replace list with single tensor

This commit is contained in:
ngxson 2024-06-30 23:40:25 +02:00
parent 231dae4f68
commit d09ecb84c8

View file

@ -2081,7 +2081,7 @@ struct llama_hparams {
bool use_par_res;
uint32_t n_vocab;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_head;
uint32_t n_head_kv;
@ -2665,7 +2665,7 @@ struct llama_context {
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
// KQ mask per layer, used by sliding window attention (gemma 2)
std::vector<struct ggml_tensor *> inp_KQ_mask_l;
struct ggml_tensor * inp_KQ_mask_SWA;
// control vectors
struct llama_control_vector cvec;
@ -7794,6 +7794,7 @@ struct llm_build_context {
lctx.inp_s_copy = nullptr;
lctx.inp_s_mask = nullptr;
lctx.inp_s_seq = nullptr;
lctx.inp_KQ_mask_SWA = nullptr;
}
void free() {
@ -7946,15 +7947,18 @@ struct llm_build_context {
return lctx.inp_out_ids;
}
struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
if (causal) {
lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
struct ggml_tensor * build_inp_KQ_mask(bool causal = true, bool sliding_window = false) {
struct ggml_tensor * KQ_mask = causal
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
cb(KQ_mask, "KQ_mask", -1);
ggml_set_input(KQ_mask);
if (sliding_window) {
lctx.inp_KQ_mask_SWA = KQ_mask;
} else {
lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
lctx.inp_KQ_mask = KQ_mask;
}
cb(lctx.inp_KQ_mask, "KQ_mask", -1);
ggml_set_input(lctx.inp_KQ_mask);
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
return flash_attn ? ggml_cast(ctx0, KQ_mask, GGML_TYPE_F16) : KQ_mask;
}
struct ggml_tensor * build_inp_mean() {
@ -11038,14 +11042,12 @@ struct llm_build_context {
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
// gemma 2 requires different mask for layers using sliding window (SWA)
struct ggml_tensor * KQ_mask_full = build_inp_KQ_mask();
struct ggml_tensor * KQ_mask_SWA = build_inp_KQ_mask();
lctx.inp_KQ_mask_l.clear();
struct ggml_tensor * KQ_mask_full = build_inp_KQ_mask(true, false);
struct ggml_tensor * KQ_mask_SWA = build_inp_KQ_mask(true, true);
for (int il = 0; il < n_layer; ++il) {
// (il % 2) layers use SWA
struct ggml_tensor * KQ_mask = (il % 2 == 0) ? KQ_mask_SWA : KQ_mask_full;
lctx.inp_KQ_mask_l.push_back(KQ_mask);
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
@ -12685,15 +12687,15 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
float * data = (float *) lctx.inp_KQ_mask->data;
float * data = (float *) lctx.inp_KQ_mask->data;
float * data_swa = nullptr;
const llama_pos n_keep_swa = hparams.n_sliding - batch.n_tokens;
if (lctx.model.arch == LLM_ARCH_GEMMA2) {
GGML_ASSERT(!lctx.inp_KQ_mask_l.empty() && "gemma 2 requires different KQ mask per layer");
GGML_ASSERT(lctx.inp_KQ_mask_SWA);
GGML_ASSERT(hparams.n_sliding > 0);
data_swa = (float *) lctx.inp_KQ_mask_l[0]->data;
data = (float *) lctx.inp_KQ_mask_l[1]->data;
data = (float *) lctx.inp_KQ_mask->data;
data_swa = (float *) lctx.inp_KQ_mask_SWA->data;
// because layer masks are alternate for gemma 2, we only need to take first 2 layers
}