Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
d0375a2ea6
10 changed files with 55 additions and 58 deletions
|
@ -630,6 +630,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.ppl_stride = std::stoi(argv[i]);
|
||||
} else if (arg == "-stc" || arg == "--show_token_count") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.token_interval = std::stoi(argv[i]);
|
||||
} else if (arg == "--ppl-output-type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -944,6 +950,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -stc N --show_token_count N\n");
|
||||
printf(" show consumed tokens every N tokens\n");
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
|
|
|
@ -64,6 +64,7 @@ struct gpt_params {
|
|||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t token_interval = 512; // show token count every 512 tokens
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
|
@ -242,4 +243,3 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
|||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
|
|
|
@ -500,7 +500,7 @@ int main(int argc, char ** argv) {
|
|||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
|
||||
|
@ -650,6 +650,10 @@ int main(int argc, char ** argv) {
|
|||
n_past += n_eval;
|
||||
|
||||
LOG("n_past = %d\n", n_past);
|
||||
// Display total tokens alongside total time
|
||||
if (n_past % params.token_interval == 0) {
|
||||
printf("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
if (!embd.empty() && !path_session.empty()) {
|
||||
|
|
|
@ -147,15 +147,15 @@ static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
|
|||
// parallel
|
||||
//
|
||||
|
||||
enum ServerState {
|
||||
LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
READY, // Server is ready and model is loaded
|
||||
ERROR // An error occurred, load_model failed
|
||||
enum server_state {
|
||||
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
||||
SERVER_STATE_READY, // Server is ready and model is loaded
|
||||
SERVER_STATE_ERROR // An error occurred, load_model failed
|
||||
};
|
||||
|
||||
enum task_type {
|
||||
COMPLETION_TASK,
|
||||
CANCEL_TASK
|
||||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
|
@ -1402,7 +1402,7 @@ struct llama_server_context
|
|||
task.data = std::move(data);
|
||||
task.infill_mode = infill;
|
||||
task.embedding_mode = embedding;
|
||||
task.type = COMPLETION_TASK;
|
||||
task.type = TASK_TYPE_COMPLETION;
|
||||
task.multitask_id = multitask_id;
|
||||
|
||||
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
||||
|
@ -1524,7 +1524,7 @@ struct llama_server_context
|
|||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
task_server task;
|
||||
task.id = id_gen++;
|
||||
task.type = CANCEL_TASK;
|
||||
task.type = TASK_TYPE_CANCEL;
|
||||
task.target_id = task_id;
|
||||
queue_tasks.push_back(task);
|
||||
condition_tasks.notify_one();
|
||||
|
@ -1560,7 +1560,7 @@ struct llama_server_context
|
|||
queue_tasks.erase(queue_tasks.begin());
|
||||
switch (task.type)
|
||||
{
|
||||
case COMPLETION_TASK: {
|
||||
case TASK_TYPE_COMPLETION: {
|
||||
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
||||
if (slot == nullptr)
|
||||
{
|
||||
|
@ -1589,7 +1589,7 @@ struct llama_server_context
|
|||
break;
|
||||
}
|
||||
} break;
|
||||
case CANCEL_TASK: { // release slot linked with the task id
|
||||
case TASK_TYPE_CANCEL: { // release slot linked with the task id
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
if (slot.task_id == task.target_id)
|
||||
|
@ -2515,7 +2515,7 @@ json oaicompat_completion_params_parse(
|
|||
//
|
||||
// https://platform.openai.com/docs/api-reference/chat/create
|
||||
llama_sampling_params default_sparams;
|
||||
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
||||
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
|
@ -2798,24 +2798,24 @@ int main(int argc, char **argv)
|
|||
|
||||
httplib::Server svr;
|
||||
|
||||
std::atomic<ServerState> server_state{LOADING_MODEL};
|
||||
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
|
||||
|
||||
svr.set_default_headers({{"Server", "llama.cpp"},
|
||||
{"Access-Control-Allow-Origin", "*"},
|
||||
{"Access-Control-Allow-Headers", "content-type"}});
|
||||
|
||||
svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) {
|
||||
ServerState current_state = server_state.load();
|
||||
server_state current_state = state.load();
|
||||
switch(current_state) {
|
||||
case READY:
|
||||
case SERVER_STATE_READY:
|
||||
res.set_content(R"({"status": "ok"})", "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
break;
|
||||
case LOADING_MODEL:
|
||||
case SERVER_STATE_LOADING_MODEL:
|
||||
res.set_content(R"({"status": "loading model"})", "application/json");
|
||||
res.status = 503; // HTTP Service Unavailable
|
||||
break;
|
||||
case ERROR:
|
||||
case SERVER_STATE_ERROR:
|
||||
res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
|
||||
res.status = 500; // HTTP Internal Server Error
|
||||
break;
|
||||
|
@ -2891,7 +2891,7 @@ int main(int argc, char **argv)
|
|||
{
|
||||
if (!svr.listen_after_bind())
|
||||
{
|
||||
server_state.store(ERROR);
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -2901,11 +2901,11 @@ int main(int argc, char **argv)
|
|||
// load the model
|
||||
if (!llama.load_model(params))
|
||||
{
|
||||
server_state.store(ERROR);
|
||||
state.store(SERVER_STATE_ERROR);
|
||||
return 1;
|
||||
} else {
|
||||
llama.initialize();
|
||||
server_state.store(READY);
|
||||
state.store(SERVER_STATE_READY);
|
||||
}
|
||||
|
||||
// Middleware for API key validation
|
||||
|
|
|
@ -10184,8 +10184,8 @@ static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, gg
|
|||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
|
|
|
@ -1067,6 +1067,10 @@ bool ggml_metal_graph_compute(
|
|||
GGML_ASSERT(!"unsupported op");
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
#endif
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
||||
|
@ -2423,6 +2427,10 @@ bool ggml_metal_graph_compute(
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder popDebugGroup];
|
||||
#endif
|
||||
}
|
||||
|
||||
if (encoder != nil) {
|
||||
|
|
32
ggml.c
32
ggml.c
|
@ -132,7 +132,7 @@ void ggml_print_backtrace(void) {
|
|||
"-ex", "bt -frame-info source-and-location",
|
||||
"-ex", "detach",
|
||||
"-ex", "quit",
|
||||
NULL);
|
||||
(char *) NULL);
|
||||
} else {
|
||||
waitpid(pid, NULL, 0);
|
||||
}
|
||||
|
@ -4311,13 +4311,13 @@ struct ggml_tensor * ggml_set_2d_inplace(
|
|||
static struct ggml_tensor * ggml_cpy_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * b) {
|
||||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && (a->grad || b->grad)) {
|
||||
if (a->grad || b->grad) {
|
||||
// inplace is false and either one have a grad
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
|
@ -4341,29 +4341,21 @@ struct ggml_tensor * ggml_cpy(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_cpy_impl(ctx, a, b, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cpy_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
return ggml_cpy_impl(ctx, a, b, true);
|
||||
return ggml_cpy_impl(ctx, a, b);
|
||||
}
|
||||
|
||||
// ggml_cont
|
||||
|
||||
static struct ggml_tensor * ggml_cont_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * a) {
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && a->grad) {
|
||||
if (a->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||||
ggml_format_name(result, "%s (cont)", a->name);
|
||||
|
||||
result->op = GGML_OP_CONT;
|
||||
|
@ -4376,13 +4368,7 @@ static struct ggml_tensor * ggml_cont_impl(
|
|||
struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_cont_impl(ctx, a, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cont_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_cont_impl(ctx, a, true);
|
||||
return ggml_cont_impl(ctx, a);
|
||||
}
|
||||
|
||||
// make contiguous, with new shape
|
||||
|
|
13
ggml.h
13
ggml.h
|
@ -218,7 +218,9 @@
|
|||
#define GGML_MAX_PARAMS 2048
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 10
|
||||
#ifndef GGML_MAX_NAME
|
||||
#define GGML_MAX_NAME 64
|
||||
#endif
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
||||
|
@ -1161,22 +1163,11 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// a -> b, in-place, return view(b)
|
||||
GGML_API struct ggml_tensor * ggml_cpy_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// make contiguous
|
||||
GGML_API struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// make contiguous, in-place
|
||||
GGML_API struct ggml_tensor * ggml_cont_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// make contiguous, with new shape
|
||||
GGML_API struct ggml_tensor * ggml_cont_1d(
|
||||
struct ggml_context * ctx,
|
||||
|
|
|
@ -10921,7 +10921,7 @@ void llama_print_timings(struct llama_context * ctx) {
|
|||
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
|
||||
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
|
||||
LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
|
||||
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
|
||||
}
|
||||
|
||||
void llama_reset_timings(struct llama_context * ctx) {
|
||||
|
|
|
@ -1 +1 @@
|
|||
f96711108d55bdbbd277e6be07204dce6a94fb93
|
||||
979cc23b345006504cfc1f67c0fdf627805e3319
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue