[SYCL] Fix the sub group size of Intel (#8106)
* use warp_size macro for all sycl kernels * fix mask of permute_sub_group_by_xor * fix rms_norm with correct warp number * fix rms_norm_f32/group_norm_f32 * move norm to norm.cpp file * fix quantize bug * fix mmvq's batch size
This commit is contained in:
parent
5fac350b9c
commit
d08c20edde
9 changed files with 587 additions and 509 deletions
|
@ -20,5 +20,6 @@
|
|||
#include "mmq.hpp"
|
||||
#include "mmvq.hpp"
|
||||
#include "rope.hpp"
|
||||
#include "norm.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
||||
|
|
|
@ -295,5 +295,60 @@ struct ggml_backend_sycl_context {
|
|||
}
|
||||
};
|
||||
|
||||
// common host functions
|
||||
|
||||
static inline int get_work_group_size(const sycl::device& device) {
|
||||
dpct::device_info prop;
|
||||
dpct::get_device_info(prop, device);
|
||||
return prop.get_max_work_group_size();
|
||||
}
|
||||
|
||||
|
||||
// common device functions
|
||||
|
||||
static __dpct_inline__ float warp_reduce_sum(float x,
|
||||
const sycl::nd_item<3>& item_ct1) {
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
/*
|
||||
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
|
||||
kernel that calls this function may be less than "32". The function
|
||||
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
||||
CPU device. Modify the size of the work-group to ensure that the value
|
||||
of the right-most dimension is a multiple of "32".
|
||||
*/
|
||||
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __dpct_inline__ sycl::float2
|
||||
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
|
||||
mask);
|
||||
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
|
||||
mask);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
static __dpct_inline__ float warp_reduce_max(float x,
|
||||
const sycl::nd_item<3>& item_ct1) {
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
/*
|
||||
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
|
||||
kernel that calls this function may be less than "32". The function
|
||||
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
||||
CPU device. Modify the size of the work-group to ensure that the value
|
||||
of the right-most dimension is a multiple of "32".
|
||||
*/
|
||||
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
|
||||
item_ct1.get_sub_group(), x, mask));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
#endif // GGML_SYCL_COMMON_HPP
|
||||
|
|
|
@ -76,7 +76,7 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat *
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -104,7 +104,7 @@ static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
|
||||
nrows, item_ct1);
|
||||
});
|
||||
|
@ -227,7 +227,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -346,7 +346,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -499,7 +499,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -633,7 +633,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -748,7 +748,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -774,7 +774,7 @@ static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
|
||||
vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -795,7 +795,7 @@ static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
|
||||
vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -816,7 +816,7 @@ static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
|
||||
vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -837,7 +837,7 @@ static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
|
||||
vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -858,7 +858,7 @@ static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
|
|||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
|
||||
vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -873,10 +873,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
|
|||
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, ny, 32);
|
||||
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
}
|
||||
|
@ -889,10 +889,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
|
|||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, ny, 32);
|
||||
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
}
|
||||
|
@ -905,10 +905,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
|
|||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, ny, 32);
|
||||
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
}
|
||||
|
@ -918,10 +918,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
|
|||
const int nrows,
|
||||
dpct::queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const sycl::range<3> block_dims(1, 1, 32);
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
|
||||
});
|
||||
}
|
||||
|
@ -934,10 +934,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
|
|||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, ny, 32);
|
||||
const sycl::range<3> block_dims(1, ny, WARP_SIZE);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
}
|
||||
|
|
|
@ -37,7 +37,7 @@ static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict_
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -85,7 +85,7 @@ static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -133,7 +133,7 @@ static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -181,7 +181,7 @@ static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -229,7 +229,7 @@ static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -277,7 +277,7 @@ static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -325,7 +325,7 @@ static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -373,7 +373,7 @@ static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -421,7 +421,7 @@ static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -470,7 +470,7 @@ static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
|
|||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
||||
tmp +=
|
||||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||||
}
|
||||
|
@ -495,7 +495,7 @@ static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
|
||||
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -519,7 +519,7 @@ static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
|
||||
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -543,7 +543,7 @@ static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
|
||||
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -567,7 +567,7 @@ static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
|
||||
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -591,7 +591,7 @@ static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
|
||||
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -615,7 +615,7 @@ static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
|
||||
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -639,7 +639,7 @@ static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
|
||||
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -663,7 +663,7 @@ static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
|
||||
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -687,7 +687,7 @@ static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
|
||||
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -711,7 +711,7 @@ static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
|
||||
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
|
@ -734,7 +734,7 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS/2, block_iq2_xxs, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -759,7 +759,7 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS/2, block_iq2_xs, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -784,7 +784,7 @@ static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S/2, block_iq2_s, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -809,7 +809,7 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS/2, block_iq3_xxs, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -833,7 +833,7 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_S/2, block_iq3_s, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -858,7 +858,7 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -879,7 +879,7 @@ static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -901,7 +901,7 @@ static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -923,7 +923,7 @@ static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
|
|||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS/4, block_iq4_xs, 1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
|
@ -936,7 +936,7 @@ void ggml_sycl_op_mul_mat_vec_q(
|
|||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_col_size,
|
||||
const dpct::queue_ptr &stream) {
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
@ -948,77 +948,80 @@ void ggml_sycl_op_mul_mat_vec_q(
|
|||
int id;
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR(id = get_current_device_id()));
|
||||
|
||||
const size_t q8_1_ts = sizeof(block_q8_1);
|
||||
const size_t q8_1_bs = QK8_1;
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
|
||||
|
||||
switch (src0->type) {
|
||||
for (int i = 0; i < src1_ncols; i++)
|
||||
{
|
||||
const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs;
|
||||
const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset;
|
||||
float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0];
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_ddf_i;
|
||||
(void) src1_ncols;
|
||||
(void) src1_padded_row_size;
|
||||
}
|
||||
|
|
370
ggml/src/ggml-sycl/norm.cpp
Normal file
370
ggml/src/ggml-sycl/norm.cpp
Normal file
|
@ -0,0 +1,370 @@
|
|||
#include "norm.hpp"
|
||||
|
||||
static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
|
||||
const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
|
||||
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
||||
item_ct1.get_local_id(1);
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
|
||||
const int nthreads = item_ct1.get_local_range(2);
|
||||
const int nwarps = nthreads / WARP_SIZE;
|
||||
assert(nwarps % WARP_SIZE == 0);
|
||||
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row * ncols + col];
|
||||
mean_var.x() += xi;
|
||||
mean_var.y() += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
||||
if (block_size > WARP_SIZE) {
|
||||
|
||||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = mean_var;
|
||||
}
|
||||
/*
|
||||
DPCT1118:0: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
mean_var = 0.f;
|
||||
int nreduce = nwarps / WARP_SIZE;
|
||||
for (size_t i = 0; i < nreduce; i += 1)
|
||||
{
|
||||
mean_var += s_sum[lane_id + i * WARP_SIZE];
|
||||
}
|
||||
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
||||
}
|
||||
|
||||
const float mean = mean_var.x() / ncols;
|
||||
const float var = mean_var.y() / ncols - mean * mean;
|
||||
const float inv_std = sycl::rsqrt(var + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
|
||||
}
|
||||
}
|
||||
|
||||
static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
|
||||
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
|
||||
int start = item_ct1.get_group(2) * group_size;
|
||||
int end = start + group_size;
|
||||
const int nthreads = item_ct1.get_local_range(2);
|
||||
const int nwarps = nthreads / WARP_SIZE;
|
||||
assert(nwarps % WARP_SIZE == 0);
|
||||
start += item_ct1.get_local_id(2);
|
||||
|
||||
if (end >= ne_elements) {
|
||||
end = ne_elements;
|
||||
}
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
for (int j = start; j < end; j += block_size) {
|
||||
tmp += x[j];
|
||||
}
|
||||
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
if (block_size > WARP_SIZE) {
|
||||
|
||||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
/*
|
||||
DPCT1118:1: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
tmp = 0.f;
|
||||
int nreduce = nwarps / WARP_SIZE;
|
||||
for (size_t i = 0; i < nreduce; i += 1)
|
||||
{
|
||||
tmp += s_sum[lane_id + i * WARP_SIZE];
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
}
|
||||
|
||||
float mean = tmp / group_size;
|
||||
tmp = 0.0f;
|
||||
|
||||
for (int j = start; j < end; j += block_size) {
|
||||
float xi = x[j] - mean;
|
||||
dst[j] = xi;
|
||||
tmp += xi * xi;
|
||||
}
|
||||
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
if (block_size > WARP_SIZE) {
|
||||
|
||||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
/*
|
||||
DPCT1118:2: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
/*
|
||||
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
|
||||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||||
better performance if there is no access to global memory.
|
||||
*/
|
||||
item_ct1.barrier();
|
||||
tmp = s_sum[lane_id];
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
}
|
||||
|
||||
float variance = tmp / group_size;
|
||||
float scale = sycl::rsqrt(variance + eps);
|
||||
for (int j = start; j < end; j += block_size) {
|
||||
dst[j] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
|
||||
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
|
||||
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
||||
item_ct1.get_local_id(1);
|
||||
const int tid = item_ct1.get_local_id(2);
|
||||
const int nthreads = item_ct1.get_local_range(2);
|
||||
const int nwarps = nthreads / WARP_SIZE;
|
||||
assert(nwarps % WARP_SIZE == 0);
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row * ncols + col];
|
||||
tmp += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
if (block_size > WARP_SIZE) {
|
||||
|
||||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
/*
|
||||
DPCT1118:3: SYCL group functions and algorithms must be encountered in
|
||||
converged control flow. You may need to adjust the code.
|
||||
*/
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
int nreduce = nwarps / WARP_SIZE;
|
||||
tmp = 0.f;
|
||||
for (size_t i = 0; i < nreduce; i += 1)
|
||||
{
|
||||
tmp += s_sum[lane_id + i * WARP_SIZE];
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||||
}
|
||||
|
||||
const float mean = tmp / ncols;
|
||||
const float scale = sycl::rsqrt(mean + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row * ncols + col] = scale * x[row * ncols + col];
|
||||
}
|
||||
}
|
||||
|
||||
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
|
||||
const int nrows, const float eps,
|
||||
queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
norm_f32(x, dst, ncols, eps, item_ct1,
|
||||
nullptr, WARP_SIZE);
|
||||
});
|
||||
});
|
||||
}
|
||||
else {
|
||||
const int work_group_size = get_work_group_size(stream->get_device());
|
||||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||||
/*
|
||||
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
||||
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
norm_f32(x, dst, ncols, eps, item_ct1,
|
||||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
static void group_norm_f32_sycl(const float* x, float* dst,
|
||||
const int num_groups, const int group_size,
|
||||
const int ne_elements, queue_ptr stream) {
|
||||
static const float eps = 1e-6f;
|
||||
if (group_size < 1024) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
const float eps_ct4 = eps;
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
group_norm_f32(
|
||||
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
|
||||
nullptr, WARP_SIZE);
|
||||
});
|
||||
});
|
||||
}
|
||||
else {
|
||||
const int work_group_size = get_work_group_size(stream->get_device());
|
||||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||||
/*
|
||||
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
|
||||
cgh);
|
||||
|
||||
const float eps_ct4 = eps;
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
group_norm_f32(x, dst, group_size, ne_elements,
|
||||
eps_ct4, item_ct1,
|
||||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
|
||||
const int nrows, const float eps,
|
||||
queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
|
||||
if (ncols < 1024) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
||||
nullptr, WARP_SIZE);
|
||||
});
|
||||
});
|
||||
}
|
||||
else {
|
||||
const int work_group_size = get_work_group_size(stream->get_device());
|
||||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||||
/*
|
||||
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
|
||||
cgh);
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||||
block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
||||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst, const float* src0_dd,
|
||||
const float* src1_dd, float* dst_dd,
|
||||
const queue_ptr& main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
||||
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
(void)src1_dd;
|
||||
}
|
||||
|
||||
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst,
|
||||
const float* src0_dd, const float* src1_dd,
|
||||
float* dst_dd,
|
||||
const queue_ptr& main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
int num_groups = dst->op_params[0];
|
||||
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
|
||||
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
(void)src1_dd;
|
||||
}
|
||||
|
||||
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst,
|
||||
const float* src0_dd, const float* src1_dd,
|
||||
float* dst_dd,
|
||||
const queue_ptr& main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
||||
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
(void)src1_dd;
|
||||
}
|
35
ggml/src/ggml-sycl/norm.hpp
Normal file
35
ggml/src/ggml-sycl/norm.hpp
Normal file
|
@ -0,0 +1,35 @@
|
|||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_NORM_HPP
|
||||
#define GGML_SYCL_NORM_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
ggml_tensor* dst, const float* src0_dd,
|
||||
const float* src1_dd, float* dst_dd,
|
||||
const queue_ptr& main_stream);
|
||||
|
||||
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst,
|
||||
const float* src0_dd, const float* src1_dd,
|
||||
float* dst_dd,
|
||||
const queue_ptr& main_stream);
|
||||
|
||||
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
||||
const ggml_tensor* src1, ggml_tensor* dst,
|
||||
const float* src0_dd, const float* src1_dd,
|
||||
float* dst_dd,
|
||||
const queue_ptr& main_stream);
|
||||
|
||||
#endif // GGML_SYCL_NORM_HPP
|
|
@ -16,7 +16,7 @@
|
|||
#define GGML_SYCL_MAX_STREAMS 8
|
||||
#define GGML_SYCL_MAX_BUFFERS 256
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define WARP_SIZE GGML_SYCL_WARP_SIZE
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#define SYCL_GELU_BLOCK_SIZE 256
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue