convert-hf-to-gguf.py : update grok (untested)

This commit is contained in:
slaren 2024-04-02 18:14:57 +02:00
parent f27cbf3610
commit d08a1f4860
2 changed files with 90 additions and 6 deletions

View file

@ -1261,6 +1261,7 @@ class LlamaModel(Model):
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
@ -1323,6 +1324,92 @@ class GrokModel(Model):
super().set_gguf_parameters()
self.gguf_writer.add_name("Grok")
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_experts = self.hparams.get("num_local_experts")
experts = dict()
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# process the experts separately
if name.find(".moe.") != -1:
experts[name] = data
if len(experts) >= n_experts:
# merge the experts into a single 3d tensor
for bid in range(block_count):
for wid in ["linear", "linear_1", "linear_v"]:
full = True
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}"
if ename not in experts:
full = False
break
if not full:
continue
datas = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}"
datas.append(experts[ename])
del experts[ename]
data = np.stack(datas, axis=0)
data_dtype = data.dtype
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
if self.ftype == 1 and data_dtype == np.float32:
data = data.astype(np.float16)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model):

View file

@ -232,8 +232,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_UP_EXP: (
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
#"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
#"transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
),
# AWQ-activation gate
@ -253,8 +252,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_EXP: (
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
#"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
#"transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok
"transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
),
# Feed-forward down
@ -281,8 +279,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_DOWN_EXP: (
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
#"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
#"transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
),
MODEL_TENSOR.ATTN_Q_NORM: (