llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps * llama : check if model architecture is known * llama : refactor llama_model_load_internal() * gguf : add KV constant maps * llm : read arch-specific KVs * convert : add dummy scores + types * falcon : load tensor data (CPU only) * llama : fix loading progress bar * llama : add arch member to llama_model * falcon : CPU inference working * falcon : support non-40B models * falcon : minor * llama : minor updates ggml-ci * convert-falcon-hf-to-gguf.py : fix special token mapping * llama.cpp : llama default UNK token = id 0 * llama.cpp : fix bpe tokenizer * llama.cpp : fix the fix of bpe tokenizer * ggml : pass eps to ggml_norm * metal : implement RoPE (mode = 2) + avoid ggml_repeat * ggml : ggml_repeat always creates new tensor * falcon : copy-paste self-attention from LLaMA * metal : print extra compute pipeline info * falcon : minor changes (still chasing the Metal problem) * llama.cpp : fix linefeed token * metal : fix GELU kernel numerical stability by using precise::tanh * metal : temporary workaround for the concurrency optimization bug * falcon : add CUDA offloading (#2739) * llama : better model naming and size reporting * llama : prep new tokenizer support * llama : advanced BPE tokenizer based on ggllm.cpp imlpementation * llama : remove oboslete comment ggml-ci * common : remove obsolete BPE API + disable test-tokenizer-1 * llama : revert BPE special-case in llama_byte_to_token() * cuda : add TODOs for RoPE NeoX implementation * llama : default special tokens based on vocab type * perplexity : add log for start of tokenization --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
a192860cfe
commit
cf658adc83
18 changed files with 1596 additions and 668 deletions
|
@ -43,7 +43,7 @@ static bool is_interacting = false;
|
|||
void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting=true;
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
printf("\n");
|
||||
|
@ -189,10 +189,12 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> embd_inp;
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
} else {
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
|
@ -208,9 +210,9 @@ int main(int argc, char ** argv) {
|
|||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
params.cfg_negative_prompt.insert(0, 1, ' ');
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
}
|
||||
|
@ -257,8 +259,8 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
|
|
|
@ -28,7 +28,6 @@ std::vector<float> softmax(const std::vector<float>& logits) {
|
|||
}
|
||||
|
||||
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
|
@ -38,7 +37,13 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||
return;
|
||||
}
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
const int calc_chunk = params.n_ctx;
|
||||
|
||||
|
@ -86,7 +91,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (j == 0) {
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
|
@ -136,7 +141,6 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||
}
|
||||
|
||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (params.ppl_stride > 0) {
|
||||
perplexity_v2(ctx, params);
|
||||
return;
|
||||
|
@ -146,7 +150,13 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
||||
|
||||
|
@ -177,7 +187,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (j == 0) {
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
|
@ -295,8 +305,10 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
bool prepend_bos = true;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
// Number of tasks to use when computing the score
|
||||
if ( params.hellaswag_tasks < hs_task_count ) {
|
||||
|
@ -352,14 +364,13 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
std::vector<float> tok_logits(n_vocab);
|
||||
|
||||
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
||||
|
||||
// Tokenize the context to count tokens
|
||||
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
|
||||
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
|
||||
size_t context_size = context_embd.size();
|
||||
|
||||
// Do the 1st ending
|
||||
// In this case we include the context when evaluating
|
||||
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], prepend_bos);
|
||||
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
|
||||
auto query_size = query_embd.size();
|
||||
//printf("First query: %d\n",(int)query_size);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue