to the upper quant.
|
||||
auto difquant_three_eights_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8 || i_layer > 7*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8);
|
||||
};
|
||||
// original formula use_more_bits :
|
||||
// return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
||||
// The intervals of 3 are replaced by a broad bump in the central layers. some_bits has a broad 37.5% bump to the upper quant.
|
||||
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
|
||||
// The intervals of 3 are replaced by a broad bump in the central layers.
|
||||
// difquant_half_tensors replaces it and keeps the broad 50% bump to the upper quant.
|
||||
auto difquant_half_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8 || i_layer > 6*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8);
|
||||
};
|
||||
//more_bits has a broad 50% bump to the upper quant.
|
||||
auto use_many_bits = [](int i_layer, int n_layers) -> bool {
|
||||
// difquant_five_eights_tensors has a broad 62.5% bump to the upper quant.
|
||||
auto difquant_five_eights_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8 || i_layer > 5*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8);
|
||||
};
|
||||
// difquant_six_eights_tensors has a broad 75% bump to the upper quant.
|
||||
auto difquant_six_eights_tensors = [](int i_layer, int n_layers) -> bool {
|
||||
return i_layer <= n_layers/8 || i_layer > 5*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 4*n_layers/8);
|
||||
};
|
||||
//many_bits has a broad 75% bump to the upper quant.
|
||||
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||||
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
||||
if (n_expert > 1) {
|
||||
|
@ -16006,7 +16016,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
difquant_half_tensors(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
new_type = (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
|
@ -16019,8 +16029,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
else new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
else new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL) {
|
||||
|
@ -16034,7 +16044,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XSR) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) {
|
||||
new_type = qs.i_attention_wv < qs.n_attention_wv/8 ? GGML_TYPE_Q5_K :
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv) ? GGML_TYPE_Q5_K : GGML_TYPE_Q5_K;
|
||||
difquant_half_tensors(qs.i_attention_wv, qs.n_attention_wv) ? GGML_TYPE_Q5_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
}
|
||||
++qs.i_attention_wv;
|
||||
|
@ -16080,41 +16090,41 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
else new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
else new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_many_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
else new_type = use_many_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
new_type = difquant_five_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
else new_type = difquant_five_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)) {
|
||||
new_type = GGML_TYPE_IQ4_XS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = use_few_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = difquant_init_end_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_some_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = use_some_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_three_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = difquant_three_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_more_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = use_more_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_half_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = difquant_half_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)
|
||||
new_type = use_many_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = use_many_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_six_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_IQ4_XS;
|
||||
else new_type = difquant_six_eights_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XSR) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) {
|
||||
new_type = qs.i_attention_wk < qs.n_attention_wk/8 ? GGML_TYPE_Q5_K :
|
||||
use_more_bits(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_Q5_K;
|
||||
difquant_half_tensors(qs.i_attention_wk, qs.n_attention_wk) ? GGML_TYPE_Q5_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
}
|
||||
++qs.i_attention_wk;
|
||||
|
@ -16141,18 +16151,18 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XSR) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) {
|
||||
new_type = qs.i_attention_wq < qs.n_attention_wq/8 ? GGML_TYPE_IQ3_S :
|
||||
use_more_bits(qs.i_attention_wq, qs.n_attention_wq) ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_S;
|
||||
difquant_half_tensors(qs.i_attention_wq, qs.n_attention_wq) ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
}
|
||||
++qs.i_attention_wq;
|
||||
} else if (name.find("ffn_down") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: arch != LLM_ARCH_FALCON || difquant_half_tensors(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
|
@ -16161,15 +16171,15 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (arch == LLM_ARCH_FALCON) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
difquant_half_tensors(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
if (difquant_half_tensors(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && difquant_half_tensors(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||||
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||||
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||||
|
@ -16179,37 +16189,40 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS && (i_layer < n_layer/8)) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_IQ2_XXS;
|
||||
if (difquant_half_tensors(i_layer, n_layer)) new_type = GGML_TYPE_IQ2_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_IQ2_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL) {
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||||
new_type = difquant_init_end_tensors(i_layer, n_layer) ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL) {
|
||||
new_type = difquant_half_tensors(i_layer, n_layer) ? GGML_TYPE_IQ3_XXS : GGML_TYPE_IQ2_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = use_few_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
new_type = difquant_init_end_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
new_type = use_many_bits(i_layer, n_layer) ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||||
new_type = difquant_five_eights_tensors(i_layer, n_layer) ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) {
|
||||
new_type = use_few_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_init_end_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
new_type = use_few_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_init_end_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL) {
|
||||
new_type = use_some_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_three_eights_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL) {
|
||||
new_type = use_more_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_half_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL) {
|
||||
new_type = use_many_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
new_type = difquant_six_eights_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ3_S;
|
||||
}
|
||||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
|
@ -16217,7 +16230,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XSR) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) {
|
||||
new_type = i_layer < n_layer/8 ? GGML_TYPE_IQ4_XS :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ4_XS;
|
||||
difquant_half_tensors(i_layer, n_layer) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ4_XS;
|
||||
}
|
||||
}
|
||||
++qs.i_ffn_down;
|
||||
|
@ -16254,7 +16267,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_XSR) {
|
||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) {
|
||||
new_type = qs.i_attention_wo < qs.n_attention_wo/8 ? GGML_TYPE_IQ4_XS :
|
||||
use_more_bits(qs.i_attention_wo, qs.n_attention_wo) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ4_XS;
|
||||
difquant_half_tensors(qs.i_attention_wo, qs.n_attention_wo) ? GGML_TYPE_IQ4_XS : GGML_TYPE_IQ4_XS;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -16291,39 +16304,39 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
else if (name.find("ffn_gate") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS && (use_few_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ1_M;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_M && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS && (use_few_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (use_many_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL && (use_many_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ1_M;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_M && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (difquant_five_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL && (difquant_six_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
++qs.i_ffn_gate;
|
||||
}
|
||||
else if (name.find("ffn_up") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS && (use_few_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ1_M;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_M && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS && (use_few_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (use_many_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL && (use_some_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL && (use_more_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL && (use_many_bits(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XS && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ1_M;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_M && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ2_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_M && (difquant_init_end_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_XXS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (difquant_five_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XL && (difquant_three_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXL && (difquant_half_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXXL && (difquant_six_eights_tensors(i_layer, n_layer))) new_type = GGML_TYPE_IQ4_XS;
|
||||
++qs.i_ffn_up;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue