From ecf90b1a5114034bc0939b3968f549fe4d63cf6d Mon Sep 17 00:00:00 2001 From: Cebtenzzre Date: Thu, 28 Sep 2023 14:30:15 -0400 Subject: [PATCH 1/8] gguf : make token scores and types optional (#3347) --- convert-falcon-hf-to-gguf.py | 6 ------ convert-starcoder-hf-to-gguf.py | 6 ------ llama.cpp | 18 ++++++++---------- 3 files changed, 8 insertions(+), 22 deletions(-) diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py index 88338d823..958358563 100755 --- a/convert-falcon-hf-to-gguf.py +++ b/convert-falcon-hf-to-gguf.py @@ -133,8 +133,6 @@ gguf_writer.add_file_type(ftype) print("gguf: get tokenizer metadata") tokens: list[bytearray] = [] -scores: list[float] = [] -toktypes: list[int] = [] tokenizer_json_file = dir_model / 'tokenizer.json' if not tokenizer_json_file.is_file(): @@ -177,12 +175,8 @@ for i in range(vocab_size): text = bytearray(pad_token) tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy gguf_writer.add_token_list(tokens) -gguf_writer.add_token_scores(scores) -gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) special_vocab.add_to_gguf(gguf_writer) diff --git a/convert-starcoder-hf-to-gguf.py b/convert-starcoder-hf-to-gguf.py index 331e84e98..48e88a777 100755 --- a/convert-starcoder-hf-to-gguf.py +++ b/convert-starcoder-hf-to-gguf.py @@ -117,8 +117,6 @@ gguf_writer.add_file_type(ftype) print("gguf: get tokenizer metadata") tokens: list[bytearray] = [] -scores: list[float] = [] -toktypes: list[int] = [] tokenizer_json_file = dir_model / 'tokenizer.json' if not tokenizer_json_file.is_file(): @@ -161,12 +159,8 @@ for i in range(vocab_size): text = bytearray(pad_token) tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy gguf_writer.add_token_list(tokens) -gguf_writer.add_token_scores(scores) -gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) special_vocab.add_to_gguf(gguf_writer) diff --git a/llama.cpp b/llama.cpp index 140533553..15de7600c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1931,20 +1931,18 @@ static void llm_load_vocab( throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } + const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); - if (score_idx == -1) { - throw std::runtime_error("cannot find tokenizer scores in model file\n"); + if (score_idx != -1) { + scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } - const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx); - + const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); - if (toktype_idx == -1) { - throw std::runtime_error("cannot find token type list in GGUF file\n"); + if (toktype_idx != -1) { + toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } - const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); - // determine vocab type { std::string tokenizer_name; @@ -2012,8 +2010,8 @@ static void llm_load_vocab( auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); - token_data.score = scores[i]; - token_data.type = (llama_token_type) toktypes[i]; + token_data.score = scores ? scores[i] : 0.0f; + token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL; } // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' From 2db94d98eda56982d80238840b0652b4137a2a84 Mon Sep 17 00:00:00 2001 From: Cebtenzzre Date: Thu, 28 Sep 2023 14:30:31 -0400 Subject: [PATCH 2/8] gguf : basic type checking in gguf_get_* (#3346) --- ggml.c | 84 ++++++++++++++++++++++++++++++++++------------------------ ggml.h | 36 ++++++++++++------------- 2 files changed, 68 insertions(+), 52 deletions(-) diff --git a/ggml.c b/ggml.c index 35751342f..3fcc44bdb 100644 --- a/ggml.c +++ b/ggml.c @@ -20211,78 +20211,94 @@ int gguf_find_key(const struct gguf_context * ctx, const char * key) { return keyfound; } -const char * gguf_get_key(const struct gguf_context * ctx, int i) { - return ctx->kv[i].key.data; +const char * gguf_get_key(const struct gguf_context * ctx, int key_id) { + return ctx->kv[key_id].key.data; } -enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int i) { - return ctx->kv[i].type; +enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) { + return ctx->kv[key_id].type; } -enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.type; +enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.type; } -const void * gguf_get_arr_data(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.data; +const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.data; } const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); struct gguf_kv * kv = &ctx->kv[key_id]; struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i]; return str->data; } -int gguf_get_arr_n(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.n; +int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.n; } -uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint8; +uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8); + return ctx->kv[key_id].value.uint8; } -int8_t gguf_get_val_i8(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int8; +int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8); + return ctx->kv[key_id].value.int8; } -uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint16; +uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16); + return ctx->kv[key_id].value.uint16; } -int16_t gguf_get_val_i16(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int16; +int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16); + return ctx->kv[key_id].value.int16; } -uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint32; +uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32); + return ctx->kv[key_id].value.uint32; } -int32_t gguf_get_val_i32(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int32; +int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32); + return ctx->kv[key_id].value.int32; } -float gguf_get_val_f32(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.float32; +float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32); + return ctx->kv[key_id].value.float32; } -uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint64; +uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64); + return ctx->kv[key_id].value.uint64; } -int64_t gguf_get_val_i64(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int64; +int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64); + return ctx->kv[key_id].value.int64; } -double gguf_get_val_f64(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.float64; +double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64); + return ctx->kv[key_id].value.float64; } -bool gguf_get_val_bool(const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.bool_; +bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL); + return ctx->kv[key_id].value.bool_; } -const char * gguf_get_val_str (const struct gguf_context * ctx, int i) { - return ctx->kv[i].value.str.data; +const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING); + return ctx->kv[key_id].value.str.data; } int gguf_get_n_tensors(const struct gguf_context * ctx) { diff --git a/ggml.h b/ggml.h index 73198dc61..d1086173d 100644 --- a/ggml.h +++ b/ggml.h @@ -1916,26 +1916,26 @@ extern "C" { GGML_API int gguf_get_n_kv(const struct gguf_context * ctx); GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key); - GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i); + GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id); - GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i); - GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i); + GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id); + GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id); - // results are undefined if the wrong type is used for the key - GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int i); - GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int i); - GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int i); - GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int i); - GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int i); - GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int i); - GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int i); - GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int i); - GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int i); - GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int i); - GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int i); - GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i); - GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int i); - GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i); + // will abort if the wrong type is used for the key + GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id); + GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id); + GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id); + GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id); + GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id); + GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id); + GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id); + GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id); + GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id); + GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id); + GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id); + GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id); + GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id); + GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx); From 0e76a8992c8200237bbc6471a53fb8796b3872f7 Mon Sep 17 00:00:00 2001 From: xaedes Date: Thu, 28 Sep 2023 20:40:11 +0200 Subject: [PATCH 3/8] train : finetune LORA (#2632) * fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add API functions to access llama model tensors * add stub example for finetuning, based on train-text-from-scratch * move and remove code * add API functions to access remaining model parameters: mult, head and rot * first draft for LORA finetune training * remove const model and layer arguments in API functions for accessing model tensors * bug fixes to make finetune compile automatic allocator does not work yet * add debug prints for training memory improvements * fix names of lora tensors * avoid stack overflow resulting from big ggml_cgraph replace stack allocation and ggml_build_forward by ggml_new_graph in combination with ggml_build_forward_expand * replace llama API functions to get model tensors by one function to get model tensor by name LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); * remove unused call to not existing llama_get_layer_from_model * implement ggml_compute_forward_out_prod_q_f32 * remove trailing whitespace * add lora finetune support on quantized base model tensors * add ggml_add_cast API function this function works like ggml_add, but accepts a data type for the resulting tensor. only supported for quantized src0 input. * use ggml_add_cast in finetuning lora-applied weights will now have data type F32, which improves gradients when finetuning quantized base models * bug fix: actually use result type passed to ggml_add_cast * make sure base model tensors data cannot be used in viewable operations memory allocator would try to make lora application inplace on base model tensors. since those are memory mapped this will result in memory access violations * fix bug in ggml_out_prod which resulted in wrong n_dims of result tensors * avoid keeping in memory ALL of the gradients The problem here stems from ggml_graph_reset. This function is called in the optimization function, before each graph computation, to reset the gradients to zero. This required a unique memory slot for each gradient: allocating memory from a previosly freed memory location might lead to non-zero input gradients. During ggml_compute_backward the gradients are build stepwise by adding or substracting new values, starting from a OP_NONE tensor which needs to contain zero-values. This requires the graph reset. To avoid this I now remember in ggml_build_backward_expand the original OP_NONE gradient tensors in a hash table, which is passed to ggml_compute_backward. There instead of using add (or sub or similar) I test whether the existing gradient to be changed is a zero-valued-tensor by looking up its existence in the hash table. When it is such a zero-tensor it will not be modified, but replaced by the value to be added, otherwise the regular add (not inplace, allocator will take care of this) will be used. This way none of those zero-tensor values will be necessary in the final backward graph and more importantly they won't need a unique memory slot, just to make them zero. * remove trailing whitespace * remove debug prints and function to compute tensor data hash * improve optimization iteration prints * adjust maximal values to support finetuning 3B models * change default finetune params lora_r and lora_alpha to match the n_rank parameters of 4 * bug fix: make sure finetune input gradient is allocated at begin and kept until end * remove unnecessary src tensor from ggml_get_rows_back we don't need data of src[2] for computation, only to setup the correct output shape. remove dependency on src[2], so that allocator can work more freely. the computational graph is still completely determined, because the output shape is naturally included. this is similar to how ggml_reshape does it. * remove unnecessary src tensor from ggml_repeat & ggml_repeat_back we don't need data of src[1] for computation, only to setup the correct output shape. remove dependency on src[1], so that allocator can work more freely. the computational graph is still completely determined, because the output shape is naturally included * resolve todo allocator will only make it inplace when they are of the same type * mixing multiple LORA adapters is now possible pass more than one '--lora FNAME' argument to apply more than one LORA. use '--lora-scaled FNAME S' when you want to specify a user-defined scale for an adapter. * add option to save finetune output every N iterations * also save latest finetune output with ITERATION="LATEST" and print where files are saved saving with LATEST makes it easier to resume training from the latest checkpoint the string "LATEST" can be configured with command line option "--fn-latest STR" * update checkpoint train stats before saving via "--save-every" * add command line option `--rank-wo N` for rank of wo tensor * update finetune README * fix dump_non_result_info_yaml to output multiple lora adapters * bug fix: replace GGML_TYPE_SIZE[t] by ggml_type_size(t) * replace llama_n_mult by llama_n_ff * finetune bug fixes to compile with merged in code from master * remove prediction related code to reduce duplicated code with main use main instead * reduce large memory overhead in train-text-from-scratch all gradients had to be pinned so that graph_reset works correctly. this is no longer necessary with the changes to ggml_compute_backward introduced in this PR. * add comment explaining why finetune checkpoints are allocated in one block * make default value of float member a float literal * handle rms_norm and rope parameters the same as in train-text-from-scratch * remove unused code * remove vocab related code as it is unnecessary * add LLM_KV_TRAINING_TYPE to train-text-from-scratch checkpoints so that they can be differentiated from lora finetune checkpoints * add gguf constants and load/save functions from train-text-from-scratch * add load & save lora finetune checkpoints via gguf * add python script to convert old finetune checkpoint files to gguf * remove old checkpoint save & load code * remove code to print data checksums which was used to verify correctness of new gguf code * omit tokenization when training is disabled, only save llama lora adapter training can be disabled by passing '-n 0' to finetune * remove trailing whitespace * update README.md * implement ggml_compute_forward_repeat_f16 * avoid stack overflow of large cgraphs in test-grad0 * add ggml API functions ggml_unravel_index, ggml_get_i32_nd and its analogs for set and for f32 ggml_get_i32_1d, ggml_set_i32_1d, ggml_get_f32_1d, ggml_set_f32_1d now support non-contiguous tensors. in case of non-contiguous tensor, the 1d index is unraveled into a multi index using ggml_unravel_index to be passed to '_nd' function equivalent. this fixes a bug in test-grad0 which happens due to ggml_build_backward not building purely contiguous tensors anymore * increase test-grad0 context mem size to accommodate for bigger cgraph * add sanity check to ggml_compute_backward, asserting the correct shape of gradients * fix ggml_acc_or_set to return tensor of correct shape * remove unused 'inplace' argument from ggml_compute_backward function inplace operations to add gradients are no longer created by ggml_compute_backward use allocator to automatically make inplace operations * add missing argument 'int i0' to ggml_get_i32_nd & ggml_set_i32_nd header declarations * fix error message in ggml_allocr_alloc to display actual max_avail * fix check_gradient ggml_build_backward_expand was previously replaced by ggml_build_backward, but the assignment of forward graph to backward graph missing * use tensor->view_src instead of ggml_is_view and get_view_source * move gradient checkpointing code into ggml, new API function: // build gradient checkpointing backward graph gb for gf using provided checkpoints // gb_tmp will contain original backward graph with rewritten backward process nodes, // but without the second forward pass nodes. GGML_API void ggml_build_backward_gradient_checkpointing( struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cgraph * gb_tmp, struct ggml_tensor * * checkpoints, int n_checkpoints); * replace custom data getters and setters by ggml functions * train-text-from-scratch can train (full finetune) gguf models just pass the gguf model via `--checkpoint-in FN`. after this, to continue training, pass the generated checkpoint instead of the original gguf model. tested with smaller models, bigger models may exceed available memory. use (LORA) finetune for those. * remove trailing whitespace * add option to save train-text-from-scratch output every N iterations * update README.md * fix warnings * fix warnings * remove finetune option to disable allocator the allocator should always be used. by making sure that it is always used it gets easier to implement automatic memory requirements computation * add tensor checkpoints only when gradient checkpointing is enabled * initialize opt ggml context if none was provided * add ggml-alloc API function 'ggml_allocr_max_size' to get max size of alloc GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); * finetune: automatically allocate all memory and changes to command line options remove '--n_examples N' parameter, as it no longer makes sense to call optimization process multiple times in a loop. add '--only_write_lora' command line option: will skip tokenization and training, to only write a llama.cpp comptabile LORA adapter. remove memory buffer related command line options. improve iteration console output. * add finetune to Makefile * update README.md * print time per iteration and estimate remaining time * increase measured alloc size by tensor_alignment ggml_allocr_reset will reduce the given size by up to tensor_alignment-1 * fix README.md * add some more allocator debug prints * bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue * revert last commit "bug fix, probably solves the 'ggml_allocr_alloc: not enough space in the buffer' issue" "alloc was freeing an externally allocated tensor, because it calculated the end of allocator memory as alloc->data + alloc->max_size instead of alloc->data + alloc->size." This is intentional to reduce the risk of freeing external tensors when measuring. Unless max_size is not properly calculated, I don't see why this is an issue. * remove unnecessary "0x" before "%p" output * move measurement memory segment to upper region of the address space * update README.md * fix printf format warnings * add missing gguf_free in load_checkpoint_lora_file * load default rms_norm and rope parameters from base model * add gradient accumulation specify number accumulation steps with '--grad-acc N'. this will simulate a bigger batch size of grad_acc*batch. * fix tracking of train_samples and train_tokens * build : fix compile warnings * ggml : fix L-BFGS linesearch loop * improve finetune time measurement fix printf warnings on system where int64_t is (long int). change time datatypes to double because values get big with long training times. exclude file saving from time measurement. converge faster to actual time per iteration by removing very small first duration before first iteration was performed. fix bug in output of total training time, the reported value was 1000 times to small. * specify default lora rank with '--lora-r N' '--lora-r N' will specify default rank for all tensors '--rank-wq N', etc. will override this default rank for specific tensor types. * fix gradient accumulation bug where the same batch was used for each microstep * fix gradient accumulation bug where the same batch was used for each microstep * support grouped-query-attention in ggml_flash_attn and ggml_flash_attn_back k and v can now be repeated in q along ne[2] in forward pass just use modulo to compute k and v indices, like ik2 = iq2 % nek2. in backard pass this won't work as easy, because multiple threads will compete to accumulate to the same k->grad[:,ik1,ik2,ik3] and v->grad[:,iv1,iv2,iv3]. so we change the parallelization over q rows to be over k rows. this ensures non-overlapping (ik2,ik3) across threads. in each thread we then iterate over the number of repetitions of k/v in q to compute iq2 as iq2 = ik2 + irep*nek2. since ne2 is not the same for q,k and v we also change how the gradients are concatenated into the result tensor. additionally the offsets of gradq, gradk and gradv in the result tensor are now memory aligned. we also simplify the compute_backward part of flash_attn to use ggml_reshape instead of switching over the number of dimensions. this needs a small change to ggml_reshape, removing the assertion of second argument to be contiguous. since only the shape (ne) of the second reshape argument is of relevance, its memory layout (nb) is irrelevant -> it can very well be non-contiguous. change test-grad0 to also test for repeated k/v in q. this changes the rng and now results in small gradient differences in softmax. these solely come from using f16 exp table lookup in forward softmax: when temporarily changing softmax to use actual exp function, the reported gradient differences go away. gradient differences coming solely from f16 table lookup are acceptable. added a note to explain this. * add llama API functions to get grouped-query-attention n_head parameter 'n_head_kv'. * fix finetune to support grouped-query-attention (using flash-attention) note: ggml changes to ggml_out_prod are necessary to support grouped-query-attention without flash-attention. * support broadcastable a in out_prod(a, b) and backward pass of broadcasting mul_mat(a, b) * test broadcasting mul_mat backward pass * decouple random number generator of each operation test when changing one test the rng of others tests is not influenced anymore * add comment briefly describing what ggml_repeat_back does * simplify broadcasting mul_mat backward using ggml_repeat_back * add cgraph evaluation order member and corresponding enum type this controls in which order ggml_build_forward visits source nodes. by default the nodes are visited left to right, i.e. src[0] first. in some cases it is beneficial for ggml-alloc to visit in a different order. two possible orders are supported: left-to-right (src[0] first) and right-to-left (src[0] last). * measure max compute size for each cgraph eval order and use best order this can bring huge memory savings: e.g. codellama-34b with n_ctx=64, n_batch=1 goes from 92927.8mb down to 4627.6 MB * remove unused command line options * add sample start patterns and options to force new or by default resume last shuffling * update shuffle rng state on reshuffle * exclude known zero values from computations in flash_attn_f32 & flash_attn_back_f32 * remove probably unnecessary exception type flags from stringstream * pass correct max number of tokens to llama_tokenize * account for possible leading whitespace that will be added by tokenizer e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] * use unrolled vec_mad in out_prod y is vec_mad result vec. x is vec_mad input vec. v is vec_mad input scalar. ggml_vec_mad_f32_unroll will internally loop over x and v with same y. GGML_VEC_MAD_UNROLL is by default defined to 32. This value is empirical optimized using performance test runs of out-prod in openllama-3b finetune with 256 context length and batch size 1. It gives 23% performance boost for out_prod. Full measurements of out-prod runtime in ms: unroll_xv unroll_yv 1 67014.643 87826.469 2 77117.552 89077.656 4 72091.311 109121.657 8 61077.543 88678.334 16 56914.67 79514.947 24 59024.595 84350.254 28 55952.446 83368.73 32 51476.658 85177.745 36 55973.792 84659.92 40 55139.616 93844.738 48 60736.392 93330.267 64 99856.878 116994.99 Second column is when unrollying yv instead of xv * set lora_alpha to value of lora_r if it is not set via command line otherwise only changing lora_r will change scaling of lora adapter used in prediction * reshuffle original sample order instead of the previous shuffled order otherwise resumed reshuffle will not result in same sample order * block tiling for out-prod inspired by mul-mat block sizes are empirically optimized roughly doubles the flops of out-prod * exclude some more known zero values from computations in flash_attn_f32 & flash_attn_back_f32 * add static keywords * remove outcommented old code * update train-text-from-scratch with tokenization, sample selection and shuffling from finetune * remove lbfgs related train parameters * move common train functions into common/train.[h|cpp] * move train state into struct train_state * move train data saving code into callback to unify code of opt_callback train_params are still different in finetune and train-text-from-scratch, so it can't yet be moved to train.h|cpp * move common train params into common/train * move common opt_callback into common/train * fix consume_common_train_arg * save and load head_count_kv in lora checkpoints * increase train_samples by used_samples instead of number of batches on batch can contain more than one sample when option "fill_with_next_samples" is used * fix usage of llama_tokenize * remove static from process_escape since we need it exposed in header * fix code formating of long function declarations * fix condition in load_train_state_gguf * use die("msg") instead of replace GGML_ASSERT(!"msg") or throw std::runtime_error("msg") * fix saving and loading of training type * remove terminating '\0' from tokenization (llama_tokenize is now passed the string length instead of relying on terminating '\0') * fix compile warnings * fix compile warnings * use new/delete for train_state instead of malloc/free using malloc may result in seg faults when trying to assign string fields * assert that sample_count > 0, avoiding division by zero * fix frand to return value in interval [0,1) * add train option "--sample-random-offsets" Use samples beginning at random offsets. The offset is only applied to the first sample in each batch context window. Together with "--fill-with-next-samples" this may help for training endless text generation. For example given a dataset containing samples "abcd", "ABCD", "0123". With context size of 8 and options "--fill-with-next-samples", "--no-separate-with-eos", "--no-separate-with-bos", the context windows of batches could only be filled with "abcdABCD", "ABCDabcd", "0123abcd", etc. With "--sample-random-offsets" it can also be filled with "23abcdAB", "bcd0123A", etc. * deduplicate code into function * remove n_rot hparam, as it must always be hparam.n_embd_head() * align code * assert correct base model tensor shapes * move some params from lora hparams into model hparams and load model params from gguf this equalizes the model definition in finetune and text-from-scratch and removes the need for additional llama api functions to get model parameters * remove now unnecessary llama API functions to get model params that where added by this PR * train-text-from-scratch: automatically allocate model tensors, remove option '--mem-model N' * train-text-from-scratch: automatically allocate opt context * train-text-from-scratch: automatically allocate input tensors * train-text-from-scratch: automatically allocate compute memory * remove unused options and equalize train-text-from-scratch with finetune * initialize opt->loss_after with zero * add export-lora program * remove trailing whitespace * add export-lora build in Makefile * remove unused struct tensor_info from export-lora * add export-lora build dependency to llama because it depends on common, which depends on llama * update finetune README.md * cancel optimization when specified number of epochs is completed * improve handling of export-lora arguments print errors and warnings when files could not be read or created * Fix export-lora.cpp "not enough space in the context's memory pool" (#1) * Fix export-lora.cpp "not enough space in the context's memory pool" Without this patch, export-lora would sometimes error with "not enough space in the context's memory pool (needed 656784, available 656800)". * increase required context size by 5*GGML_MEM_ALIGN instead of plain 16 --------- Co-authored-by: xaedes * improve handling of not yet supported tensor types --------- Co-authored-by: Georgi Gerganov Co-authored-by: meatbag-18a <145869052+meatbag-18a@users.noreply.github.com> --- .gitignore | 2 + Makefile | 15 +- common/CMakeLists.txt | 2 + common/common.cpp | 43 +- common/common.h | 6 +- common/train.cpp | 1496 ++++++++++++ common/train.h | 230 ++ examples/CMakeLists.txt | 2 + examples/baby-llama/baby-llama.cpp | 170 +- examples/export-lora/CMakeLists.txt | 5 + examples/export-lora/README.md | 26 + examples/export-lora/export-lora.cpp | 474 ++++ examples/finetune/CMakeLists.txt | 5 + examples/finetune/README.md | 90 + .../convert-finetune-checkpoint-to-gguf.py | 489 ++++ examples/finetune/finetune.cpp | 1935 ++++++++++++++++ examples/server/server.cpp | 18 +- examples/train-text-from-scratch/README.md | 11 +- .../convert-train-checkpoint-to-gguf.py | 12 +- .../train-text-from-scratch.cpp | 1996 +++++------------ ggml-alloc.c | 10 +- ggml-alloc.h | 1 + ggml.c | 1964 ++++++++++------ ggml.h | 47 +- llama.cpp | 21 +- llama.h | 11 +- tests/test-grad0.cpp | 173 +- 27 files changed, 6921 insertions(+), 2333 deletions(-) create mode 100644 common/train.cpp create mode 100644 common/train.h create mode 100644 examples/export-lora/CMakeLists.txt create mode 100644 examples/export-lora/README.md create mode 100644 examples/export-lora/export-lora.cpp create mode 100644 examples/finetune/CMakeLists.txt create mode 100644 examples/finetune/README.md create mode 100644 examples/finetune/convert-finetune-checkpoint-to-gguf.py create mode 100644 examples/finetune/finetune.cpp diff --git a/.gitignore b/.gitignore index b54723a15..8ba3b9f4b 100644 --- a/.gitignore +++ b/.gitignore @@ -52,6 +52,8 @@ models-mnt /server /simple /batched +/export-lora +/finetune /speculative /parallel /train-text-from-scratch diff --git a/Makefile b/Makefile index c7f6a808e..53af3c692 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel finetune export-lora tests/test-c.o # Binaries only useful for tests TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama @@ -500,6 +500,9 @@ console.o: common/console.cpp common/console.h grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h $(CXX) $(CXXFLAGS) -c $< -o $@ +train.o: common/train.cpp common/train.h + $(CXX) $(CXXFLAGS) -c $< -o $@ + libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) @@ -550,7 +553,7 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o $(OBJS) +train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS) $(CXX) $(TTFS_CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) @@ -559,12 +562,18 @@ convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggm llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS) +baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index dead56118..951aa8340 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -9,6 +9,8 @@ add_library(${TARGET} OBJECT console.cpp grammar-parser.h grammar-parser.cpp + train.h + train.cpp ) if (BUILD_SHARED_LIBS) diff --git a/common/common.cpp b/common/common.cpp index 7c3e11875..8764a7be3 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -78,7 +78,7 @@ int32_t get_num_physical_cores() { return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; } -static void process_escapes(std::string& input) { +void process_escapes(std::string& input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; @@ -352,7 +352,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.lora_adapter = argv[i]; + params.lora_adapter.push_back({argv[i], 1.0f}); + params.use_mmap = false; + } else if (arg == "--lora-scaled") { + if (++i >= argc) { + invalid_param = true; + break; + } + const char * lora_adapter = argv[i]; + if (++i >= argc) { + invalid_param = true; + break; + } + params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { @@ -703,6 +715,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --verbose-prompt print prompt before generation\n"); fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); + printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); printf(" -m FNAME, --model FNAME\n"); printf(" model path (default: %s)\n", params.model.c_str()); @@ -776,10 +789,15 @@ std::tuple llama_init_from_gpt_par return std::make_tuple(nullptr, nullptr); } - if (!params.lora_adapter.empty()) { + for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { + const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]); + float lora_scale = std::get<1>(params.lora_adapter[i]); int err = llama_model_apply_lora_from_file(model, - params.lora_adapter.c_str(), - params.lora_base.empty() ? NULL : params.lora_base.c_str(), + lora_adapter.c_str(), + lora_scale, + ((i > 0) || params.lora_base.empty()) + ? NULL + : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); @@ -1225,7 +1243,20 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, " %d: %f", lb.first, lb.second); } - fprintf(stream, "lora: %s\n", params.lora_adapter.c_str()); + fprintf(stream, "lora:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) != 1.0f) { + continue; + } + fprintf(stream, " - %s\n", std::get<0>(la).c_str()); + } + fprintf(stream, "lora_scaled:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) == 1.0f) { + continue; + } + fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); + } fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); diff --git a/common/common.h b/common/common.h index 16e30b2f5..64601f997 100644 --- a/common/common.h +++ b/common/common.h @@ -85,8 +85,8 @@ struct gpt_params { std::vector antiprompt; // string upon seeing which more user input is prompted std::string logdir = ""; // directory in which to save YAML log files - std::string lora_adapter = ""; // lora adapter path - std::string lora_base = ""; // base model path for the lora adapter + std::vector> lora_adapter; // lora adapter path with user defined scale + std::string lora_base = ""; // base model path for the lora adapter int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line @@ -128,6 +128,8 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); +void process_escapes(std::string& input); + // // Model utils // diff --git a/common/train.cpp b/common/train.cpp new file mode 100644 index 000000000..4a1280966 --- /dev/null +++ b/common/train.cpp @@ -0,0 +1,1496 @@ +#include "train.h" +#include "common.h" + +#include +#include +#include + +struct random_normal_distribution { + std::mt19937 gen; + std::normal_distribution rd; + float min; + float max; +}; + +struct random_uniform_distribution { + std::mt19937 gen; + std::uniform_real_distribution rd; +}; + +struct train_state * init_train_state() { + struct train_state * state = new struct train_state; + state->train_its = 0; + state->train_samples = 0; + state->train_tokens = 0; + state->train_epochs = 0; + state->shuffle_samples_hash = 0; + state->shuffle_sample_count = 0; + state->shuffle_next_sample = 0; + state->shuffle_rng_state_current = ""; + state->shuffle_rng_state_next = ""; + + state->opt = new struct ggml_opt_context; + state->opt->ctx = NULL; + state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + state->opt->loss_after = 0.0f; + + return state; +} + +void free_train_state(struct train_state * state) { + delete state->opt; + delete state; +} + +struct random_normal_distribution * init_random_normal_distribution( + int seed, float mean, float std, float min, float max +) { + struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::normal_distribution{mean, std}; + rnd->min = min; + rnd->max = max; + return rnd; +} + +struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) { + struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::uniform_real_distribution{min, max}; + return rnd; +} + +void free_random_normal_distribution (struct random_normal_distribution * rnd) { + free(rnd); +} + +void free_random_uniform_distribution(struct random_uniform_distribution * rnd) { + free(rnd); +} + +struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { + float scale = 1.0f; // xavier + switch (tensor->n_dims) { + case 1: + scale /= sqrtf((float) tensor->ne[0]); + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = scale * frand_normal(rnd); + } + break; + case 2: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = scale * frand_normal(rnd); + } + } + break; + case 3: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = scale * frand_normal(rnd); + } + } + } + break; + case 4: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = scale * frand_normal(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { + switch (tensor->n_dims) { + case 1: + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = frand_uniform(rnd); + } + break; + case 2: + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = frand_uniform(rnd); + } + } + break; + case 3: + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = frand_uniform(rnd); + } + } + } + break; + case 4: + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = frand_uniform(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +float frand() { + return (float)rand()/((float)(RAND_MAX) + 1.0f); +} + +float frand_normal(struct random_normal_distribution * rnd) { + return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); +} + +float frand_uniform(struct random_uniform_distribution * rnd) { + return rnd->rd(rnd->gen); +} + +int clamp(const int v, const int min, const int max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +float fclamp(const float v, const float min, const float max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { + GGML_ASSERT(tensor->n_dims == 1); + GGML_ASSERT(tensor->ne[0] == ne0); +} + +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { + GGML_ASSERT(tensor->n_dims == 2); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); +} + +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { + GGML_ASSERT(tensor->n_dims == 3); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); +} + +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { + GGML_ASSERT(tensor->n_dims == 4); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); + GGML_ASSERT(tensor->ne[3] == ne3); +} + +int64_t get_example_targets_batch( + struct llama_context * lctx, + struct ggml_tensor * tokens_input, + struct ggml_tensor * target_probs, + int64_t example_id, + const size_t * samples_offs, + const size_t * samples_begin, + const size_t * samples_size, + size_t samples_count, + const llama_token * train_data, + size_t n_train_data, + bool separate_with_eos, + bool separate_with_bos, + bool fill_with_next_samples, + bool sample_random_offsets +) { + GGML_ASSERT(samples_count > 0); + GGML_ASSERT(tokens_input->n_dims == 2); + GGML_ASSERT(target_probs->n_dims == 3); + int64_t n_vocab = target_probs->ne[0]; + int64_t n_tokens = tokens_input->ne[0]; + int64_t n_batch = tokens_input->ne[1]; + GGML_ASSERT(n_vocab == target_probs->ne[0]); + GGML_ASSERT(n_tokens == target_probs->ne[1]); + GGML_ASSERT(n_batch == target_probs->ne[2]); + + int64_t used_samples = 0; + + ggml_set_f32(target_probs, 0.0f); + llama_token bos = llama_token_bos(lctx); + llama_token eos = llama_token_eos(lctx); + // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); + for (int k=0; k= sample_size && fill_with_next_samples) { + if (!sample_separation_eos) { + // insert eos token to separate samples + sample_separation_eos = true; + } else if (!sample_separation_bos) { + // insert bos token to separate samples + sample_separation_bos = true; + token = bos; + } else { + // sample separation is done, continue with next sample + sample_separation_eos = !separate_with_eos; + sample_separation_bos = !separate_with_bos; + sample_offs = 0; + sample_idx = (example_id + used_samples) % samples_count; + sample_begin = samples_begin[sample_idx]; + sample_size = samples_size[sample_idx]; + ++used_samples; + } + } + // note: no else-if here + if (sample_offs < sample_size) { + token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1)); + ++sample_offs; + } + ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f); + if (i+1> rng; +} + +std::string mt19937_get_state(const std::mt19937& rng) { + std::stringstream s_rng_state; + s_rng_state.imbue(std::locale::classic()); + s_rng_state << rng; + return s_rng_state.str(); +} + +std::string mt19937_seed_to_state(unsigned seed) { + std::mt19937 rng(seed); + return mt19937_get_state(rng); +} + +std::string shuffle_samples( + const std::string & rng_state, + size_t * shuffled_offs, + size_t * shuffled_begins, + size_t * shuffled_sizes, + const size_t * begins, + const size_t * sizes, + size_t count) { + if (count == 0) return rng_state; + + std::mt19937 rng; + mt19937_set_state(rng, rng_state); + + // sort indices by random value for each index + std::vector idcs; + { + std::vector rnd; + idcs.resize(count); + rnd.resize(count); + for (unsigned i=0; i h_string; + std::hash h_ull; + size_t h = h_string(std::string(fn)); + h = hash_combine(h, h_ull((unsigned long long) sample_count)); + for (size_t i=0; i< sample_count; ++i) { + h = hash_combine(h, h_ull((unsigned long long) samples_begin[i])); + h = hash_combine(h, h_ull((unsigned long long) samples_size[i])); + } + return h; +} + +std::string replace_str(const char * s, const char * needle, const char * replacement) { + std::string str = s; + size_t pos = str.find(needle); + if (pos != std::string::npos) { + str.replace(pos, strlen(needle), replacement); + } + return str; +} + +void print_duration(double fmillis) { + if (fmillis < 1000.0f) { + printf("%.1fms", (float) fmillis); + return; + } + const int64_t one_sec = 1000; + const int64_t one_min = one_sec * 60; + const int64_t one_hour = one_min * 60; + const int64_t one_day = one_hour * 24; + + int64_t millis = (int64_t) fmillis; + int64_t days = millis/one_day; + int64_t hours = (millis - days*one_day)/one_hour; + int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min; + int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec; + + // to print int64_t either cast to (long long int) or use macro PRId64 from + if (days > 0) { + printf("%lldd ", (long long int) days); + } + printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds); +} + +float cosine_decay(int64_t step, int64_t decay_steps, float minimum) { + if (step > decay_steps) { + step = decay_steps; + } + const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); + const float decay = (1 - minimum)*cosine_decay + minimum; + return decay; +} + +float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) { + while (step > decay_steps) { + step -= decay_steps; + decay_steps = (int64_t) (restart_step_mult * decay_steps); + } + return cosine_decay(step, decay_steps, minimum); +} + +float learning_schedule( + int64_t step, + int64_t warmup_steps, + int64_t cos_decay_steps, + float learning_rate, + float overall_minimum, + float cos_decay_minimum, + float cos_decay_restart_step_mult, + bool enable_restart) { + + float result = + (step < warmup_steps) + ? (float) step / (float) warmup_steps + : enable_restart + ? cosine_decay_restart( + step - warmup_steps, + cos_decay_steps, + cos_decay_minimum, + cos_decay_restart_step_mult) + : cosine_decay( + step, + cos_decay_steps, + cos_decay_minimum); + + float min = overall_minimum / learning_rate; + result = min + result * (1.0f - min); + return result; +} + +static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { + GGML_ASSERT(a != NULL); + GGML_ASSERT(b != NULL); + GGML_ASSERT(a->type == b->type); + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); + + return true; +} + +void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { + if (dst == NULL) { + return; + } + struct ggml_tensor * t = ggml_get_tensor(ctx, name); + GGML_ASSERT(are_same_layout(dst, t)); + memcpy(dst->data, t->data, ggml_nbytes(t)); + + if (strlen(ggml_get_name(dst)) == 0) { + ggml_set_name(dst, name); + } +} + +// gguf constants +static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; +static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; +static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; +static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; +static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; +static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; +static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; +static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; +static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; +static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; + +static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; + +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; + +static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; +static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; +static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; +static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; +static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash"; +static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample"; + +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + die_fmt("key not found in model: %s", skey.c_str()); \ + } \ +} + +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); + GGML_ASSERT(file_version == 0); + + GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); + GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); + GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); + + uint64_t nx; + GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); + opt->nx = (size_t) nx; + + // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know + + std::string opt_type; + GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); + if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { + opt->params.type = GGML_OPT_ADAM; + + GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); + GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { + opt->params.type = GGML_OPT_LBFGS; + + GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); + GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); + GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); + GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); + GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); + GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + } else { + die("unknown optimizer type\n"); + } +} + +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); + gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); + gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); + + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); + + ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + if (opt->adam.pf) { + ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } + + gguf_add_tensor(fctx, opt->adam.m); + gguf_add_tensor(fctx, opt->adam.v); + if (opt->adam.pf) { + gguf_add_tensor(fctx, opt->adam.pf); + } + } break; + case GGML_OPT_LBFGS: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); + + ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + if (opt->lbfgs.pf) { + ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + } + ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + + gguf_add_tensor(fctx, opt->lbfgs.x); + gguf_add_tensor(fctx, opt->lbfgs.xp); + gguf_add_tensor(fctx, opt->lbfgs.g); + gguf_add_tensor(fctx, opt->lbfgs.gp); + gguf_add_tensor(fctx, opt->lbfgs.d); + if (opt->lbfgs.pf) { + gguf_add_tensor(fctx, opt->lbfgs.pf); + } + gguf_add_tensor(fctx, opt->lbfgs.lmal); + gguf_add_tensor(fctx, opt->lbfgs.lmys); + gguf_add_tensor(fctx, opt->lbfgs.lms); + gguf_add_tensor(fctx, opt->lbfgs.lmy); + } break; + } +} + +bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) { + if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) { + return false; + } + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); + GGML_ASSERT(file_version <= 1); + + if (file_version == 0) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); + + } else if (file_version == 1) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT); + GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT); + + GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH); + GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE); + GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE); + } + + load_opt_context_gguf(fctx, f_ggml_ctx, train->opt); + return true; +} + +void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) { + gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs); + + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash); + gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str()); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample); + + save_opt_context_gguf(fctx, train->opt); +} + + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static size_t utf8_len(char src) { + const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; + uint8_t highbits = static_cast(src) >> 4; + return lookup[highbits]; +} + +// mark each byte with its utf8 unit number. +// returns the number of utf8 characters. +// e.g. when bytes == '\x61\xD0\xB0\x62', +// then utf8_units will become [0,0,1,0] +// utf8_nunits will become [1,2,2,1] and 3 is returned. +// bytes where utf8_units is zero, are the begin of an utf8 character. +static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) { + size_t offs = 0; + size_t count_utf8 = 0; + while(offs < count) { + int len = (int) utf8_len(bytes[offs]); + for (int i=0; i & out_tokens, + std::vector & out_samples_begin, + std::vector & out_samples_size) { + struct llama_file f(filename, "rb"); + + if (f.size == 0) { + out_tokens.clear(); + out_samples_begin.clear(); + out_samples_size.clear(); + printf("%s: warning: empty or not existing training data file '%s'\n", + __func__, filename); + return out_tokens.size(); + } + + // account for possible leading whitespace that will be added by tokenizer + // e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] + const int n_max_tokens_overhead = 1; + + std::vector buf; + buf.resize(f.size); + + f.read_raw(buf.data(), f.size); + + std::vector utf8_units; + std::vector utf8_nunits; + utf8_units.resize(buf.size()); + utf8_nunits.resize(buf.size()); + mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size()); + + if (sample_start.size() == 0) { + // tokenize all data at once + out_tokens.resize(buf.size() + n_max_tokens_overhead); + + int n_tokens = llama_tokenize( + lctx, + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + if (n_tokens < 0) { + out_tokens.resize(-n_tokens); + n_tokens = llama_tokenize( + lctx, + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + } + if (n_tokens >= 0) { + out_tokens.resize(n_tokens); + } + + // generate sample starts at all token positions + out_samples_begin.clear(); + out_samples_begin.push_back(0); + out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size())); + size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0; + for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) { + out_samples_begin.push_back(sample_begin); + out_samples_size.push_back(context_length); + } + } else { + // split data into samples and tokenize each sample + std::string data_str(buf.data(), buf.size()); + out_samples_begin.clear(); + out_samples_size.clear(); + out_tokens.clear(); + + // find all positions of pattern sample_start + size_t sample_begin = data_str.find(sample_start, 0); + while (sample_begin != std::string::npos) { + out_samples_begin.push_back(sample_begin); + const size_t search_start = sample_begin + sample_start.size(); + sample_begin = data_str.find(sample_start, search_start); + } + if (out_samples_begin.size() == 0) { + printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n", + __func__, sample_start.c_str()); + out_samples_begin.push_back(0); + } + + out_samples_size.resize(out_samples_begin.size(), 0); + + std::vector buf_sample; + std::vector tok_sample; + + const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size()); + size_t found_too_big_sample = 0; + size_t found_too_small_sample = 0; + size_t found_empty_sample = 0; + size_t found_min_sample_size = SIZE_MAX; + size_t found_max_sample_size = 0; + + size_t max_token_text_size = 0; + int n_vocab = llama_n_vocab(lctx); + for (llama_token token=0; token < n_vocab; ++token) { + max_token_text_size = std::max( + max_token_text_size, + strlen(llama_token_get_text(lctx, token))); + } + + // upper bound of context byte length. + // strings with this byte length should always tokenize to at least context_length tokens. + size_t context_byte_len = max_token_text_size*context_length; + + for (unsigned i=0; i 0) { + // sample end is in the middle of an utf8 character. + // advance sample_end to the begin of the next utf8 character. + sample_end += utf8_nunits[sample_end] - utf8_units[sample_end]; + } + size_t sample_size = sample_end - sample_begin; + if (sample_size == 0) { + ++found_empty_sample; + } + + if (sample_size > 0) { + // llama_tokenize expects zero terminated string, + // copy sample into buffer and zero terminate it. + buf_sample.resize(sample_size); + memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size); + + // printf("sample: '%s'\n", buf_sample.data()); + + // tokenize the sample + tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); + int n_tokens = llama_tokenize(lctx, + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + if (n_tokens < 0) { + tok_sample.resize(-n_tokens); + n_tokens = llama_tokenize(lctx, + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + GGML_ASSERT(n_tokens >= 0); + } + GGML_ASSERT(n_tokens <= (int) tok_sample.size()); + + if ((size_t) n_tokens > context_length) { + ++found_too_big_sample; + } else if ((size_t) n_tokens < context_length) { + ++found_too_small_sample; + } + found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens); + found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens); + + // write out tokens, start and size of sample + // overwrite the string start position with the token start position + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = (size_t) n_tokens; + out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens); + } else { + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = 0; + } + + } + if (found_too_big_sample > 0) { + printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n", + __func__, found_too_big_sample, found_max_sample_size, context_length); + } + + if (found_too_small_sample > 0) { + printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n", + __func__, found_too_small_sample, found_min_sample_size, context_length); + } + + if (found_empty_sample) { + printf("%s: warning: found %zu empty samples.\n", + __func__, found_empty_sample); + } + } + printf("%s: total number of samples: %zu\n", + __func__, out_samples_begin.size()); + + GGML_ASSERT(out_samples_begin.size() == out_samples_size.size()); + + return out_tokens.size(); +} + +std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) { + std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest); + return replace_str(filename, pattern_it, sit.c_str()); +} + +struct train_params_common get_default_train_params_common() { + struct train_params_common params; + params.fn_train_data = "shakespeare.txt"; + params.fn_checkpoint_in = "checkpoint.gguf"; + params.fn_checkpoint_out = "checkpoint-ITERATION.gguf"; + params.pattern_fn_it = "ITERATION"; + params.fn_latest = "LATEST"; + + params.print_usage = false; + + params.save_every = 10; + + params.seed = -1; + + params.n_ctx = 128; + params.n_threads = 6; + params.n_batch = 8; + params.n_gradient_accumulation = 1; + params.n_epochs = -1; + + params.custom_n_ctx = false; + + params.use_flash = true; + params.use_checkpointing = true; + + params.sample_start = ""; + params.include_sample_start = false; + params.escape = false; + params.overlapping_samples = false; + params.fill_with_next_samples = false; + params.separate_with_eos = false; + params.separate_with_bos = true; + params.sample_random_offsets = false; + params.force_reshuffle = false; + + params.opt_past = 0; + params.opt_delta = 1e-5f; + params.opt_max_no_improvement = 0; + + params.warmup = 100; + params.cos_decay_steps = 1000; + params.cos_decay_restart = 1.1f; + params.cos_decay_min = 0.1f; + params.enable_restart = false; + + params.adam_n_iter = 256; + params.adam_alpha = 1e-3f; + params.adam_min_alpha = 0; + params.adam_decay = 1e-1f; + params.adam_decay_min_ndim = 2; + params.adam_beta1 = 0.9f; + params.adam_beta2 = 0.999f; + params.adam_gclip = 1.0f; + params.adam_eps_f = 0.0f; + return params; +} + +void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) { + // fprintf(stderr, "usage: %s [options]\n", argv[0]); + // fprintf(stderr, "\n"); + // fprintf(stderr, "options:\n"); + // fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); + fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); + fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); + fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it); + fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest); + fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); + fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); + fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); + fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation); + fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str()); + fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n"); + fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); + fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n"); + fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n"); + fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : ""); + fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n"); + fprintf(stderr, " --no-flash Don't use flash attention \n"); + fprintf(stderr, " --use-flash Use flash attention (default)\n"); + fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); + fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); + fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); + fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); + fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); + fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); + fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); + fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); + fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); + fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs); + fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); + fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); + fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); + fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); + fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); + fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); + fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); + fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); + fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); + fprintf(stderr, "\n"); +} + +bool consume_common_train_arg( + int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param +) { + int& i = *idx; + std::string arg = argv[i]; + const std::string arg_prefix = "--"; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + if (arg == "--train-data") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_train_data = argv[i]; + } else if (arg == "--checkpoint-in") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_in = argv[i]; + } else if (arg == "--checkpoint-out") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_out = argv[i]; + } else if (arg == "--pattern-fn-it") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->pattern_fn_it = argv[i]; + } else if (arg == "--fn-latest") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_latest = argv[i]; + } else if (arg == "--save-every") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->save_every = std::stoi(argv[i]); + } else if (arg == "-s" || arg == "--seed") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->seed = std::stoi(argv[i]); + } else if (arg == "-c" || arg == "--ctx") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_ctx = std::stoi(argv[i]); + params->custom_n_ctx = true; + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_threads = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_batch = std::stoi(argv[i]); + } else if (arg == "--grad-acc") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_gradient_accumulation = std::max(1, std::stoi(argv[i])); + } else if (arg == "--sample-start") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->sample_start = std::string(argv[i]); + } else if (arg == "--escape") { + params->escape = true; + } else if (arg == "--include-sample-start") { + params->include_sample_start = true; + } else if (arg == "--overlapping-samples") { + params->overlapping_samples = true; + } else if (arg == "--fill-with-next-samples") { + params->fill_with_next_samples = true; + } else if (arg == "--separate-with-eos") { + params->separate_with_eos = true; + } else if (arg == "--separate-with-bos") { + params->separate_with_bos = true; + } else if (arg == "--no-separate-with-eos") { + params->separate_with_eos = false; + } else if (arg == "--no-separate-with-bos") { + params->separate_with_bos = false; + } else if (arg == "--sample-random-offsets") { + params->sample_random_offsets = true; + } else if (arg == "--force-reshuffle") { + params->force_reshuffle = true; + } else if (arg == "--no-flash") { + params->use_flash = false; + } else if (arg == "--use-flash") { + params->use_flash = true; + } else if (arg == "--no-checkpointing") { + params->use_checkpointing = false; + } else if (arg == "--use-checkpointing") { + params->use_checkpointing = true; + } else if (arg == "--warmup") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->warmup = std::stoi(argv[i]); + } else if (arg == "--cos-decay-steps") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_steps = std::stoi(argv[i]); + } else if (arg == "--cos-decay-restart") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_restart = std::stof(argv[i]); + } else if (arg == "--cos-decay-min") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_min = std::stof(argv[i]); + } else if (arg == "--enable-restart") { + params->enable_restart = true; + } else if (arg == "--disable-restart") { + params->enable_restart = false; + } else if (arg == "--opt-past") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_past = std::stoi(argv[i]); + } else if (arg == "--opt-delta") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_delta = std::stof(argv[i]); + } else if (arg == "--opt-max-no-improvement") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_max_no_improvement = std::stoi(argv[i]); + } else if (arg == "--adam-epsf") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_eps_f = std::stof(argv[i]); + } else if (arg == "--epochs") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_epochs = std::stoi(argv[i]); + } else if (arg == "--adam-iter") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_n_iter = std::stoi(argv[i]); + } else if (arg == "--adam-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_alpha = std::stof(argv[i]); + } else if (arg == "--adam-min-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_min_alpha = std::stof(argv[i]); + } else if (arg == "--adam-decay") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay = std::stof(argv[i]); + } else if (arg == "--adam-decay-min-ndim") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay_min_ndim = std::stoi(argv[i]); + } else if (arg == "--adam-beta1") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta1 = std::stof(argv[i]); + } else if (arg == "--adam-beta2") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta2 = std::stof(argv[i]); + } else if (arg == "--adam-gclip") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_gclip = std::stof(argv[i]); + } else if (arg == "-h" || arg == "--help") { + params->print_usage = true; + return true; + } else { + return false; + } + return true; +} + +void finish_processing_train_args(struct train_params_common * params) { + if (params->escape) { + process_escapes(params->sample_start); + } +} + +void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) { + struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata; + struct train_params_common * params = data->params; + struct train_state * train = data->train; + struct ggml_opt_context * opt = train->opt; + int n_batch = params->n_batch; + int n_ctx = params->n_ctx; + + if (accum_step == 0) { + // time measurement + int64_t now = ggml_time_ms(); + if (now > data->last_time && opt->iter > data->first_iter) { + double dt = (double) (now - data->last_time); + if (data->millis_per_iter == 0.0) { + data->millis_per_iter = dt; + } else { + const double gain = 0.7; + data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain; + } + } + + double remaining_millis = 0.0; + if (data->millis_per_iter > 0.0) { + const int n_iter = params->adam_n_iter; + const int done_iter = opt->iter - data->first_iter; + const int remaining_iter = n_iter - done_iter; + remaining_millis = remaining_iter * data->millis_per_iter; + } + + // file saving + const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); + if (save_now) { + int new_iters = opt->iter - data->last_save_iter; + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx; + + if (data->save_cb) { + data->save_cb(data->save_data, train); + } + + data->last_save_iter = opt->iter; + } + + // exclude file saving from time measurement, by measuring last_time after saving + data->last_time = ggml_time_ms(); + + *sched = learning_schedule( + opt->iter, + params->warmup, + params->cos_decay_steps, + params->adam_alpha, + params->adam_min_alpha, + params->cos_decay_min, + params->cos_decay_restart, + params->enable_restart); + + int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); + if (impr_plot > 0) impr_plot = 0; + if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; + printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", + __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, + *sched, opt->loss_after); + + + if (data->millis_per_iter > 0) { + printf(" dt="); + print_duration(data->millis_per_iter); + printf(" eta="); + print_duration(remaining_millis); + } + + float improvement = opt->loss_before - opt->loss_after; + const float plot_scale = 10.0f; + int bar_len = (int)(1 + improvement*plot_scale + 0.5); + printf(" |"); + for (int i=0; i"); + printf("\n"); + } + + int64_t used_samples = get_example_targets_batch( + data->lctx, + data->tokens_input, + data->target_probs, + train->shuffle_next_sample, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_count, + data->tokens_data, + data->tokens_size, + params->separate_with_eos, + params->separate_with_bos, + params->fill_with_next_samples, + params->sample_random_offsets); + + train->train_samples += used_samples; + train->shuffle_next_sample += used_samples; + + if (train->shuffle_next_sample >= train->shuffle_sample_count) { + ++train->train_epochs; + printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs); + // note: we may have used some samples from the current shuffling more than once + train->shuffle_rng_state_current = train->shuffle_rng_state_next; + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_begin, + data->samples_size, + data->samples_count); + train->shuffle_next_sample = 0; + } + + const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs); + if (last_epoch_reached) { + // allow optimization iteration at last epoch to be completed before canceling + if (data->iter_at_last_epoch < 0) { + data->iter_at_last_epoch = opt->iter; + } else if (opt->iter > data->iter_at_last_epoch) { + *cancel = true; + } + } +} diff --git a/common/train.h b/common/train.h new file mode 100644 index 000000000..42fa704b8 --- /dev/null +++ b/common/train.h @@ -0,0 +1,230 @@ +// Various helper functions and utilities for training + +#pragma once + +#include +#include +#include + +#include "ggml.h" +#include "llama.h" + +typedef std::string mt19937_state; + +struct train_state { + struct ggml_opt_context * opt; + + uint64_t train_its; + uint64_t train_samples; + uint64_t train_tokens; + uint64_t train_epochs; + + size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes) + mt19937_state shuffle_rng_state_current; + mt19937_state shuffle_rng_state_next; + size_t shuffle_sample_count; + size_t shuffle_next_sample; +}; + +struct train_params_common { + const char * fn_train_data; + const char * fn_checkpoint_in; + const char * fn_checkpoint_out; + const char * pattern_fn_it; + const char * fn_latest; + + bool print_usage; + + int save_every; + + uint32_t seed; + + int n_ctx; + int n_threads; + int n_batch; + int n_gradient_accumulation; + int n_epochs; + + bool custom_n_ctx; + + bool use_flash; + bool use_checkpointing; + + std::string sample_start; + bool include_sample_start; + bool escape; + bool overlapping_samples; + bool fill_with_next_samples; + bool separate_with_eos; + bool separate_with_bos; + bool sample_random_offsets; + + bool force_reshuffle; + + int warmup; + int cos_decay_steps; + float cos_decay_restart; + float cos_decay_min; + bool enable_restart; + + int opt_past; + float opt_delta; + int opt_max_no_improvement; + + int adam_n_iter; + float adam_alpha; + float adam_min_alpha; + float adam_decay; + int adam_decay_min_ndim; + float adam_beta1; + float adam_beta2; + float adam_gclip; + float adam_eps_f; +}; + +typedef void (*save_train_files_callback)(void * data, struct train_state * train); + +struct train_opt_callback_data { + struct train_params_common * params; + struct train_state * train; + save_train_files_callback save_cb; + void * save_data; + struct llama_context * lctx; + int last_save_iter; + llama_token * tokens_data; + size_t tokens_size; + size_t * samples_begin; + size_t * samples_size; + size_t * shuffled_samples_offs; + size_t * shuffled_samples_begin; + size_t * shuffled_samples_size; + size_t samples_count; + struct ggml_tensor * tokens_input; + struct ggml_tensor * target_probs; + int first_iter; + int first_epoch; + int iter_at_last_epoch; + int64_t last_time; + double millis_per_iter; +}; + +struct train_state * init_train_state(); +void free_train_state(struct train_state * state); + +struct train_params_common get_default_train_params_common(); +void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params); + +bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param); +void finish_processing_train_args(struct train_params_common * params); + +struct random_normal_distribution; +struct random_uniform_distribution; + +struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max); +struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max); + +void free_random_normal_distribution (struct random_normal_distribution * rnd); +void free_random_uniform_distribution(struct random_uniform_distribution * rnd); + +struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd); +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd); + +// generate random float in interval [0,1) +float frand(); +float frand_normal (struct random_normal_distribution * rnd); +float frand_uniform(struct random_uniform_distribution * rnd); + +int clamp (const int v, const int min, const int max); +float fclamp(const float v, const float min, const float max); + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0); +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1); +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2); +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3); + +size_t tokenize_file( + struct llama_context * lctx, + const char * filename, + const std::string & sample_start, + bool include_sample_start, + bool overlapping_samples, + unsigned context_length, + std::vector & out_tokens, + std::vector & out_samples_begin, + std::vector & out_samples_size); + +int64_t get_example_targets_batch( + struct llama_context * lctx, + struct ggml_tensor * tokens_input, + struct ggml_tensor * target_probs, + int64_t example_id, + const size_t * samples_offs, + const size_t * samples_begin, + const size_t * samples_size, + size_t samples_count, + const llama_token * train_data, + size_t n_train_data, + bool separate_with_eos, + bool separate_with_bos, + bool fill_with_next_samples, + bool sample_random_offsets); + + +void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state); +mt19937_state mt19937_get_state(const std::mt19937& rng); +mt19937_state mt19937_seed_to_state(unsigned seed); + +mt19937_state shuffle_samples( + const mt19937_state & rng_state, + size_t * shuffled_offs, + size_t * shuffled_begins, + size_t * shuffled_sizes, + const size_t * begins, + const size_t * sizes, + size_t count); + +size_t hash_combine(size_t h1, size_t h2); + +size_t compute_samples_hash( + const char* fn, + const size_t* samples_begin, + const size_t* samples_size, + size_t sample_count); + + +std::string replace_str(const char * s, const char * needle, const char * replacement); + +void print_duration(double milliseconds); + +float cosine_decay( + int64_t step, + int64_t decay_steps, + float minimum); + +float cosine_decay_restart( + int64_t step, + int64_t decay_steps, + float minimum, + float restart_step_mult); + +float learning_schedule( + int64_t step, + int64_t warmup_steps, + int64_t decay_steps, + float learning_rate, + float overall_minimum, + float cos_decay_minimum, + float cos_decay_restart_step_mult, + bool enable_restart); + +void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name); + +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt); +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt); + +bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train); +void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train); + +std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration); + +void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel); diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 129cc0116..de4cf7a69 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -21,6 +21,7 @@ else() add_subdirectory(benchmark) add_subdirectory(baby-llama) add_subdirectory(train-text-from-scratch) + add_subdirectory(finetune) add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(simple) add_subdirectory(batched) @@ -35,4 +36,5 @@ else() if (LLAMA_BUILD_SERVER) add_subdirectory(server) endif() + add_subdirectory(export-lora) endif() diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index b02a80863..fb1a15c47 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -1,4 +1,5 @@ #include "ggml.h" +#include "train.h" #include #include #include @@ -14,31 +15,6 @@ constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; constexpr float rms_norm_eps = 5e-6f; #endif -static float frand() { - return (float)rand()/(float)RAND_MAX; -} - -struct random_normal_distribution { - std::mt19937 gen; - std::normal_distribution nd; - float min; - float max; -}; - -static void init_random_normal_distribution( - struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max -) { - rnd->gen = std::mt19937(seed); - rnd->nd = std::normal_distribution{mean, std}; - rnd->min = min; - rnd->max = max; -} - -static float frand_normal(struct random_normal_distribution * rnd) { - const float r = rnd->nd(rnd->gen); - return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r); -} - static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); @@ -93,54 +69,6 @@ static struct ggml_tensor * randomize_tensor( return tensor; } -static struct ggml_tensor * randomize_tensor_normal( - struct ggml_tensor * tensor, int ndims, const int64_t ne[], struct random_normal_distribution * rnd -) { - float scale = 1.0; // xavier - switch (ndims) { - case 1: - scale /= sqrtf(ne[0]); - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i0] = scale * frand_normal(rnd); - } - break; - case 2: - scale /= sqrtf(ne[0]+ne[1]); - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - break; - case 3: - scale /= sqrtf(ne[0]+ne[1]); - for (int i2 = 0; i2 < ne[2]; i2++) { - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - } - break; - case 4: - scale /= sqrtf(ne[0]+ne[1]); - for (int i3 = 0; i3 < ne[3]; i3++) { - for (int i2 = 0; i2 < ne[2]; i2++) { - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - } - } - break; - default: - assert(false); - }; - - return tensor; -} - struct llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? @@ -398,27 +326,29 @@ static void randomize_model(struct llama_model * model, int seed, float mean, fl const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); - randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); - randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(model->tok_embeddings , rnd); + randomize_tensor_normal(model->norm , rnd); + randomize_tensor_normal(model->output , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); - randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd); - randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd); - randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd); - randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd); + randomize_tensor_normal(layer.wq, rnd); + randomize_tensor_normal(layer.wk, rnd); + randomize_tensor_normal(layer.wv, rnd); + randomize_tensor_normal(layer.wo, rnd); - randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); + randomize_tensor_normal(layer.ffn_norm, rnd); - randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); - randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); - randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } + + free_random_normal_distribution(rnd); } @@ -429,32 +359,34 @@ static void randomize_model_lora( const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); - randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); - randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd); - randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(model->tok_embeddings, rnd); + randomize_tensor_normal(model->norm , rnd); + randomize_tensor_normal(model->outputa , rnd); + randomize_tensor_normal(model->outputb , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); - randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd); - randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd); - randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd); - randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd); - randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd); - randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd); - randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd); - randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd); + randomize_tensor_normal(layer.wqa, rnd); + randomize_tensor_normal(layer.wqb, rnd); + randomize_tensor_normal(layer.wka, rnd); + randomize_tensor_normal(layer.wkb, rnd); + randomize_tensor_normal(layer.wva, rnd); + randomize_tensor_normal(layer.wvb, rnd); + randomize_tensor_normal(layer.woa, rnd); + randomize_tensor_normal(layer.wob, rnd); - randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); + randomize_tensor_normal(layer.ffn_norm, rnd); - randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); - randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); - randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } + + free_random_normal_distribution(rnd); } static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { @@ -762,32 +694,6 @@ static struct ggml_tensor * forward( return inpL; } -static void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { - GGML_ASSERT(tensor->n_dims == 1); - GGML_ASSERT(tensor->ne[0] == ne0); -} - -static void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { - GGML_ASSERT(tensor->n_dims == 2); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); -} - -static void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { - GGML_ASSERT(tensor->n_dims == 3); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); -} - -static void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { - GGML_ASSERT(tensor->n_dims == 4); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); - GGML_ASSERT(tensor->ne[3] == ne3); -} - static struct ggml_tensor * forward_batch( struct llama_model * model, struct llama_kv_cache * cache, diff --git a/examples/export-lora/CMakeLists.txt b/examples/export-lora/CMakeLists.txt new file mode 100644 index 000000000..cbbdaec67 --- /dev/null +++ b/examples/export-lora/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET export-lora) +add_executable(${TARGET} export-lora.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/export-lora/README.md b/examples/export-lora/README.md new file mode 100644 index 000000000..0cf3e8e45 --- /dev/null +++ b/examples/export-lora/README.md @@ -0,0 +1,26 @@ +# export-lora + +Apply LORA adapters to base model and export the resulting model. + +``` +usage: export-lora [options] + +options: + -h, --help show this help message and exit + -m FNAME, --model-base FNAME model path from which to load base model (default '') + -o FNAME, --model-out FNAME path to save exported model (default '') + -l FNAME, --lora FNAME apply LoRA adapter + -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S + -t N, --threads N number of threads to use during computation (default: 4) +``` + +For example: + +```bash +./bin/export-lora \ + -m open-llama-3b-v2-q8_0.gguf \ + -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \ + -l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin +``` + +Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters. diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp new file mode 100644 index 000000000..d803cfd5c --- /dev/null +++ b/examples/export-lora/export-lora.cpp @@ -0,0 +1,474 @@ + +#include "common.h" +#include "ggml.h" +#include "ggml-alloc.h" + +#include +#include +#include + +static const size_t tensor_alignment = 32; + +struct lora_info { + std::string filename; + float scale; +}; + +struct export_lora_params { + std::string fn_model_base; + std::string fn_model_out; + std::vector lora; + int n_threads; +}; + +struct lora_data { + struct lora_info info; + std::vector data; + struct ggml_context * ctx; + + uint32_t lora_r; + uint32_t lora_alpha; +}; + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + bool eof() { + return tell() >= size; + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static struct export_lora_params get_default_export_lora_params() { + struct export_lora_params result; + result.fn_model_base = ""; + result.fn_model_out = ""; + result.n_threads = GGML_DEFAULT_N_THREADS; + return result; +} + +static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str()); + fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str()); + fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n"); + fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads); +} + +static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) { + bool invalid_param = false; + std::string arg; + struct export_lora_params default_params = get_default_export_lora_params(); + const std::string arg_prefix = "--"; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + + if (arg == "-m" || arg == "--model-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_base = argv[i]; + } else if (arg == "-o" || arg == "--model-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_out = argv[i]; + } else if (arg == "-l" || arg == "--lora") { + if (++i >= argc) { + invalid_param = true; + break; + } + struct lora_info lora; + lora.filename = argv[i]; + lora.scale = 1.0f; + params->lora.push_back(lora); + } else if (arg == "-s" || arg == "--lora-scaled") { + if (++i >= argc) { + invalid_param = true; + break; + } + struct lora_info lora; + lora.filename = argv[i]; + if (++i >= argc) { + invalid_param = true; + break; + } + lora.scale = std::stof(argv[i]); + params->lora.push_back(lora); + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_threads = std::stoi(argv[i]); + if (params->n_threads <= 0) { + params->n_threads = std::thread::hardware_concurrency(); + } + } else { + fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str()); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + } + + if (params->fn_model_base == default_params.fn_model_base) { + fprintf(stderr, "error: please specify a filename for model-base.\n"); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + if (params->fn_model_out == default_params.fn_model_out) { + fprintf(stderr, "error: please specify a filename for model-out.\n"); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str()); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + return true; +} + +static void free_lora(struct lora_data * lora) { + if (lora->ctx != NULL) { + ggml_free(lora->ctx); + } + delete lora; +} + +static struct lora_data * load_lora(struct lora_info * info) { + struct lora_data * result = new struct lora_data; + result->info = *info; + result->ctx = NULL; + result->lora_r = 1; + result->lora_alpha = 1; + + struct llama_file file(info->filename.c_str(), "rb"); + if (file.fp == NULL) { + fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n", + info->filename.c_str()); + free_lora(result); + return NULL; + } + + struct ggml_init_params params_ggml; + params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES; + params_ggml.mem_buffer = NULL; + params_ggml.no_alloc = true; + result->ctx = ggml_init(params_ggml); + + uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' + uint32_t magic = file.read_u32(); + if (magic != LLAMA_FILE_MAGIC_LORA) { + die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str()); + } + uint32_t version = file.read_u32(); + if (version != 1) { + die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str()); + } + result->lora_r = file.read_u32(); + result->lora_alpha = file.read_u32(); + // read tensor infos from file + std::vector name_buf; + std::vector tensors; + std::vector tensors_offset; + size_t total_nbytes_pad = 0; + while(!file.eof()) { + int64_t ne[4] = {1,1,1,1}; + uint32_t n_dims = file.read_u32(); + uint32_t namelen = file.read_u32(); + uint32_t type = file.read_u32(); + for (uint32_t k = 0; k < n_dims; ++k) { + ne[k] = (int64_t)file.read_u32(); + } + name_buf.clear(); + name_buf.resize(namelen + 1, '\0'); + file.read_raw(name_buf.data(), namelen); + file.seek((0-file.tell()) & 31, SEEK_CUR); + size_t offset = file.tell(); + struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne); + ggml_set_name(tensor, name_buf.data()); + size_t nbytes = ggml_nbytes(tensor); + size_t nbytes_pad = ggml_nbytes_pad(tensor); + total_nbytes_pad += nbytes_pad; + tensors.push_back(tensor); + tensors_offset.push_back(offset); + file.seek(nbytes, SEEK_CUR); + } + // read tensor data + result->data.resize(total_nbytes_pad); + size_t data_offset = 0; + for (size_t i = 0; i < tensors.size(); ++i) { + struct ggml_tensor * tensor = tensors[i]; + size_t offset = tensors_offset[i]; + size_t nbytes = ggml_nbytes(tensor); + size_t nbytes_pad = ggml_nbytes_pad(tensor); + file.seek(offset, SEEK_SET); + tensor->data = result->data.data() + data_offset; + file.read_raw(tensor->data, nbytes); + data_offset += nbytes_pad; + } + return result; +} + + +static struct ggml_cgraph * build_graph_lora( + struct ggml_context * ctx, + struct ggml_tensor * tensor, + struct ggml_tensor * lora_a, + struct ggml_tensor * lora_b, + float scaling +) { + struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b); + if (scaling != 1.0f) { + ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling)); + } + struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab); + + struct ggml_cgraph * gf = ggml_new_graph(ctx); + ggml_build_forward_expand (gf, res); + return gf; +} + +static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) { + if (lora->ctx == NULL) { + return false; + } + std::string name = ggml_get_name(tensor); + std::string name_a = name + std::string(".loraA"); + std::string name_b = name + std::string(".loraB"); + struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str()); + struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str()); + if (lora_a == NULL || lora_b == NULL) { + return false; + } + + float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r; + + struct ggml_init_params params; + params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5; + params.mem_buffer = NULL; + params.no_alloc = true; + struct ggml_context * ctx = NULL; + struct ggml_allocr * alloc = NULL; + struct ggml_cgraph * gf = NULL; + + ctx = ggml_init(params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); + size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf); + ggml_allocr_free(alloc); + ggml_free(ctx); + + static std::vector data_compute; + data_compute.resize(alloc_size + tensor_alignment); + + ctx = ggml_init(params); + alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment); + gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); + ggml_allocr_alloc_graph(alloc, gf); + ggml_allocr_free(alloc); + + struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads); + static std::vector data_work; + data_work.resize(cplan.work_size); + cplan.work_data = data_work.data(); + + ggml_graph_compute(gf, &cplan); + + ggml_free(ctx); + return true; +} + +static void export_lora(struct export_lora_params * params) { + // load all loras + std::vector loras; + for (size_t i = 0; i < params->lora.size(); ++i) { + struct lora_data * lora = load_lora(¶ms->lora[i]); + if (lora != NULL) { + loras.push_back(lora); + } + } + if (loras.size() == 0) { + fprintf(stderr, "warning: no lora adapters will be applied.\n"); + } + + // open input file + struct llama_file fin(params->fn_model_base.c_str(), "rb"); + if (!fin.fp) { + die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str()); + } + + // open base model gguf, read tensors without their data + struct ggml_context * ctx_in; + struct gguf_init_params params_gguf; + params_gguf.no_alloc = true; + params_gguf.ctx = &ctx_in; + struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf); + + // create new gguf + struct gguf_context * gguf_out = gguf_init_empty(); + + // copy meta data from base model: kv and tensors + gguf_set_kv(gguf_out, gguf_in); + int n_tensors = gguf_get_n_tensors(gguf_in); + for (int i=0; i < n_tensors; ++i) { + const char * name = gguf_get_tensor_name(gguf_in, i); + struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); + gguf_add_tensor(gguf_out, tensor); + } + + // create output file + struct llama_file fout(params->fn_model_out.c_str(), "wb"); + if (!fout.fp) { + die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str()); + } + + // write gguf meta data + std::vector meta; + meta.resize(gguf_get_meta_size(gguf_out)); + gguf_get_meta_data(gguf_out, meta.data()); + fout.write_raw(meta.data(), meta.size()); + + std::vector data; + std::vector padding; + for (int i=0; i < n_tensors; ++i) { + const char * name = gguf_get_tensor_name(gguf_in, i); + struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); + + // read tensor data + data.resize(ggml_nbytes(tensor)); + tensor->data = data.data(); + size_t offset = gguf_get_tensor_offset(gguf_in, i); + fin.seek(offset + meta.size(), SEEK_SET); + fin.read_raw(data.data(), data.size()); + + // apply all loras + for (size_t k = 0; k < loras.size(); ++k) { + apply_lora(tensor, loras[k], params->n_threads); + } + + // write tensor data + padding + padding.clear(); + padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0); + + GGML_ASSERT(fout.tell() == offset + meta.size()); + // fout.seek(offset + meta.size(), SEEK_SET); + fout.write_raw(data.data(), data.size()); + fout.write_raw(padding.data(), padding.size()); + + if (i % 2 == 0) { + printf("."); + } + } + printf("\n"); + + // close gguf + gguf_free(gguf_out); + gguf_free(gguf_in); + + // free loras + for (size_t i = 0; i < loras.size(); ++i) { + free_lora(loras[i]); + } +} + +int main(int argc, char ** argv) { + struct export_lora_params params = get_default_export_lora_params(); + + if (!export_lora_params_parse(argc, argv, ¶ms)) { + return 1; + } + + export_lora(¶ms); + + return 0; +} diff --git a/examples/finetune/CMakeLists.txt b/examples/finetune/CMakeLists.txt new file mode 100644 index 000000000..2b52d21cf --- /dev/null +++ b/examples/finetune/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET finetune) +add_executable(${TARGET} finetune.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/finetune/README.md b/examples/finetune/README.md new file mode 100644 index 000000000..b7347c20c --- /dev/null +++ b/examples/finetune/README.md @@ -0,0 +1,90 @@ +# finetune + +Basic usage instructions: + +```bash +# get training data +wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt + +# finetune LORA adapter +./bin/finetune \ + --model-base open-llama-3b-v2-q8_0.gguf \ + --checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \ + --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \ + --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \ + --train-data "shakespeare.txt" \ + --save-every 10 \ + --threads 6 --adam-iter 30 --batch 4 --ctx 64 \ + --use-checkpointing + +# predict +./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin +``` + +Finetune output files will be saved every N iterations (config with `--save-every N`). +The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output. +So in above example after 10 iterations these files will be written: +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf +- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin +- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin + +After 10 more iterations: +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf +- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin +- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin + +Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter. + +llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`. +These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above. + +In `main` you can also load multiple LORA adapters, which will then be mixed together. + +For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this: + +```bash +./bin/main -m open-llama-3b-v2-q8_0.gguf \ + --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \ + --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin +``` + +You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`. + +For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one: + +```bash +./bin/main -m open-llama-3b-v2-q8_0.gguf \ + --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \ + --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \ + --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin +``` + +The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values. + +Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime. +If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`. + +The default LORA rank can be specified with `--lora-r N`. +The LORA rank can be configured for each model tensor type separately with these command line options: + +```bash + --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4) + --rank-att-norm N LORA rank for attention norm tensor (default 1) + --rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1) + --rank-out-norm N LORA rank for output norm tensor (default 1) + --rank-tok-embd N LORA rank for token embeddings tensor (default 4) + --rank-out N LORA rank for output tensor (default 4) + --rank-wq N LORA rank for wq tensor (default 4) + --rank-wk N LORA rank for wk tensor (default 4) + --rank-wv N LORA rank for wv tensor (default 4) + --rank-wo N LORA rank for wo tensor (default 4) + --rank-w1 N LORA rank for w1 tensor (default 4) + --rank-w2 N LORA rank for w2 tensor (default 4) + --rank-w3 N LORA rank for w3 tensor (default 4) +``` + +The LORA rank of 'norm' tensors should always be 1. + +To see all available options use `finetune --help`. diff --git a/examples/finetune/convert-finetune-checkpoint-to-gguf.py b/examples/finetune/convert-finetune-checkpoint-to-gguf.py new file mode 100644 index 000000000..96d6633ed --- /dev/null +++ b/examples/finetune/convert-finetune-checkpoint-to-gguf.py @@ -0,0 +1,489 @@ +#!/usr/bin/env python3 +# finetune checkpoint --> gguf conversion + +import argparse +import gguf +import os +import struct +import sys +import numpy as np +from pathlib import Path + +# gguf constants +LLM_KV_OPTIMIZER_TYPE = "optimizer.type" +LLM_KV_OPTIMIZER_TYPE_ADAM = "adam" +LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs" +LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version" +LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count" +LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count" +LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count" +LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized" +LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss" +LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss" +LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count" +LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count" +LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end" +LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count" + +LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments" +LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments" +LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values" + +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction" +LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" + +LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model" +LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora" +LLM_KV_TRAINING_TYPE = "training.type" +LLM_KV_TRAINING_FILE_VERSION = "training.file_version" +LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" +LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" +LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" + +LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd" +LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm" +LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output" +LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm" +LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q" +LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k" +LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v" +LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output" +LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm" +LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate" +LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down" +LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up" + +class Tensor: + def __init__(self, dtype='f', ne=None): + if ne is None: + ne = [] + self.dtype = dtype + self.ne = ne + self.nbytes = 0 + if self.dtype == 'f': + if len(self.ne) == 0: + self.nbytes = 0 + else: + self.nbytes = int(np.product(self.ne)) * 4 + else: + raise ValueError(f"Unhandled data type '{self.dtype}'") + + def load(self, data, offset): + nd = struct.unpack(' 0 else []) + + self.lbfgs_x = Tensor('f', [self.nx]) + self.lbfgs_xp = Tensor('f', [self.nx]) + self.lbfgs_g = Tensor('f', [self.nx]) + self.lbfgs_gp = Tensor('f', [self.nx]) + self.lbfgs_d = Tensor('f', [self.nx]) + self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else []) + self.lbfgs_lmal = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lmys = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m]) + self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m]) + + # forgot to save type in version 1: + # guess self.type from number of remaining bytes + size_type_0 = 12 + sum([t.max_storage_size() for t in + [self.adam_m, self.adam_v] + +([self.adam_pf] if (self.past > 0) else [])]) + size_type_1 = 24 + sum([t.max_storage_size() for t in + [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g, + self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf, + self.lbfgs_lmal, self.lbfgs_lmys, + self.lbfgs_lms, self.lbfgs_lmy] + +([self.lbfgs_pf] if (self.past > 0) else [])]) + # due to alignment padding the size might not by exact + # but the difference in size for both types is significant, + # so we can just use whichever is closest + remaining = len(data) - offset + if abs(remaining - size_type_0) < abs(remaining - size_type_1): + self.type = 0 + else: + self.type = 1 + + if self.type == 0: + offset = self.adam_m.load(data, offset) + offset = self.adam_v.load(data, offset) + offset = self.adam_pf.load(data,offset) + + self.adam_fx_best = struct.unpack(' 0: + self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES) + + elif self.type == 1: + gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement) + + self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS) + self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS) + self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS) + self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS) + self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION) + if self.past > 0: + self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES) + self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA) + self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS) + self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S) + self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y) + else: + raise ValueError('Unknown optimizer type') + +class LoraParams: + def __init__(self): + pass + + def load(self, data, offset): + self.n_rank_attention_norm = struct.unpack(' +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +static const size_t tensor_alignment = 32; + +struct my_llama_hparams { + uint32_t n_vocab = 32000; + uint32_t n_ctx = 512; + uint32_t n_embd = 4096; + uint32_t n_ff = 11008; + uint32_t n_head = 32; + uint32_t n_head_kv = 32; + uint32_t n_layer = 32; + + // float f_norm_eps = 1e-5f; // falcon + float f_norm_rms_eps = 1e-5f; // llama + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; + + uint32_t n_gqa() const { + return n_head/n_head_kv; + } + + uint32_t n_embd_head() const { + return n_embd/n_head; + } + + uint32_t n_embd_gqa() const { + return n_embd/n_gqa(); + } + + bool operator!=(const my_llama_hparams& other) const { + return memcmp(this, &other, sizeof(other)); + } +}; + +struct my_llama_layer { + // normalization + struct ggml_tensor * attention_norm; + + // attention + struct ggml_tensor * wq; + struct ggml_tensor * wk; + struct ggml_tensor * wv; + struct ggml_tensor * wo; + + // normalization + struct ggml_tensor * ffn_norm; + + // ff + struct ggml_tensor * w1; + struct ggml_tensor * w2; + struct ggml_tensor * w3; +}; + +struct my_llama_model { + struct my_llama_hparams hparams; + + struct ggml_tensor * tok_embeddings; + + struct ggml_tensor * norm; + struct ggml_tensor * output; + + std::vector layers; +}; + +struct my_llama_lora_hparams { + uint32_t lora_r = 1; + uint32_t lora_alpha = 1; + uint32_t n_rank_attention_norm = 1; + uint32_t n_rank_wq = 4; + uint32_t n_rank_wk = 4; + uint32_t n_rank_wv = 4; + uint32_t n_rank_wo = 4; + uint32_t n_rank_ffn_norm = 1; + uint32_t n_rank_w1 = 4; + uint32_t n_rank_w2 = 4; + uint32_t n_rank_w3 = 4; + uint32_t n_rank_tok_embeddings = 4; + uint32_t n_rank_norm = 1; + uint32_t n_rank_output = 4; + + bool operator!=(const my_llama_lora_hparams& other) const { + return memcmp(this, &other, sizeof(other)); + } +}; + +struct my_llama_lora_layer { + // normalization + struct ggml_tensor * attention_norm_a; + struct ggml_tensor * attention_norm_b; + + // attention + struct ggml_tensor * wq_a; + struct ggml_tensor * wq_b; + struct ggml_tensor * wk_a; + struct ggml_tensor * wk_b; + struct ggml_tensor * wv_a; + struct ggml_tensor * wv_b; + struct ggml_tensor * wo_a; + struct ggml_tensor * wo_b; + + // normalization + struct ggml_tensor * ffn_norm_a; + struct ggml_tensor * ffn_norm_b; + + // ff + struct ggml_tensor * w1_a; + struct ggml_tensor * w1_b; + struct ggml_tensor * w2_a; + struct ggml_tensor * w2_b; + struct ggml_tensor * w3_a; + struct ggml_tensor * w3_b; +}; + +struct my_llama_lora { + struct ggml_context * ctx = NULL; + std::vector data; + + my_llama_lora_hparams hparams; + + struct ggml_tensor * tok_embeddings_a; + struct ggml_tensor * tok_embeddings_b; + + struct ggml_tensor * norm_a; + struct ggml_tensor * norm_b; + struct ggml_tensor * output_a; + struct ggml_tensor * output_b; + + std::vector layers; +}; + +// gguf constants +static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"; +static const char * LLM_KV_TRAINING_TYPE = "training.type"; + +static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"; +static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"; + +// gguf constants (sync with gguf.py) + +static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; +static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; + +static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; +static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; +static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; +static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv"; +static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; +static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; +static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp +static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; + +static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; +static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; +static const char * LLM_TENSOR_OUTPUT = "output"; +static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; +static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; +static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; +static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; +static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; +static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; +static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; +static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; +static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; + +static void print_params(struct my_llama_hparams * params) { + printf("%s: n_vocab: %u\n", __func__, params->n_vocab); + printf("%s: n_ctx: %u\n", __func__, params->n_ctx); + printf("%s: n_embd: %u\n", __func__, params->n_embd); + printf("%s: n_ff: %u\n", __func__, params->n_ff); + printf("%s: n_head: %u\n", __func__, params->n_head); + printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv); + printf("%s: n_layer: %u\n", __func__, params->n_layer); + printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps); + printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base); + printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale); +} + +static void print_lora_params(struct my_llama_lora_hparams * params) { + printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm); + printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq); + printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk); + printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv); + printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo); + printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm); + printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1); + printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2); + printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3); + printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings); + printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm); + printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output); +} + +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + die_fmt("key not found in model: %s", skey.c_str()); \ + } \ +} + +static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) { + std::string arch; + + GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); + if (expected_arch != NULL) { + if (arch != expected_arch) { + printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch); + } + GGML_ASSERT(arch == expected_arch); + } + + std::vector keybuf; + keybuf.resize(512); + auto kv = [&arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); + return keybuf.data(); + }; + + GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); + GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); + + // n_head_kv is optional, default to n_head + hparams->n_head_kv = hparams->n_head; + GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); + + float rope_freq_scale = 1.0f; + GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); + GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); + if (rope_freq_scale != 1.0f) { + hparams->rope_freq_scale = 1.0f / rope_freq_scale; + } +} + +static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) { + auto & hparams = model->hparams; + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); + return tn_buf.data(); + }; + + + // get parameters directly from gguf file + { + struct gguf_init_params params = { + /*.no_alloc = */ false, + /*.ctx = */ NULL, + }; + struct gguf_context * mctx = gguf_init_from_file(fn_model, params); + + load_model_hparams_gguf(mctx, &hparams, "llama"); + + gguf_free(mctx); + } + hparams.n_vocab = llama_model_n_vocab(input); + hparams.n_ctx = n_ctx; + + // get tensors from llama_model (possibly mmapped) + model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); + model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); + model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT)); + + assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab); + assert_shape_1d(model->norm, hparams.n_embd); + assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab); + + model->layers.resize(hparams.n_layer); + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i)); + layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i)); + layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i)); + layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i)); + layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i)); + layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i)); + layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i)); + layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i)); + layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i)); + + assert_shape_1d(layer.attention_norm, hparams.n_embd); + assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd); + assert_shape_1d(layer.ffn_norm, hparams.n_embd); + assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff); + assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd); + assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff); + } +} + +static void set_param_lora(struct my_llama_lora * lora) { + const uint32_t n_layer = lora->layers.size(); + + struct ggml_context* ctx = lora->ctx; + + ggml_set_param(ctx, lora->tok_embeddings_a); + ggml_set_param(ctx, lora->tok_embeddings_b); + ggml_set_param(ctx, lora->norm_a); + ggml_set_param(ctx, lora->norm_b); + ggml_set_param(ctx, lora->output_a); + ggml_set_param(ctx, lora->output_b); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + + ggml_set_param(ctx, layer.attention_norm_a); + ggml_set_param(ctx, layer.attention_norm_b); + ggml_set_param(ctx, layer.wq_a); + ggml_set_param(ctx, layer.wq_b); + ggml_set_param(ctx, layer.wk_a); + ggml_set_param(ctx, layer.wk_b); + ggml_set_param(ctx, layer.wv_a); + ggml_set_param(ctx, layer.wv_b); + ggml_set_param(ctx, layer.wo_a); + ggml_set_param(ctx, layer.wo_b); + ggml_set_param(ctx, layer.ffn_norm_a); + ggml_set_param(ctx, layer.ffn_norm_b); + ggml_set_param(ctx, layer.w1_a); + ggml_set_param(ctx, layer.w1_b); + ggml_set_param(ctx, layer.w2_a); + ggml_set_param(ctx, layer.w2_b); + ggml_set_param(ctx, layer.w3_a); + ggml_set_param(ctx, layer.w3_b); + } +} + +static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) { + ggml_allocr_alloc(alloc, lora->tok_embeddings_a); + ggml_allocr_alloc(alloc, lora->tok_embeddings_b); + ggml_allocr_alloc(alloc, lora->norm_a); + ggml_allocr_alloc(alloc, lora->norm_b); + ggml_allocr_alloc(alloc, lora->output_a); + ggml_allocr_alloc(alloc, lora->output_b); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm_a); + ggml_allocr_alloc(alloc, layer.attention_norm_b); + ggml_allocr_alloc(alloc, layer.wq_a); + ggml_allocr_alloc(alloc, layer.wq_b); + ggml_allocr_alloc(alloc, layer.wk_a); + ggml_allocr_alloc(alloc, layer.wk_b); + ggml_allocr_alloc(alloc, layer.wv_a); + ggml_allocr_alloc(alloc, layer.wv_b); + ggml_allocr_alloc(alloc, layer.wo_a); + ggml_allocr_alloc(alloc, layer.wo_b); + ggml_allocr_alloc(alloc, layer.ffn_norm_a); + ggml_allocr_alloc(alloc, layer.ffn_norm_b); + ggml_allocr_alloc(alloc, layer.w1_a); + ggml_allocr_alloc(alloc, layer.w1_b); + ggml_allocr_alloc(alloc, layer.w2_a); + ggml_allocr_alloc(alloc, layer.w2_b); + ggml_allocr_alloc(alloc, layer.w3_a); + ggml_allocr_alloc(alloc, layer.w3_b); + } + ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad); + ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad); + ggml_allocr_alloc(alloc, lora->norm_a->grad); + ggml_allocr_alloc(alloc, lora->norm_b->grad); + ggml_allocr_alloc(alloc, lora->output_a->grad); + ggml_allocr_alloc(alloc, lora->output_b->grad); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm_a->grad); + ggml_allocr_alloc(alloc, layer.attention_norm_b->grad); + ggml_allocr_alloc(alloc, layer.wq_a->grad); + ggml_allocr_alloc(alloc, layer.wq_b->grad); + ggml_allocr_alloc(alloc, layer.wk_a->grad); + ggml_allocr_alloc(alloc, layer.wk_b->grad); + ggml_allocr_alloc(alloc, layer.wv_a->grad); + ggml_allocr_alloc(alloc, layer.wv_b->grad); + ggml_allocr_alloc(alloc, layer.wo_a->grad); + ggml_allocr_alloc(alloc, layer.wo_b->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad); + ggml_allocr_alloc(alloc, layer.w1_a->grad); + ggml_allocr_alloc(alloc, layer.w1_b->grad); + ggml_allocr_alloc(alloc, layer.w2_a->grad); + ggml_allocr_alloc(alloc, layer.w2_b->grad); + ggml_allocr_alloc(alloc, layer.w3_a->grad); + ggml_allocr_alloc(alloc, layer.w3_b->grad); + } +} + +static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { + const auto & lparams = lora->hparams; + + const uint32_t n_embd = model->hparams.n_embd; + const uint32_t n_embd_gqa = model->hparams.n_embd_gqa(); + const uint32_t n_layer = model->hparams.n_layer; + const uint32_t n_vocab = model->hparams.n_vocab; + const uint32_t n_ff = model->hparams.n_ff; + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); + return tn_buf.data(); + }; + + // context for lora tensors without their data + struct ggml_init_params ctx_lora_params; + ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); + ctx_lora_params.mem_buffer = NULL; + ctx_lora_params.no_alloc = true; + + struct ggml_context * ctx = ggml_init(ctx_lora_params); + lora->ctx = ctx; + + lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd); + lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab); + lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd); + lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1); + lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd); + lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab); + + ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a")); + ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b")); + ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a")); + ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b")); + ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a")); + ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b")); + + lora->layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + + layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd); + layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1); + + layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); + layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); + layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd); + layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa); + layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd); + layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa); + layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); + layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); + + layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd); + layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1); + + layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd); + layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff); + layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff); + layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd); + layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd); + layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff); + + ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i)); + ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i)); + ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i)); + ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i)); + ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i)); + ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i)); + ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i)); + ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i)); + ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i)); + ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i)); + ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i)); + ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i)); + ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i)); + ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i)); + ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i)); + ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i)); + ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i)); + ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i)); + } + + set_param_lora(lora); + + // measure data size + struct ggml_allocr * alloc = NULL; + alloc = ggml_allocr_new_measure(tensor_alignment); + alloc_lora(alloc, lora); + + // allocate data + lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); + ggml_allocr_free(alloc); + alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); + alloc_lora(alloc, lora); + ggml_allocr_free(alloc); +} + +static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { + const uint32_t n_layer = lora->layers.size(); + + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(lora->tok_embeddings_a, rnd); + randomize_tensor_normal(lora->tok_embeddings_b, rnd); + randomize_tensor_normal(lora->norm_a, rnd); + randomize_tensor_normal(lora->norm_b, rnd); + randomize_tensor_normal(lora->output_a, rnd); + randomize_tensor_normal(lora->output_b, rnd); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + randomize_tensor_normal(layer.attention_norm_a, rnd); + randomize_tensor_normal(layer.attention_norm_b, rnd); + + randomize_tensor_normal(layer.wq_a, rnd); + randomize_tensor_normal(layer.wq_b, rnd); + randomize_tensor_normal(layer.wk_a, rnd); + randomize_tensor_normal(layer.wk_b, rnd); + randomize_tensor_normal(layer.wv_a, rnd); + randomize_tensor_normal(layer.wv_b, rnd); + randomize_tensor_normal(layer.wo_a, rnd); + randomize_tensor_normal(layer.wo_b, rnd); + + randomize_tensor_normal(layer.ffn_norm_a, rnd); + randomize_tensor_normal(layer.ffn_norm_b, rnd); + + randomize_tensor_normal(layer.w1_a, rnd); + randomize_tensor_normal(layer.w1_b, rnd); + randomize_tensor_normal(layer.w2_a, rnd); + randomize_tensor_normal(layer.w2_b, rnd); + randomize_tensor_normal(layer.w3_a, rnd); + randomize_tensor_normal(layer.w3_b, rnd); + } + + free_random_normal_distribution(rnd); +} + +static struct ggml_tensor * llama_build_lora_finetune_graphs( + struct my_llama_model * model, + struct my_llama_lora * lora, + struct ggml_allocr * alloc, + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * logits, + struct ggml_tensor * tokens_input, + struct ggml_tensor * targets, + const int n_tokens, + const int n_batch, + const bool enable_flash_attn, + const bool enable_checkpointing) { + + ggml_set_scratch(ctx, { 0, 0, nullptr, }); + const int n_past = 0; + const int N = n_tokens; + const auto & hparams = model->hparams; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_head_kv = hparams.n_head_kv; + const int n_ff = hparams.n_ff; + const int n_rot = hparams.n_embd_head(); + const int n_embd_head = hparams.n_embd_head(); + const int n_embd_gqa = hparams.n_embd_gqa(); + const float rms_norm_eps = hparams.f_norm_rms_eps; + const float rope_freq_base = hparams.rope_freq_base; + const float rope_freq_scale = hparams.rope_freq_scale; + + GGML_ASSERT((size_t) n_layer == lora->layers.size()); + + auto set_name = [](struct ggml_tensor * t, const char * n) { + ggml_set_name(t, n); + if (t->grad) { + ggml_format_name(t->grad, "%s->grad", n); + } + }; + + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + + // rope has so much parameters that we make a custom function for it + auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] + (struct ggml_tensor * t) -> struct ggml_tensor * { + // not capturing these, to silcence warnings + const int rope_mode = 0; + + return ggml_rope_custom(ctx, + t, KQ_pos, n_rot, rope_mode, n_ctx, + rope_freq_base, rope_freq_scale); + }; + + set_name(tokens_input, "tokens_input"); + set_name(targets, "targets"); + + GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); + + auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { + if (ggml_is_quantized(a->type)) { + return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); + } else if (a->type == GGML_TYPE_F32) { + return ggml_add(ctx, a, b); + } else { + die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n", + __func__, ggml_type_name(a->type)); + } + }; + + struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b)); + struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b)); + struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b)); + + struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); + struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); + + struct ggml_tensor * cur = t01; + + std::vector checkpoints; + if (enable_checkpointing) { + checkpoints.push_back(tokens_input); + checkpoints.push_back(targets); + checkpoints.push_back(t00); + checkpoints.push_back(t01); + } + + struct ggml_tensor * kv_scale = NULL; + if (!enable_flash_attn) { + kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + for (int il = 0; il < n_layer; ++il) { + struct my_llama_layer & layer = model->layers[il]; + struct my_llama_lora_layer & llayer = lora->layers[il]; + + struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b)); + struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b)); + struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b)); + struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b)); + struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b)); + struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b)); + struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b)); + struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b)); + struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b)); + + struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); + struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); + struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); + struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); + struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch); + struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch); + struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch); + + struct ggml_tensor * t11; + if (ggml_is_quantized(wv->type)) { + struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch); + struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa); + t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); + } else { + t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); + } + + struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv); + struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch); + struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch); + struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); + struct ggml_tensor * t16; + if (enable_flash_attn) { + t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); + } else { + struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); + struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); + struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); + struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); + t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); + } + struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); + struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); + struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); + struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); + struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); + struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); + struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); + struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); + struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); + struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); + struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); + struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); + cur = t30; + if (enable_checkpointing) { + checkpoints.push_back(cur); + } + } + struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); + struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); + struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); + struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); + struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); + struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); + + if (enable_checkpointing) { + checkpoints.push_back(t31); + checkpoints.push_back(t32); + checkpoints.push_back(t33); + checkpoints.push_back(t34); + checkpoints.push_back(t35); + checkpoints.push_back(t36); + } + + ggml_build_forward_expand(gf, t36); + + if (enable_checkpointing) { + ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); + } else { + *gb = *gf; + ggml_build_backward_expand(ctx, gf, gb, true); + } + + GGML_ASSERT(alloc != NULL); + + // make sure some tensors are not reallocated by inserting new temporary nodes depending on them + int n_leafs_before = gb->n_leafs; + int n_nodes_before = gb->n_nodes; + struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); + // output tensors + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); + // input gradient + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); + GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); + ggml_allocr_alloc(alloc, t36->grad); + + // make sure base model tensors data cannot be used in viewable operations + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one)); + for (int il = 0; il < n_layer; ++il) { + struct my_llama_layer & layer = model->layers[il]; + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one)); + } + + // allocating checkpoints in one block to reduce memory fragmentation + // note: they will be freed in reverse order + for (unsigned int i = 0; i < checkpoints.size(); ++i) { + if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { + ggml_allocr_alloc(alloc, checkpoints[i]); + } + } + + ggml_allocr_alloc_graph(alloc, gb); + + // remove the additional nodes and leafs + for (int i = n_leafs_before; i < gb->n_leafs; ++i) { + gb->leafs[i] = NULL; + } + for (int i = n_nodes_before; i < gb->n_nodes; ++i) { + gb->nodes[i] = NULL; + } + gb->n_leafs = n_leafs_before; + gb->n_nodes = n_nodes_before; + + *logits = t35; + return t36; +} + +static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + std::string arch; + + std::vector keybuf; + keybuf.resize(512); + + GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); + GGML_ASSERT(arch == "llama"); + + uint32_t ftype_u; + GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); + GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); + + struct my_llama_hparams hparams; + load_model_hparams_gguf(fctx, &hparams, arch.c_str()); + + // parameters that define tensor shapes must match + GGML_ASSERT(hparams.n_embd == model->hparams.n_embd); + GGML_ASSERT(hparams.n_ff == model->hparams.n_ff); + GGML_ASSERT(hparams.n_head == model->hparams.n_head); + GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv); + GGML_ASSERT(hparams.n_layer == model->hparams.n_layer); + + GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP); + + init_lora(model, lora); + + copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a)); + copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b)); + copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a)); + copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b)); + copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a)); + copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b)); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a)); + copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b)); + copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a)); + copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b)); + copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a)); + copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b)); + copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a)); + copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b)); + copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a)); + copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b)); + copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a)); + copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b)); + copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a)); + copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b)); + copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a)); + copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b)); + copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a)); + copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b)); + } +} + +static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) { + const char * arch = "llama"; + enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; + + std::vector keybuf; + keybuf.resize(512); + auto kv = [arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch); + return keybuf.data(); + }; + + gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); + gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); + + gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx); + gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd); + gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff); + gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); + gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); + gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); + gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head()); + gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps); + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base); + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale); + + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3); + + gguf_add_tensor(fctx, lora->tok_embeddings_a); + gguf_add_tensor(fctx, lora->tok_embeddings_b); + gguf_add_tensor(fctx, lora->norm_a); + gguf_add_tensor(fctx, lora->norm_b); + gguf_add_tensor(fctx, lora->output_a); + gguf_add_tensor(fctx, lora->output_b); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + + gguf_add_tensor(fctx, layer.attention_norm_a); + gguf_add_tensor(fctx, layer.attention_norm_b); + gguf_add_tensor(fctx, layer.wq_a); + gguf_add_tensor(fctx, layer.wq_b); + gguf_add_tensor(fctx, layer.wk_a); + gguf_add_tensor(fctx, layer.wk_b); + gguf_add_tensor(fctx, layer.wv_a); + gguf_add_tensor(fctx, layer.wv_b); + gguf_add_tensor(fctx, layer.wo_a); + gguf_add_tensor(fctx, layer.wo_b); + gguf_add_tensor(fctx, layer.ffn_norm_a); + gguf_add_tensor(fctx, layer.ffn_norm_b); + gguf_add_tensor(fctx, layer.w1_a); + gguf_add_tensor(fctx, layer.w1_b); + gguf_add_tensor(fctx, layer.w2_a); + gguf_add_tensor(fctx, layer.w2_b); + gguf_add_tensor(fctx, layer.w3_a); + gguf_add_tensor(fctx, layer.w3_b); + } +} + +static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA; + GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); + GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA); + + load_train_state_gguf(fctx, f_ggml_ctx, train); + load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora); +} + +static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA); + save_llama_lora_gguf(fctx, model, lora); + save_train_state_gguf(fctx, train); +} + +static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + struct ggml_context * f_ggml_ctx; + struct gguf_init_params params; + params.no_alloc = false; + params.ctx = &f_ggml_ctx; + struct gguf_context * fctx = gguf_init_from_file(filename, params); + if (fctx == NULL) { + return false; + } + + load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train); + + gguf_free(fctx); + return true; +} + +static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + printf("%s: saving to %s\n", __func__, filename); + struct gguf_context * fctx = gguf_init_empty(); + + save_checkpoint_lora_gguf(fctx, model, lora, train); + + // write file + const bool only_meta = false; + gguf_write_to_file(fctx, filename, only_meta); + gguf_free(fctx); +} + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) { + if (tensor == NULL) { + file->write_u32(0); + file->write_u32(0); + file->write_u32(GGML_TYPE_F32); + file->seek((0-file->tell()) & 31, SEEK_CUR); + return; + } + if (name == NULL) { + name = ggml_get_name(tensor); + } + uint32_t name_len = strlen(name); + uint32_t nd = tensor->n_dims; + uint32_t ne[4] = { (uint32_t)tensor->ne[0], + (uint32_t)tensor->ne[1], + (uint32_t)tensor->ne[2], + (uint32_t)tensor->ne[3] }; + file->write_u32(nd); + file->write_u32(name_len); + file->write_u32(tensor->type); + file->write_raw(ne, sizeof(ne[0]) * nd); + file->write_raw(name, name_len); + file->seek((0-file->tell()) & 31, SEEK_CUR); + file->write_raw(tensor->data, ggml_nbytes(tensor)); +} + +static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) { + printf("%s: saving to %s\n", __func__, filename); + struct llama_file file(filename, "wb"); + if (file.fp == NULL) { + return; + } + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + + auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); + return tn_buf.data(); + }; + + auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); + return tn_buf.data(); + }; + + uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' + // write_magic + file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic + file.write_u32(1); // version + // write_hparams + file.write_u32(lora->hparams.lora_r); + file.write_u32(lora->hparams.lora_alpha); + // write tensors + write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA")); + write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB")); + write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA")); + write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB")); + write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA")); + write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB")); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA")); + write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB")); + write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA")); + write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB")); + write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA")); + write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB")); + write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA")); + write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB")); + write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA")); + write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB")); + write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA")); + write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB")); + write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA")); + write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB")); + write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA")); + write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB")); + write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA")); + write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB")); + } +} + +struct train_params { + struct train_params_common common; + + const char * fn_model_base; + const char * fn_lora_out; + + bool only_write_lora; + + float f_norm_rms_eps; + float rope_freq_base; + float rope_freq_scale; + + bool custom_f_norm_rms_eps; + bool custom_rope_freq_base; + bool custom_rope_freq_scale; + + int32_t lora_r; + int32_t lora_alpha; + bool custom_lora_alpha; + + uint32_t n_rank_attention_norm; + uint32_t n_rank_wq; + uint32_t n_rank_wk; + uint32_t n_rank_wv; + uint32_t n_rank_wo; + uint32_t n_rank_ffn_norm; + uint32_t n_rank_w1; + uint32_t n_rank_w2; + uint32_t n_rank_w3; + uint32_t n_rank_tok_embeddings; + uint32_t n_rank_norm; + uint32_t n_rank_output; + + bool custom_n_rank_attention_norm; + bool custom_n_rank_wq; + bool custom_n_rank_wk; + bool custom_n_rank_wv; + bool custom_n_rank_wo; + bool custom_n_rank_ffn_norm; + bool custom_n_rank_w1; + bool custom_n_rank_w2; + bool custom_n_rank_w3; + bool custom_n_rank_tok_embeddings; + bool custom_n_rank_norm; + bool custom_n_rank_output; +}; + +static struct train_params get_default_train_params() { + struct train_params params; + params.common = get_default_train_params_common(); + params.fn_model_base = ""; + params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf"; + + params.only_write_lora = false; + + params.f_norm_rms_eps = 1e-5f; + params.rope_freq_base = 10000.0f; + params.rope_freq_scale = 1.0f; + + params.custom_f_norm_rms_eps = false; + params.custom_rope_freq_base = false; + params.custom_rope_freq_scale = false; + + params.lora_r = 4; + params.lora_alpha = 4; + params.custom_lora_alpha = false; + + params.n_rank_attention_norm = 1; + params.n_rank_wq = 4; + params.n_rank_wk = 4; + params.n_rank_wv = 4; + params.n_rank_wo = 4; + params.n_rank_ffn_norm = 1; + params.n_rank_w1 = 4; + params.n_rank_w2 = 4; + params.n_rank_w3 = 4; + params.n_rank_tok_embeddings = 4; + params.n_rank_norm = 1; + params.n_rank_output = 4; + + params.custom_n_rank_attention_norm = false; + params.custom_n_rank_wq = false; + params.custom_n_rank_wk = false; + params.custom_n_rank_wv = false; + params.custom_n_rank_wo = false; + params.custom_n_rank_ffn_norm = false; + params.custom_n_rank_w1 = false; + params.custom_n_rank_w2 = false; + params.custom_n_rank_w3 = false; + params.custom_n_rank_tok_embeddings = false; + params.custom_n_rank_norm = false; + params.custom_n_rank_output = false; + + return params; +} + +static void train_print_usage(int argc, char ** argv, const struct train_params * params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + + fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base); + fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out); + fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n"); + fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); + fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); + fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); + fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha); + fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r); + fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n"); + + print_common_train_usage(argc, argv, ¶ms->common); +} + +static bool train_params_parse(int argc, char ** argv, struct train_params * params) { + bool invalid_param = false; + std::string arg; + struct train_params default_params = get_default_train_params(); + const std::string arg_prefix = "--"; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + + if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { + if (invalid_param) { + break; + } else if (params->common.print_usage) { + train_print_usage(argc, argv, &default_params); + exit(0); + } + } else if (arg == "--model-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_base = argv[i]; + } else if (arg == "--lora-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_lora_out = argv[i]; + } else if (arg == "--only-write-lora") { + params->only_write_lora = true; + } else if (arg == "--norm-rms-eps") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->f_norm_rms_eps = std::stof(argv[i]); + params->custom_f_norm_rms_eps = true; + } else if (arg == "--rope-freq-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_base = std::stof(argv[i]); + params->custom_rope_freq_base = true; + } else if (arg == "--rope-freq-scale") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_scale = std::stof(argv[i]); + params->custom_rope_freq_scale = true; + } else if (arg == "--lora-alpha") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lora_alpha = std::stoi(argv[i]); + params->custom_lora_alpha = true; + } else if (arg == "--lora-r") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lora_r = std::stoi(argv[i]); + } else if (arg == "--rank-att-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_attention_norm = std::stoi(argv[i]); + params->custom_n_rank_attention_norm = true; + } else if (arg == "--rank-ffn-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_ffn_norm = std::stoi(argv[i]); + params->custom_n_rank_ffn_norm = true; + } else if (arg == "--rank-out-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_norm = std::stoi(argv[i]); + params->custom_n_rank_norm = true; + } else if (arg == "--rank-tok-embd") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_tok_embeddings = std::stoi(argv[i]); + params->custom_n_rank_tok_embeddings = true; + } else if (arg == "--rank-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_output = std::stoi(argv[i]); + params->custom_n_rank_output = true; + } else if (arg == "--rank-wq") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wq = std::stoi(argv[i]); + params->custom_n_rank_wq = true; + } else if (arg == "--rank-wk") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wk = std::stoi(argv[i]); + params->custom_n_rank_wk = true; + } else if (arg == "--rank-wv") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wv = std::stoi(argv[i]); + params->custom_n_rank_wv = true; + } else if (arg == "--rank-wo") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wo = std::stoi(argv[i]); + params->custom_n_rank_wo = true; + } else if (arg == "--rank-w1") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w1 = std::stoi(argv[i]); + params->custom_n_rank_w1 = true; + } else if (arg == "--rank-w2") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w2 = std::stoi(argv[i]); + params->custom_n_rank_w2 = true; + } else if (arg == "--rank-w3") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w3 = std::stoi(argv[i]); + params->custom_n_rank_w3 = true; + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + finish_processing_train_args(¶ms->common); + return true; +} + +struct save_train_files_data { + const char * fn_checkpoint_out; + const char * fn_lora_out; + const char * pattern_fn_it; + const char * fn_latest; + struct my_llama_model * model; + struct my_llama_lora * lora; +}; + +static void save_train_files(void * vdata, struct train_state * train) { + struct save_train_files_data * data = (struct save_train_files_data *) vdata; + + int64_t iter = train->opt->iter; + + if (strlen(data->fn_checkpoint_out) > 0) { + save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train); + save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train); + } + if (strlen(data->fn_lora_out) > 0) { + save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora); + save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora); + } +} + +static int64_t get_parameter_count(struct my_llama_lora* lora) { + int64_t nx = 0; + nx += ggml_nelements(lora->tok_embeddings_a); + nx += ggml_nelements(lora->tok_embeddings_b); + nx += ggml_nelements(lora->norm_a); + nx += ggml_nelements(lora->norm_b); + nx += ggml_nelements(lora->output_a); + nx += ggml_nelements(lora->output_b); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + nx += ggml_nelements(layer.attention_norm_a); + nx += ggml_nelements(layer.attention_norm_b); + nx += ggml_nelements(layer.wq_a); + nx += ggml_nelements(layer.wq_b); + nx += ggml_nelements(layer.wk_a); + nx += ggml_nelements(layer.wk_b); + nx += ggml_nelements(layer.wv_a); + nx += ggml_nelements(layer.wv_b); + nx += ggml_nelements(layer.wo_a); + nx += ggml_nelements(layer.wo_b); + nx += ggml_nelements(layer.ffn_norm_a); + nx += ggml_nelements(layer.ffn_norm_b); + nx += ggml_nelements(layer.w1_a); + nx += ggml_nelements(layer.w1_b); + nx += ggml_nelements(layer.w2_a); + nx += ggml_nelements(layer.w2_b); + nx += ggml_nelements(layer.w3_a); + nx += ggml_nelements(layer.w3_b); + } + return nx; +} + +int main(int argc, char ** argv) { + struct train_params params = get_default_train_params(); + + if (!train_params_parse(argc, argv, ¶ms)) { + return 1; + } + + if (params.common.seed == LLAMA_DEFAULT_SEED) { + params.common.seed = time(NULL); + } + printf("%s: seed: %u\n", __func__, params.common.seed); + srand(params.common.seed); + + struct llama_context_params llama_params = llama_context_default_params(); + llama_params.vocab_only = false; + + printf("%s: model base = '%s'\n", __func__, params.fn_model_base); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_params); + struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); + + struct my_llama_model model; + init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx); + + struct my_llama_lora lora; + + struct train_state * train = init_train_state(); + struct ggml_opt_context * opt = train->opt; + + // set params from command line + if (params.custom_f_norm_rms_eps) { + model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; + } + if (params.custom_rope_freq_base) { + model.hparams.rope_freq_base = params.rope_freq_base; + } + if (params.custom_rope_freq_scale) { + model.hparams.rope_freq_scale = params.rope_freq_scale; + } + lora.hparams.lora_r = params.lora_r; + lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r; + uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1; + uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r; + uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r; + uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r; + uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r; + uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1; + uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r; + uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r; + uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r; + uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r; + uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1; + uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r; + lora.hparams.n_rank_attention_norm = n_rank_attention_norm; + lora.hparams.n_rank_wq = n_rank_wq; + lora.hparams.n_rank_wk = n_rank_wk; + lora.hparams.n_rank_wv = n_rank_wv; + lora.hparams.n_rank_wo = n_rank_wo; + lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm; + lora.hparams.n_rank_w1 = n_rank_w1; + lora.hparams.n_rank_w2 = n_rank_w2; + lora.hparams.n_rank_w3 = n_rank_w3; + lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings; + lora.hparams.n_rank_norm = n_rank_norm; + lora.hparams.n_rank_output = n_rank_output; + + // set opt params from command line + opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params.print_forward_graph = false; + opt->params.print_backward_graph = false; + opt->params.n_threads = params.common.n_threads; + opt->params.past = params.common.opt_past; + opt->params.delta = params.common.opt_delta; + opt->params.max_no_improvement = params.common.opt_max_no_improvement; + opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; + opt->params.adam.n_iter = params.common.adam_n_iter; + opt->params.adam.sched = 1.0f; + opt->params.adam.alpha = params.common.adam_alpha; + opt->params.adam.decay = params.common.adam_decay; + opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; + opt->params.adam.beta1 = params.common.adam_beta1; + opt->params.adam.beta2 = params.common.adam_beta2; + opt->params.adam.gclip = params.common.adam_gclip; + opt->params.adam.eps_f = params.common.adam_eps_f; + + ggml_allocr * alloc = NULL; + + printf("%s: init model\n", __func__); + bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train); + + if (existed) { + // overwrite last n_ctx with user provided n_ctx + if (params.common.custom_n_ctx) { + model.hparams.n_ctx = params.common.n_ctx; + } + + const bool opt_param_count_changed = ( + (lora.hparams.n_rank_attention_norm != n_rank_attention_norm) + || (lora.hparams.n_rank_wq != n_rank_wq) + || (lora.hparams.n_rank_wk != n_rank_wk) + || (lora.hparams.n_rank_wv != n_rank_wv) + || (lora.hparams.n_rank_wo != n_rank_wo) + || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm) + || (lora.hparams.n_rank_w1 != n_rank_w1) + || (lora.hparams.n_rank_w2 != n_rank_w2) + || (lora.hparams.n_rank_w3 != n_rank_w3) + || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings) + || (lora.hparams.n_rank_norm != n_rank_norm) + || (lora.hparams.n_rank_output != n_rank_output) + ); + + const bool opt_past_changed = opt->params.past != params.common.opt_past; + + if (opt_param_count_changed) { + print_lora_params(&lora.hparams); + die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting."); + // need to discard previous optimizer gradient statistics and opt_init with new shapes + // TODO + } + if (opt_past_changed) { + die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); + // need to discard previous optimizer past function value statistics and opt_init with new shapes + // TODO + } + } else { // existed == false + init_lora(&model, &lora); + randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); + if (!params.only_write_lora) { + ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora)); + } + } + opt->iter = train->train_its; + + print_params(&model.hparams); + print_lora_params(&lora.hparams); + printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); + printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); + printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); + printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); + printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f)); + + if (params.only_write_lora) { + save_train_files_data save_data; + save_data.fn_checkpoint_out = ""; + save_data.fn_lora_out = params.fn_lora_out; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + save_data.lora = &lora; + + save_train_files(&save_data, train); + + free_train_state(train); + ggml_free(lora.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; + } + + printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); + printf("%s: opt iter %d\n", __func__, opt->iter); + + int n_tokens = model.hparams.n_ctx; + int n_vocab = model.hparams.n_vocab; + int n_batch = params.common.n_batch; + + + std::vector mem_input_data; + std::vector mem_compute_data; + + // context for input tensors without their data + struct ggml_init_params ctx_input_params = { + ggml_tensor_overhead() * 2, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_input = ggml_init(ctx_input_params); + + // the input tensors + struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); + struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + + // measure required memory for input tensors + alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment; + ggml_allocr_free(alloc); + printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); + + // allocate input tensors + mem_input_data.resize(max_input_size); + alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + ggml_allocr_free(alloc); + + // context for compute tensors without their data + size_t estimated_compute_size_wo_data = ( + ggml_tensor_overhead()*GGML_MAX_NODES*2 + + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( + params.common.use_checkpointing ? 3 : 2 + ) + ); + struct ggml_init_params ctx_compute_params = { + estimated_compute_size_wo_data, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_compute = NULL; + + struct ggml_tensor * loss = NULL; + struct ggml_tensor * logits = NULL; + + struct ggml_cgraph * gf = NULL; + struct ggml_cgraph * gb = NULL; + struct ggml_cgraph * gb_tmp = NULL; + + // measure required memory for compute tensors + size_t best_compute_size = SIZE_MAX; + enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; + // find best evaluation order + for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = (enum ggml_cgraph_eval_order) order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_lora_finetune_graphs( + &model, &lora, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + if (max_compute_size < best_compute_size) { + best_compute_size = max_compute_size; + best_order = gf->order; + } + ggml_allocr_free(alloc); + ggml_free(ctx_compute); + } + size_t max_compute_size = best_compute_size; + printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); + printf("%s: evaluation order = %s\n", __func__, + (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : + (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : + "invalid"); + + // allocate compute tensors + mem_compute_data.resize(max_compute_size); + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = best_order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_lora_finetune_graphs( + &model, &lora, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + ggml_allocr_free(alloc); + + // tokenize data + std::vector train_tokens; + std::vector train_samples_begin; + std::vector train_samples_size; + printf("%s: tokenize training data\n", __func__); + tokenize_file(lctx, + params.common.fn_train_data, + params.common.sample_start, + params.common.include_sample_start, + params.common.overlapping_samples, + n_tokens, + train_tokens, + train_samples_begin, + train_samples_size); + GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); + + printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); + + std::vector token_noccurs; + token_noccurs.resize(model.hparams.n_vocab, 0); + for (unsigned int i = 0; i < train_tokens.size(); ++i) { + ++token_noccurs[train_tokens[i]]; + } + int n_unique_tokens = 0; + for (unsigned int i = 0; i < token_noccurs.size(); ++i) { + if (token_noccurs[i] == 0) continue; + ++n_unique_tokens; + } + printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); + + size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); + const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); + if (changed_train_data) { + printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); + } + if (params.common.force_reshuffle) { + printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); + } + if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { + train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); + train->shuffle_sample_count = train_samples_size.size(); + train->shuffle_next_sample = 0; + train->shuffle_samples_hash = shuffle_samples_hash; + } + std::vector train_shuffled_samples_offs; + std::vector train_shuffled_samples_begin; + std::vector train_shuffled_samples_size; + train_shuffled_samples_offs.resize(train_samples_begin.size()); + train_shuffled_samples_begin.resize(train_samples_begin.size()); + train_shuffled_samples_size.resize(train_samples_size.size()); + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + train_shuffled_samples_offs.data(), + train_shuffled_samples_begin.data(), + train_shuffled_samples_size.data(), + train_samples_begin.data(), + train_samples_size.data(), + train_samples_size.size()); + + printf("%s: begin training\n", __func__); + + save_train_files_data save_data; + save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; + save_data.fn_lora_out = params.fn_lora_out; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + save_data.lora = &lora; + + struct train_opt_callback_data opt_cb_data; + opt_cb_data.params = ¶ms.common; + opt_cb_data.train = train; + opt_cb_data.save_cb = &save_train_files; + opt_cb_data.save_data = &save_data; + opt_cb_data.lctx = lctx; + opt_cb_data.last_save_iter = opt->iter; + opt_cb_data.tokens_data = train_tokens.data(); + opt_cb_data.tokens_size = train_tokens.size(); + opt_cb_data.samples_begin = train_samples_begin.data(); + opt_cb_data.samples_size = train_samples_size.data(); + opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); + opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); + opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); + opt_cb_data.samples_count = train_samples_size.size(); + opt_cb_data.tokens_input = tokens_input; + opt_cb_data.target_probs = target_probs; + opt_cb_data.first_iter = opt->iter; + opt_cb_data.first_epoch = train->train_epochs; + opt_cb_data.iter_at_last_epoch = -1; + opt_cb_data.last_time = ggml_time_ms(); + opt_cb_data.millis_per_iter = 0.0; + + // measure required memory for work buffer + size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; + printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); + + // context for work buffer + struct ggml_init_params ctx_work_params = { + max_work_size, // mem_size + NULL, // mem_buffer + false, // no_alloc + }; + struct ggml_context * ctx_work = ggml_init(ctx_work_params); + + int64_t t0 = ggml_time_ms(); + + ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); + + ggml_free(ctx_work); + ggml_free(ctx_compute); + ggml_free(ctx_input); + + int64_t t1 = ggml_time_ms(); + printf("%s: total training time: ", __func__); + print_duration((double) (t1 - t0)); + printf("\n"); + + int new_iters = opt->iter - opt_cb_data.last_save_iter; + if (new_iters > 0) { + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; + + save_train_files(&save_data, train); + opt_cb_data.last_save_iter = opt->iter; + } + + ggml_free(opt->ctx); + free_train_state(train); + ggml_free(lora.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; +} diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 273eb36f4..9b9624832 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -956,7 +956,23 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, invalid_param = true; break; } - params.lora_adapter = argv[i]; + params.lora_adapter.push_back({argv[i], 1.0f}); + params.use_mmap = false; + } + else if (arg == "--lora-scaled") + { + if (++i >= argc) + { + invalid_param = true; + break; + } + const char * lora_adapter = argv[i]; + if (++i >= argc) + { + invalid_param = true; + break; + } + params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); params.use_mmap = false; } else if (arg == "--lora-base") diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md index f4ffcd987..1b3454069 100644 --- a/examples/train-text-from-scratch/README.md +++ b/examples/train-text-from-scratch/README.md @@ -10,9 +10,9 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s ./bin/train-text-from-scratch \ --vocab-model ../models/ggml-vocab-llama.gguf \ --ctx 64 --embd 256 --head 8 --layer 16 \ - --checkpoint-in chk-shakespeare-256x16.gguf \ - --checkpoint-out chk-shakespeare-256x16.gguf \ - --model-out ggml-shakespeare-256x16-f32.gguf \ + --checkpoint-in chk-shakespeare-256x16-LATEST.gguf \ + --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \ + --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \ --train-data "shakespeare.txt" \ -t 6 -b 16 --seed 1 --adam-iter 256 \ --no-checkpointing @@ -20,3 +20,8 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s # predict ./bin/main -m ggml-shakespeare-256x16-f32.gguf ``` + +Output files will be saved every N iterations (config with `--save-every N`). +The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output. + +To train GGUF models just pass them to `--checkpoint-in FN`. diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py index a527d6153..351e7bc2d 100644 --- a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py +++ b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py @@ -47,10 +47,13 @@ LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" -LLM_KV_TRAINING_FILE_VERSION = "training.file_version" -LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" -LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" -LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" +LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model" +LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora" +LLM_KV_TRAINING_TYPE = "training.type" +LLM_KV_TRAINING_FILE_VERSION = "training.file_version" +LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" +LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" +LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" class Tensor: def __init__(self, dtype='f', ne=None): @@ -460,6 +463,7 @@ class Checkpoint: gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32) gguf_writer.add_layer_norm_rms_eps(1e-5) gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0) + gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL) gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its) gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples) gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens) diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 5f541a141..d5205aff6 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -1,6 +1,7 @@ #include "ggml.h" #include "ggml-alloc.h" #include "common.h" +#include "train.h" #include "llama.h" #include #include @@ -18,142 +19,7 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -struct random_normal_distribution { - std::mt19937 gen; - std::normal_distribution rd; - float min; - float max; -}; - -struct random_uniform_distribution { - std::mt19937 gen; - std::uniform_real_distribution rd; -}; - -void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::normal_distribution{mean, std}; - rnd->min = min; - rnd->max = max; -} - -void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::uniform_real_distribution{min, max}; -} - -int clamp(const int v, const int min, const int max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float fclamp(const float v, const float min, const float max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float frand() { - return (float)rand()/(float)RAND_MAX; -} - -float frand_normal(struct random_normal_distribution * rnd) { - return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); -} - -float frand_uniform(struct random_uniform_distribution * rnd) { - return rnd->rd(rnd->gen); -} - -struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { - float scale = 1.0f; // xavier - switch (tensor->n_dims) { - case 1: - scale /= sqrtf(tensor->ne[0]); - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = scale * frand_normal(rnd); - } - break; - case 2: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = scale * frand_normal(rnd); - } - } - break; - case 3: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = scale * frand_normal(rnd); - } - } - } - break; - case 4: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = scale * frand_normal(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} - -struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { - switch (tensor->n_dims) { - case 1: - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = frand_uniform(rnd); - } - break; - case 2: - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = frand_uniform(rnd); - } - } - break; - case 3: - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = frand_uniform(rnd); - } - } - } - break; - case 4: - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = frand_uniform(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} +static const size_t tensor_alignment = 32; struct my_llama_hparams { uint32_t n_vocab = 32000; @@ -164,8 +30,8 @@ struct my_llama_hparams { uint32_t n_rot = 64; uint32_t n_ff = 11008; - // float f_norm_eps = 1e-5; // falcon - float f_norm_rms_eps = 1e-5; // llama + // float f_norm_eps = 1e-5f; // falcon + float f_norm_rms_eps = 1e-5f; // llama float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; @@ -192,6 +58,7 @@ struct my_llama_layer { struct my_llama_model { struct ggml_context * ctx = NULL; + std::vector data; my_llama_hparams hparams; @@ -201,92 +68,50 @@ struct my_llama_model { struct ggml_tensor * output; std::vector layers; - - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; }; -// gguf constants -const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; -const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; -const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; -const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; -const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; -const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; -const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; -const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; -const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; -const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; -const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; -const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; -const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; -const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; - -const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; -const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; -const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; - -const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; - -const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; -const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; -const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; -const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; - // gguf constants (sync with gguf.py) +static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"; +static const char * LLM_KV_TRAINING_TYPE = "training.type"; -const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; -const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; +static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; +static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; -const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; -const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; -const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; -const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; -const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; -const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; -const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; -const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp -const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; +static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; +static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; +static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; +static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; +static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; +static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; +static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp +static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; -const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; -const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; -const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; -const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; -const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; -const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; -const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; -const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; -const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; -const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; +static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; +static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; +static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; +static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; +static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; +static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; +static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; +static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; +static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; +static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; -const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; -const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; -const char * LLM_TENSOR_OUTPUT = "output"; -const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; -const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; -const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; -const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; -const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; -const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; -const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; -const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; -const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; +static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; +static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; +static const char * LLM_TENSOR_OUTPUT = "output"; +static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; +static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; +static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; +static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; +static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; +static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; +static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; +static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; +static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; -void print_params(struct my_llama_hparams * params) { +static void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); @@ -296,7 +121,66 @@ void print_params(struct my_llama_hparams * params) { printf("%s: n_rot: %d\n", __func__, params->n_rot); } -void init_model(struct my_llama_model * model) { +static void set_param_model(struct my_llama_model * model) { + const auto& hparams = model->hparams; + + const uint32_t n_layer = hparams.n_layer; + + struct ggml_context* ctx = model->ctx; + + ggml_set_param(ctx, model->tok_embeddings); + ggml_set_param(ctx, model->norm); + ggml_set_param(ctx, model->output); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = model->layers[i]; + + ggml_set_param(ctx, layer.attention_norm); + ggml_set_param(ctx, layer.wq); + ggml_set_param(ctx, layer.wk); + ggml_set_param(ctx, layer.wv); + ggml_set_param(ctx, layer.wo); + ggml_set_param(ctx, layer.ffn_norm); + ggml_set_param(ctx, layer.w1); + ggml_set_param(ctx, layer.w2); + ggml_set_param(ctx, layer.w3); + } +} + +static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) { + ggml_allocr_alloc(alloc, model->tok_embeddings); + ggml_allocr_alloc(alloc, model->norm); + ggml_allocr_alloc(alloc, model->output); + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm); + ggml_allocr_alloc(alloc, layer.wq); + ggml_allocr_alloc(alloc, layer.wk); + ggml_allocr_alloc(alloc, layer.wv); + ggml_allocr_alloc(alloc, layer.wo); + ggml_allocr_alloc(alloc, layer.ffn_norm); + ggml_allocr_alloc(alloc, layer.w1); + ggml_allocr_alloc(alloc, layer.w2); + ggml_allocr_alloc(alloc, layer.w3); + } + ggml_allocr_alloc(alloc, model->tok_embeddings->grad); + ggml_allocr_alloc(alloc, model->norm->grad); + ggml_allocr_alloc(alloc, model->output->grad); + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm->grad); + ggml_allocr_alloc(alloc, layer.wq->grad); + ggml_allocr_alloc(alloc, layer.wk->grad); + ggml_allocr_alloc(alloc, layer.wv->grad); + ggml_allocr_alloc(alloc, layer.wo->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm->grad); + ggml_allocr_alloc(alloc, layer.w1->grad); + ggml_allocr_alloc(alloc, layer.w2->grad); + ggml_allocr_alloc(alloc, layer.w3->grad); + } +} + +static void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -304,11 +188,6 @@ void init_model(struct my_llama_model * model) { const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = hparams.n_ff; - struct ggml_context * ctx = model->ctx; - - model->train_its = 0; - model->train_samples = 0; - model->train_tokens = 0; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); @@ -323,6 +202,15 @@ void init_model(struct my_llama_model * model) { return tn_buf.data(); }; + // context for model tensors without their data + struct ggml_init_params ctx_model_params; + ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); + ctx_model_params.mem_buffer = NULL; + ctx_model_params.no_alloc = true; + + struct ggml_context * ctx = ggml_init(ctx_model_params); + model->ctx = ctx; + model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); @@ -361,288 +249,53 @@ void init_model(struct my_llama_model * model) { ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i)); ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i)); } + + set_param_model(model); + + // measure data size + struct ggml_allocr * alloc = NULL; + alloc = ggml_allocr_new_measure(tensor_alignment); + alloc_model(alloc, model); + + // allocate data + model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); + ggml_allocr_free(alloc); + alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment); + alloc_model(alloc, model); + ggml_allocr_free(alloc); } -void set_param_model(struct my_llama_model * model) { - const auto& hparams = model->hparams; - - const uint32_t n_layer = hparams.n_layer; - - struct ggml_context* ctx = model->ctx; - - ggml_set_param(ctx, model->tok_embeddings); - ggml_set_param(ctx, model->norm); - ggml_set_param(ctx, model->output); - - for (uint32_t i = 0; i < n_layer; ++i) { - auto & layer = model->layers[i]; - - ggml_set_param(ctx, layer.attention_norm); - ggml_set_param(ctx, layer.wq); - ggml_set_param(ctx, layer.wk); - ggml_set_param(ctx, layer.wv); - ggml_set_param(ctx, layer.wo); - ggml_set_param(ctx, layer.ffn_norm); - ggml_set_param(ctx, layer.w1); - ggml_set_param(ctx, layer.w2); - ggml_set_param(ctx, layer.w3); - } -} - -void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { +static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, &rnd); - randomize_tensor_normal(model->norm, &rnd); - randomize_tensor_normal(model->output, &rnd); + randomize_tensor_normal(model->tok_embeddings, rnd); + randomize_tensor_normal(model->norm, rnd); + randomize_tensor_normal(model->output, rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); - randomize_tensor_normal(layer.wq, &rnd); - randomize_tensor_normal(layer.wk, &rnd); - randomize_tensor_normal(layer.wv, &rnd); - randomize_tensor_normal(layer.wo, &rnd); + randomize_tensor_normal(layer.wq, rnd); + randomize_tensor_normal(layer.wk, rnd); + randomize_tensor_normal(layer.wv, rnd); + randomize_tensor_normal(layer.wo, rnd); - randomize_tensor_normal(layer.ffn_norm, &rnd); + randomize_tensor_normal(layer.ffn_norm, rnd); - randomize_tensor_normal(layer.w1, &rnd); - randomize_tensor_normal(layer.w2, &rnd); - randomize_tensor_normal(layer.w3, &rnd); + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } + + free_random_normal_distribution(rnd); } -void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { - GGML_ASSERT(tensor->n_dims == 1); - GGML_ASSERT(tensor->ne[0] == ne0); -} - -void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { - GGML_ASSERT(tensor->n_dims == 2); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); -} - -void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { - GGML_ASSERT(tensor->n_dims == 3); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); -} - -void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { - GGML_ASSERT(tensor->n_dims == 4); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); - GGML_ASSERT(tensor->ne[3] == ne3); -} - -static size_t hash(void * p) { - return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; -} - -static size_t hash_find(void * hash_table[], void * p) { - size_t h = hash(p); - - // linear probing - size_t i = h; - while (hash_table[i] != NULL && hash_table[i] != p) { - i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; - if (i == h) { - // visited all hash table entries -> not found - return GGML_GRAPH_HASHTABLE_SIZE; - } - } - return i; -} - -static bool hash_insert(void * hash_table[], void * p) { - //size_t h = hash(p); - size_t i = hash_find(hash_table, p); - - GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - - if (hash_table[i] == p) { - return true; - } - - // insert - GGML_ASSERT(hash_table[i] == NULL); - hash_table[i] = p; - return false; -} - -static bool hash_contains(void * hash_table[], void * p) { - size_t i = hash_find(hash_table, p); - return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); -} - -struct hash_map { - void * keys[GGML_GRAPH_HASHTABLE_SIZE]; - void * vals[GGML_GRAPH_HASHTABLE_SIZE]; -}; -//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map); - -struct hash_map * new_hash_map() { - struct hash_map * result = new struct hash_map; - for (int i=0; ikeys[i] = NULL; - result->vals[i] = NULL; - } - return result; -}; - -void free_hash_map(struct hash_map * map) { - delete map; -} - -static bool ggml_is_view(struct ggml_tensor * t) { - return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || - t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; -} - -static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { - switch (t->op) { - case GGML_OP_PERMUTE: - case GGML_OP_RESHAPE: - case GGML_OP_TRANSPOSE: - case GGML_OP_VIEW: - return t->src[0]; - case GGML_OP_CPY: - return t->src[1]; - default: - return NULL; - } -} - -static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { - struct ggml_tensor * parent = t; - do { - parent = get_view_parent(parent); - } while (ggml_is_view(parent)); - return parent; -} - -struct ggml_tensor * ggml_recompute_graph_node( - struct ggml_context * ctx, - struct ggml_cgraph * graph, - struct hash_map * replacements, - struct ggml_tensor * node) { - - if (node == NULL) { - return NULL; - } - - if (node->is_param) { - return node; - } - - if (!hash_contains(graph->visited_hash_table, node)) { - return node; - } - - int count_children = 0; - for (int k = 0; k < GGML_MAX_SRC; ++k) { - if (node->src[k]) { - ++count_children; - } - } - - if (count_children == 0) { - return node; - } - - size_t i = hash_find(replacements->keys, node); - GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - if (replacements->keys[i] == node) { - return (struct ggml_tensor *) replacements->vals[i]; - } - - struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); - - // insert clone into replacements - GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite - replacements->keys[i] = node; - replacements->vals[i] = clone; - - clone->op = node->op; - clone->grad = node->grad; - clone->is_param = node->is_param; - clone->extra = node->extra; - for (int k = 0; k < GGML_MAX_DIMS; ++k) { - clone->nb[k] = node->nb[k]; - } - for (int k = 0; k < GGML_MAX_SRC; ++k) { - clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); - } - if (ggml_is_view(clone)) { - struct ggml_tensor * source = get_view_source(clone); - GGML_ASSERT(source != NULL); - clone->data = source->data; - } - - GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); - GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); - memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); - ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); - - return clone; -}; - -void ggml_build_backward_gradient_checkpointing( - struct ggml_context * ctx, - struct ggml_cgraph * gf, - struct ggml_cgraph * gb, - struct ggml_cgraph * gb_tmp, - struct ggml_tensor * * checkpoints, - int n_checkpoints) { - *gb_tmp = *gf; - ggml_build_backward_expand(ctx, gf, gb_tmp, true); - - if (n_checkpoints <= 0) { - *gb = *gb_tmp; - return; - } - - struct hash_map * replacements = new_hash_map(); - - // insert checkpoints in replacements - for (int i = 0; i < n_checkpoints; ++i) { - size_t k = hash_find(replacements->keys, checkpoints[i]); - GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite - replacements->keys[k] = checkpoints[i]; - replacements->vals[k] = checkpoints[i]; - } - - *gb = *gf; - // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], - // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), - // by recomputing them from checkpoints - for (int i = gf->n_nodes; in_nodes; ++i) { - struct ggml_tensor * node = gb_tmp->nodes[i]; - for (int k = 0; k < GGML_MAX_SRC; ++k) { - // insert new tensors recomputing src, reusing already made replacements, - // remember replacements: remember new tensors with mapping from corresponding gf nodes - // recurse for input tensors, - // unless (i.e. terminating when) input tensors are checkpoints - node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); - } - // insert rewritten backward node with replacements made into resulting backward graph gb - ggml_build_forward_expand(gb, node); - } - - free_hash_map(replacements); -} - -struct ggml_tensor * llama_build_train_graphs( +static struct ggml_tensor * llama_build_train_graphs( struct my_llama_model * model, struct ggml_allocr * alloc, struct ggml_context * ctx, @@ -714,7 +367,7 @@ struct ggml_tensor * llama_build_train_graphs( checkpoints.push_back(t00); checkpoints.push_back(t01); - struct ggml_tensor * kv_scale; + struct ggml_tensor * kv_scale = NULL; if (!enable_flash_attn) { kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); } @@ -797,21 +450,14 @@ struct ggml_tensor * llama_build_train_graphs( ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); // KQ_pos ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one)); - GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad)); + GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); + ggml_allocr_alloc(alloc, t36->grad); - // gradient tensors (will be set to zero by ggml_graph_reset) - // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632 - for (int i = 0; i < gf->n_nodes; ++i) { - if (!gf->grads[i]) continue; - if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) { - ggml_allocr_alloc(alloc, gf->grads[i]); - } - ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one)); - } + // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order for (int i = 0; i < (int) checkpoints.size(); ++i) { - if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) { + if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { ggml_allocr_alloc(alloc, checkpoints[i]); } } @@ -836,194 +482,6 @@ struct ggml_tensor * llama_build_train_graphs( return t36; } -void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *ptr = value; -} - -void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -void print_row(struct ggml_tensor * probs, int i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); -} - -void print_matrix(struct ggml_tensor * probs) { - assert(probs->n_dims == 2); - for (int i = 0; i < probs->ne[1]; ++i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); - } -} - -void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { - int n_tokens = tokens_input->ne[0]; - int n_vocab = target_logits->ne[0]; - - size_t sample = train_samples[example_id % n_train_samples]; - GGML_ASSERT(sample+n_tokens-1 < n_train_data); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx)); - for (int i=1; in_dims == 2); - GGML_ASSERT(target_logits->n_dims == 3); - GGML_ASSERT(target_probs->n_dims == 3); - int n_vocab = target_logits->ne[0]; - int n_tokens = tokens_input->ne[0]; - int n_batch = tokens_input->ne[1]; - GGML_ASSERT(n_tokens == target_logits->ne[1]); - GGML_ASSERT(n_batch == target_logits->ne[2]); - GGML_ASSERT(n_vocab == target_probs->ne[0]); - GGML_ASSERT(n_tokens == target_probs->ne[1]); - GGML_ASSERT(n_batch == target_probs->ne[2]); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); - for (int k=0; k& out) { - FILE * fp = std::fopen(filename, "rb"); - if (fp == NULL) { - return 0; - } - -#ifdef _WIN32 - GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0); -#else - GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0); -#endif - - size_t size = 0; -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); - size = ret; -#else - long ret = std::ftell(fp); - size = ret; -#endif - -#ifdef _WIN32 - GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0); -#else - GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0); -#endif - - std::vector buf; - buf.resize(size+1); - out.resize(size+1); - - if (std::fread(buf.data(), size, 1, fp) != 1) { - die("unexpectedly reached end of file"); - } - if (ferror(fp)) { - die_fmt("fread failed: %s", strerror(errno)); - } - - buf[size] = '\0'; - - int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); - if (n_tokens < 0) { - out.resize(-n_tokens); - n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); - } - GGML_ASSERT(n_tokens >= 0); - out.resize(n_tokens); - - bool verify = false; - if (verify) { - const char * in = buf.data(); - const char * end = buf.data() + buf.size(); - for (int i = 0; i < (int) out.size(); ++i) { - std::string s = llama_token_to_piece(lctx, out[i]); - int len = s.length(); - if (in >= end) { - printf("%s: unexpected end of original text.\n", __func__); - break; - } - const bool matches = (strncmp(in, s.c_str(), len) == 0); - if (matches) { - in += len; - } else { - printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str()); - } - } - } - - return n_tokens; -} - -void shuffle_ints(int * begin, int * end) { - if (end <= begin) return; - int max=begin[0]; - for (int i=1; i max) { - max = begin[i]; - } - } - std::vector vals; - vals.resize(max+1); - for (int i=0; itype == b->type); - GGML_ASSERT(ggml_are_same_shape(a, b)); - GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); - - return true; -} - -void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { - if (dst == NULL) { - return; - } - struct ggml_tensor * t = ggml_get_tensor(ctx, name); - GGML_ASSERT(are_same_layout(dst, t)); - memcpy(dst->data, t->data, ggml_nbytes(t)); - - if (strlen(ggml_get_name(dst)) == 0) { - ggml_set_name(dst, name); - } -} - -void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { - // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read - - uint32_t file_version; - GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); - GGML_ASSERT(file_version == 0); - - GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); - GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); - GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); - - uint64_t nx; - GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); - opt->nx = (size_t) nx; - - // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know - - std::string opt_type; - GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); - if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { - opt->params.type = GGML_OPT_ADAM; - - GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); - GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); - GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); - - GGML_ASSERT(opt->ctx != NULL); - ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); - - read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); - read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); - read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); - } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { - opt->params.type = GGML_OPT_LBFGS; - - GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); - GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); - GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); - GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); - GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); - GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); - GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); - - GGML_ASSERT(opt->ctx != NULL); - ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); - - read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); - read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); - read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); - read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); - read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); - read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); - read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); - read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); - read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); - read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); - } else { - die("unknown optimizer type"); - } -} - -void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); - gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); - gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); - - switch (opt->params.type) { - case GGML_OPT_ADAM: - { - gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); - - ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); - ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); - if (opt->adam.pf) { - ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); - } - - gguf_add_tensor(fctx, opt->adam.m); - gguf_add_tensor(fctx, opt->adam.v); - if (opt->adam.pf) { - gguf_add_tensor(fctx, opt->adam.pf); - } - } break; - case GGML_OPT_LBFGS: - { - gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); - - ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); - ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); - ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); - ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); - ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); - if (opt->lbfgs.pf) { - ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); - } - ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); - ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); - ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); - ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); - - gguf_add_tensor(fctx, opt->lbfgs.x); - gguf_add_tensor(fctx, opt->lbfgs.xp); - gguf_add_tensor(fctx, opt->lbfgs.g); - gguf_add_tensor(fctx, opt->lbfgs.gp); - gguf_add_tensor(fctx, opt->lbfgs.d); - if (opt->lbfgs.pf) { - gguf_add_tensor(fctx, opt->lbfgs.pf); - } - gguf_add_tensor(fctx, opt->lbfgs.lmal); - gguf_add_tensor(fctx, opt->lbfgs.lmys); - gguf_add_tensor(fctx, opt->lbfgs.lms); - gguf_add_tensor(fctx, opt->lbfgs.lmy); - } break; - } -} - -void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { +static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read std::string arch; @@ -1243,26 +549,26 @@ void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_g init_model(model); - read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); - read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); - read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); + copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); + copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); + copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; - read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); - read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); - read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); - read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); - read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); - read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); - read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); - read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); - read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); + copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); + copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); + copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); + copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); + copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); + copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); + copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); + copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); + copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); } } -void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { +static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { const char * arch = "llama"; enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; @@ -1405,7 +711,8 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod } } -void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { +static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { + printf("%s: saving to %s\n", __func__, filename); struct gguf_context * fctx = gguf_init_empty(); save_llama_model_gguf(fctx, fn_vocab_model, model); @@ -1416,32 +723,24 @@ void save_llama_model_file(const char * filename, const char * fn_vocab_model, s gguf_free(fctx); } -void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) { load_llama_model_gguf(fctx, f_ggml_ctx, model); - - uint32_t file_version; - GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); - GGML_ASSERT(file_version == 0); - - GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); - GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); - GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); - - load_opt_context_gguf(fctx, f_ggml_ctx, opt); + if (load_train_state_gguf(fctx, f_ggml_ctx, train)) { + std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL; + GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); + GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL); + } else { + printf("%s: loaded llama model as checkpoint\n", __func__); + } } -void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) { + gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL); save_llama_model_gguf(fctx, fn_vocab_model, model); - - gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens); - - save_opt_context_gguf(fctx, opt); + save_train_state_gguf(fctx, train); } -bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) { +static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) { struct ggml_context * f_ggml_ctx; struct gguf_init_params params; params.no_alloc = false; @@ -1451,15 +750,16 @@ bool load_checkpoint_file(const char * filename, struct my_llama_model * model, return false; } - load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt); + load_checkpoint_gguf(fctx, f_ggml_ctx, model, train); return true; } -void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) { + printf("%s: saving to %s\n", __func__, filename); struct gguf_context * fctx = gguf_init_empty(); - save_checkpoint_gguf(fctx, fn_vocab_model, model, opt); + save_checkpoint_gguf(fctx, fn_vocab_model, model, train); // write file const bool only_meta = false; @@ -1467,33 +767,13 @@ void save_checkpoint_file(const char * filename, const char * fn_vocab_model, st gguf_free(fctx); } -float cosine_decay(const int decay_steps, const float minimum, int step) { - if (step > decay_steps) { - step = decay_steps; - } - const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); - const float decay = (1 - minimum)*cosine_decay + minimum; - return decay; -} - -float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) { - if (enable_restart) { - while (step > decay_steps) { - step -= decay_steps; - decay_steps = (int) restart_step_mult * decay_steps; - } - } - return cosine_decay(decay_steps, minimum, step); -} - struct train_params { + struct train_params_common common; + const char * fn_vocab_model; - const char * fn_train_data; - const char * fn_checkpoint_in; - const char * fn_checkpoint_out; const char * fn_model_out; - uint32_t seed; + bool only_write_model; int n_ctx; int n_embd; @@ -1501,58 +781,18 @@ struct train_params { int n_layer; int n_ff; - int n_threads; - int n_batch; - int n_examples; - float f_norm_rms_eps; float rope_freq_base; float rope_freq_scale; - - int print_info_interval; - - bool samples_start_after_nl; - bool use_adam; - bool use_flash; - bool use_checkpointing; - bool use_alloc; - - // only adam - int warmup; - int cos_decay_steps; - float cos_decay_restart; - float cos_decay_min; - bool enable_restart; - - int opt_past; - float opt_delta; - int opt_max_no_improvement; - - int lbfgs_n_iter; - int adam_n_iter; - float adam_alpha; - float adam_min_alpha; - float adam_decay; - int adam_decay_min_ndim; - float adam_beta1; - float adam_beta2; - float adam_gclip; - float adam_eps_f; - - int mem_model_gb; - int mem_compute_gb; - int mem_compute0_gb; }; struct train_params get_default_train_params() { struct train_params params; + params.common = get_default_train_params_common(); params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; - params.fn_train_data = "shakespeare.txt"; - params.fn_checkpoint_in = "checkpoint.bin"; - params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; - params.seed = -1; + params.only_write_model = false; params.n_ctx = 128; params.n_embd = 256; @@ -1560,62 +800,22 @@ struct train_params get_default_train_params() { params.n_layer = 16; params.n_ff = 768; - params.n_threads = 6; - params.n_batch = 8; - params.n_examples = 1; - - params.f_norm_rms_eps = 1e-5; + params.f_norm_rms_eps = 1e-5f; params.rope_freq_base = 10000.0f; params.rope_freq_scale = 1.0f; - params.print_info_interval = 1; - - params.samples_start_after_nl = false; - params.use_adam = true; - params.use_flash = true; - params.use_checkpointing = true; - params.use_alloc = true; - - params.opt_past = 0; - params.opt_delta = 1e-5f; - params.opt_max_no_improvement = 0; - - // only adam - params.warmup = 100; - params.cos_decay_steps = 1000; - params.cos_decay_restart = 1.1f; - params.cos_decay_min = 0.1f; - params.enable_restart = false; - - params.lbfgs_n_iter = 256; - params.adam_n_iter = 256; - params.adam_alpha = 1e-3f; - params.adam_min_alpha = 0; - params.adam_decay = 1e-1f; - params.adam_decay_min_ndim = 2; - params.adam_beta1 = 0.9f; - params.adam_beta2 = 0.999f; - params.adam_gclip = 1.0f; - params.adam_eps_f = 0.0f; - - params.mem_model_gb = 2; - params.mem_compute_gb = 24; - params.mem_compute0_gb = 8; return params; } -void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { +static void train_print_usage(int argc, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); - fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); - fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); - fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); - fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n"); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff); fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); @@ -1623,45 +823,11 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); - fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); - fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); - fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); - fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); - fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); - fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); - fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); - fprintf(stderr, " --no-flash Don't use flash attention \n"); - fprintf(stderr, " --use-flash Use flash attention (default)\n"); - fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); - fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); - fprintf(stderr, " --no-alloc Don't use allocator\n"); - fprintf(stderr, " --use-alloc Use allocator (default)\n"); - fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); - fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); - fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); - fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); - fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); - fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); - fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); - fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); - fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); - fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); - fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); - fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); - fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); - fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); - fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); - fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); - fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); - fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); - fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); - fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); - fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); - fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb); - fprintf(stderr, "\n"); + + print_common_train_usage(argc, argv, ¶ms->common); } -bool train_params_parse(int argc, char ** argv, struct train_params * params) { +static bool train_params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; std::string arg; struct train_params default_params = get_default_train_params(); @@ -1673,48 +839,27 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { std::replace(arg.begin(), arg.end(), '_', '-'); } - if (arg == "--vocab-model") { + if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { + if (invalid_param) { + break; + } else if (params->common.print_usage) { + train_print_usage(argc, argv, &default_params); + exit(0); + } + } else if (arg == "--vocab-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_vocab_model = argv[i]; - } else if (arg == "--train-data") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_train_data = argv[i]; - } else if (arg == "--checkpoint-in") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_in = argv[i]; - } else if (arg == "--checkpoint-out") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_out = argv[i]; } else if (arg == "--model-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_model_out = argv[i]; - } else if (arg == "-s" || arg == "--seed") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->seed = std::stoi(argv[i]); - } else if (arg == "-c" || arg == "--ctx") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_ctx = std::stoi(argv[i]); + } else if (arg == "--only-write-model") { + params->only_write_model = true; } else if (arg == "--embd") { if (++i >= argc) { invalid_param = true; @@ -1757,175 +902,6 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->rope_freq_scale = std::stof(argv[i]); - } else if (arg == "-t" || arg == "--threads") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_threads = std::stoi(argv[i]); - } else if (arg == "-b" || arg == "--batch") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_batch = std::stoi(argv[i]); - } else if (arg == "-n" || arg == "--examples") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_examples = std::stoi(argv[i]); - } else if (arg == "--print-info-interval") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->print_info_interval = std::stoi(argv[i]); - } else if (arg == "--samples-after-nl") { - params->samples_start_after_nl = true; - } else if (arg == "--use-lbfgs") { - params->use_adam = false; - } else if (arg == "--use-adam") { - params->use_adam = true; - } else if (arg == "--no-flash") { - params->use_flash = false; - } else if (arg == "--use-flash") { - params->use_flash = true; - } else if (arg == "--no-checkpointing") { - params->use_checkpointing = false; - } else if (arg == "--use-checkpointing") { - params->use_checkpointing = true; - } else if (arg == "--no-alloc") { - params->use_alloc = false; - } else if (arg == "--use-alloc") { - params->use_alloc = true; - } else if (arg == "--warmup") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->warmup = std::stoi(argv[i]); - } else if (arg == "--cos-decay-steps") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_steps = std::stof(argv[i]); - } else if (arg == "--cos-decay-restart") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_restart = std::stof(argv[i]); - } else if (arg == "--cos-decay-min") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_min = std::stof(argv[i]); - } else if (arg == "--enable-restart") { - params->enable_restart = true; - } else if (arg == "--disable-restart") { - params->enable_restart = false; - } else if (arg == "--opt-past") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_past = std::stoi(argv[i]); - } else if (arg == "--opt-delta") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_delta = std::stof(argv[i]); - } else if (arg == "--opt-max-no-improvement") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_max_no_improvement = std::stoi(argv[i]); - } else if (arg == "--adam-epsf") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_eps_f = std::stof(argv[i]); - } else if (arg == "--adam-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_n_iter = std::stoi(argv[i]); - } else if (arg == "--adam-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_alpha = std::stof(argv[i]); - } else if (arg == "--adam-min-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_min_alpha = std::stof(argv[i]); - } else if (arg == "--adam-decay") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_decay = std::stof(argv[i]); - } else if (arg == "--adam-decay-min-ndim") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_decay_min_ndim = std::stoi(argv[i]); - } else if (arg == "--adam-beta1") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_beta1 = std::stof(argv[i]); - } else if (arg == "--adam-beta2") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_beta2 = std::stof(argv[i]); - } else if (arg == "--adam-gclip") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_gclip = std::stof(argv[i]); - } else if (arg == "--lbfgs-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->lbfgs_n_iter = std::stoi(argv[i]); - } else if (arg == "--mem-model") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_model_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute0") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute0_gb = std::stoi(argv[i]); - } else if (arg == "-h" || arg == "--help") { - train_print_usage(argc, argv, &default_params); - exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); @@ -1937,65 +913,54 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { train_print_usage(argc, argv, &default_params); exit(1); } + finish_processing_train_args(¶ms->common); return true; } -struct opt_callback_data { - struct train_params * params; - struct ggml_opt_context * opt; - struct llama_context * lctx; - llama_token * tokens_data; - size_t tokens_size; - int * samples_data; - size_t samples_size; - int shuffle_countdown; - struct ggml_tensor * tokens_input; - struct ggml_tensor * target_logits; - struct ggml_tensor * target_probs; +struct save_train_files_data { + const char * fn_checkpoint_out; + const char * fn_model_out; + const char * fn_vocab_model; + const char * pattern_fn_it; + const char * fn_latest; + struct my_llama_model * model; }; -void opt_callback(void * vdata, float * sched) { - struct opt_callback_data * data = (struct opt_callback_data *) vdata; - struct train_params * params = data->params; - struct ggml_opt_context * opt = data->opt; - int n_batch = params->n_batch; +static void save_train_files(void * vdata, struct train_state * train) { + struct save_train_files_data * data = (struct save_train_files_data *) vdata; + int64_t iter = train->opt->iter; - *sched = (opt->iter < params->warmup) - ? (float) opt->iter / (float) params->warmup - : cosine_decay_restart( - params->cos_decay_steps, - params->cos_decay_min, - opt->iter - params->warmup, - params->cos_decay_restart, - params->enable_restart); - float min_sched = params->adam_min_alpha / params->adam_alpha; - *sched = min_sched + *sched * (1.0f - min_sched); + if (strlen(data->fn_checkpoint_out) > 0) { + save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train); + save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train); - int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f); - printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); - - if (data->shuffle_countdown < n_batch) { - printf("%s: reshuffle samples\n", __func__); - shuffle_ints(data->samples_data, data->samples_data + data->samples_size); - for (int i = 0; i < (int) data->samples_size; ++i) { - GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size); - } - data->shuffle_countdown = data->samples_size; } + if (strlen(data->fn_model_out) > 0) { + save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model); + save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model); + } +} - get_example_targets_batch( - data->lctx, - data->samples_data, - data->samples_size, - data->tokens_data, - data->tokens_size, - opt->iter, - data->tokens_input, - data->target_logits, - data->target_probs); +static int64_t get_parameter_count(struct my_llama_model* model) { + int64_t nx = 0; + nx += ggml_nelements(model->tok_embeddings); + nx += ggml_nelements(model->norm); + nx += ggml_nelements(model->output); - data->shuffle_countdown -= n_batch; + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + nx += ggml_nelements(layer.attention_norm); + nx += ggml_nelements(layer.wq); + nx += ggml_nelements(layer.wk); + nx += ggml_nelements(layer.wv); + nx += ggml_nelements(layer.wo); + nx += ggml_nelements(layer.ffn_norm); + nx += ggml_nelements(layer.w1); + nx += ggml_nelements(layer.w2); + nx += ggml_nelements(layer.w3); + } + return nx; } int main(int argc, char ** argv) { @@ -2005,11 +970,11 @@ int main(int argc, char ** argv) { return 1; } - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); + if (params.common.seed == LLAMA_DEFAULT_SEED) { + params.common.seed = time(NULL); } - printf("%s: seed: %u\n", __func__, params.seed); - srand(params.seed); + printf("%s: seed: %u\n", __func__, params.common.seed); + srand(params.common.seed); struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; @@ -2017,16 +982,9 @@ int main(int argc, char ** argv) { struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); - printf("%s: tokenize training data\n", __func__); - std::vector train_tokens; - if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { - fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); - } - printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); - struct my_llama_model model; model.hparams.n_vocab = llama_n_vocab(lctx); - model.hparams.n_ctx = params.n_ctx; + model.hparams.n_ctx = params.common.n_ctx; model.hparams.n_embd = params.n_embd; model.hparams.n_head = params.n_head; model.hparams.n_layer = params.n_layer; @@ -2037,243 +995,311 @@ int main(int argc, char ** argv) { model.hparams.rope_freq_base = params.rope_freq_base; model.hparams.rope_freq_scale = params.rope_freq_scale; + struct train_state * train = init_train_state(); + struct ggml_opt_context * opt = train->opt; + + // set opt params from command line + opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params.print_forward_graph = false; + opt->params.print_backward_graph = false; + opt->params.n_threads = params.common.n_threads; + opt->params.past = params.common.opt_past; + opt->params.delta = params.common.opt_delta; + opt->params.max_no_improvement = params.common.opt_max_no_improvement; + opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; + opt->params.adam.n_iter = params.common.adam_n_iter; + opt->params.adam.sched = 1.0f; + opt->params.adam.alpha = params.common.adam_alpha; + opt->params.adam.decay = params.common.adam_decay; + opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; + opt->params.adam.beta1 = params.common.adam_beta1; + opt->params.adam.beta2 = params.common.adam_beta2; + opt->params.adam.gclip = params.common.adam_gclip; + opt->params.adam.eps_f = params.common.adam_eps_f; + + printf("%s: init model\n", __func__); + bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train); + if (existed) { + // overwrite last n_ctx with user provided n_ctx + if (params.common.custom_n_ctx) { + model.hparams.n_ctx = params.common.n_ctx; + } + + const bool opt_past_changed = opt->params.past != params.common.opt_past; + + if (opt_past_changed) { + die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); + // need to discard previous optimizer past function value statistics and opt_init with new shapes + // TODO + } + } else { + init_model(&model); + randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); + if (!params.only_write_model) { + ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model)); + } + } + opt->iter = train->train_its; + print_params(&model.hparams); + printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); + printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); + printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); + printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); + printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f)); - std::vector token_noccurs; - std::vector token_notavail; - token_noccurs.resize(model.hparams.n_vocab, 0); - token_notavail.resize(model.hparams.n_vocab, true); - for (int i = 0; i < (int) train_tokens.size(); ++i) { - ++token_noccurs[train_tokens[i]]; - token_notavail[train_tokens[i]] = false; + if (params.only_write_model) { + save_train_files_data save_data; + save_data.fn_checkpoint_out = ""; + save_data.fn_model_out = params.fn_model_out; + save_data.fn_vocab_model = params.fn_vocab_model; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + + save_train_files(&save_data, train); + + free_train_state(train); + ggml_free(model.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; } - std::vector token_freq; - token_freq.resize(model.hparams.n_vocab, 0); - int n_unique_tokens = 0; - for (int i = 0; i < (int) token_noccurs.size(); ++i) { - token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); - n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; - } - printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); - - struct ggml_init_params lcparams; - lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); - lcparams.mem_buffer = NULL; - lcparams.no_alloc = false; - - model.ctx = ggml_init(lcparams); + printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); + printf("%s: opt iter %d\n", __func__, opt->iter); int n_tokens = model.hparams.n_ctx; int n_vocab = model.hparams.n_vocab; - int n_batch = params.n_batch; + int n_batch = params.common.n_batch; - struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); - memset(opt, 0, sizeof(struct ggml_opt_context)); - - struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); - struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); - opt_params_adam.print_forward_graph = false; - opt_params_adam.print_backward_graph = false; - opt_params_adam.n_threads = params.n_threads; - opt_params_adam.past = params.opt_past; - opt_params_adam.delta = params.opt_delta; - opt_params_adam.max_no_improvement = params.opt_max_no_improvement; - opt_params_adam.adam.n_iter = params.adam_n_iter; - opt_params_adam.adam.sched = 1.0f; - opt_params_adam.adam.alpha = params.adam_alpha; - opt_params_adam.adam.decay = params.adam_decay; - opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim; - opt_params_adam.adam.beta1 = params.adam_beta1; - opt_params_adam.adam.beta2 = params.adam_beta2; - opt_params_adam.adam.gclip = params.adam_gclip; - opt_params_adam.adam.eps_f = params.adam_eps_f; - - opt_params_lbfgs.print_forward_graph = false; - opt_params_lbfgs.print_backward_graph = false; - opt_params_lbfgs.n_threads = params.n_threads; - opt_params_adam.past = params.opt_past; - opt_params_adam.delta = params.opt_delta; - opt_params_adam.max_no_improvement = params.opt_max_no_improvement; - opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; - - opt->ctx = model.ctx; - opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; - - printf("%s: init model\n", __func__); - bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt); - if (!existed) { - init_model(&model); - } - set_param_model(&model); - - opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; - - opt->iter = model.train_its; - printf("%s: opt iter %d\n", __func__, opt->iter); - - bool from_scratch = !existed; - if (from_scratch) { - randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); - } - - printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx)); - // ggml_print_tensor_objects(model.ctx); - - // TODO: use std::vector intead of "new" - size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); - uint8_t * compute_addr = new uint8_t[compute_size]; - - size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); - uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; + std::vector mem_input_data; + std::vector mem_compute_data; ggml_allocr * alloc = NULL; - if (params.use_alloc) { - static const size_t tensor_alignment = 32; - alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment); - } - GGML_ASSERT(n_tokens < (int) train_tokens.size()); - std::vector train_samples; - train_samples.push_back(0); - for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { - if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) { - train_samples.push_back(i); - } - } - shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); - for (int i = 0; i < (int) train_samples.size(); ++i) { - GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); - } + // context for input tensors without their data + struct ggml_init_params ctx_input_params = { + ggml_tensor_overhead() * 2, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_input = ggml_init(ctx_input_params); - printf("%s: begin training\n", __func__); + // the input tensors + struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); + struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - struct opt_callback_data opt_cb_data; - opt_cb_data.params = ¶ms; - opt_cb_data.opt = opt; - opt_cb_data.lctx = lctx; - opt_cb_data.tokens_data = train_tokens.data(); - opt_cb_data.tokens_size = train_tokens.size(); - opt_cb_data.samples_data = train_samples.data(); - opt_cb_data.samples_size = train_samples.size(); - opt_cb_data.shuffle_countdown = train_samples.size(); - opt_cb_data.tokens_input = NULL; - opt_cb_data.target_logits = NULL; - opt_cb_data.target_probs = NULL; + // measure required memory for input tensors + alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment; + ggml_allocr_free(alloc); + printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); - int64_t t0 = ggml_time_ms(); + // allocate input tensors + mem_input_data.resize(max_input_size); + alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + ggml_allocr_free(alloc); - for (int ex = 0; ex < params.n_examples; ++ex) { - if (ex*n_batch >= (int) train_samples.size()) { - shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); - for (int i = 0; i < (int) train_samples.size(); ++i) { - GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); - } - } + // context for compute tensors without their data + size_t estimated_compute_size_wo_data = ( + ggml_tensor_overhead()*GGML_MAX_NODES*2 + + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( + params.common.use_checkpointing ? 3 : 2 + ) + ); + struct ggml_init_params ctx_compute_params = { + estimated_compute_size_wo_data, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_compute = NULL; - struct ggml_init_params cparams = { - compute_size, // mem_size - compute_addr, // mem_buffer - false, // no_alloc - }; - struct ggml_context * ctx0 = ggml_init(cparams); + struct ggml_tensor * loss = NULL; + struct ggml_tensor * logits = NULL; - ggml_set_no_alloc(ctx0, false); + struct ggml_cgraph * gf = NULL; + struct ggml_cgraph * gb = NULL; + struct ggml_cgraph * gb_tmp = NULL; - // don't use alloc for input tensors, so we can safely fill them with data - //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); - //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); - struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - - ggml_set_no_alloc(ctx0, (alloc != NULL)); - - if (alloc) { - ggml_allocr_reset(alloc); - } - - opt_cb_data.tokens_input = tokens_input; - opt_cb_data.target_logits = target_logits; - opt_cb_data.target_probs = target_probs; - - int n_past = 0; - - struct ggml_cgraph * gf = ggml_new_graph(ctx0); - struct ggml_cgraph * gb = ggml_new_graph(ctx0); - struct ggml_cgraph * gb_tmp = params.use_checkpointing - ? ggml_new_graph(ctx0) + // measure required memory for compute tensors + size_t best_compute_size = SIZE_MAX; + enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; + // find best evaluation order + for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = (enum ggml_cgraph_eval_order) order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) : NULL; - - GGML_ASSERT(n_past == 0); - - struct ggml_tensor * loss = NULL; - struct ggml_tensor * logits = NULL; - loss = llama_build_train_graphs( - &model, alloc, ctx0, + &model, alloc, ctx_compute, gf, gb, gb_tmp, &logits, tokens_input, target_probs, n_tokens, n_batch, - params.use_flash, - params.use_checkpointing + params.common.use_flash, + params.common.use_checkpointing ); - - size_t used_mem_before_opt = ggml_used_mem(ctx0); - - opt->params.adam.sched = (opt->iter < params.warmup) - ? (float) opt->iter / (float) params.warmup - : cosine_decay_restart( - params.cos_decay_steps, - params.cos_decay_min, - opt->iter - params.warmup, - params.cos_decay_restart, - params.enable_restart); - - float min_sched = params.adam_min_alpha / params.adam_alpha; - opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched); - - printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); - - ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data); - - size_t used_mem_after_opt = ggml_used_mem(ctx0); - - int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter; - model.train_its = opt->iter; - model.train_samples += n_batch * n_iter; - model.train_tokens += n_batch * n_tokens * n_iter; - - if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { - printf("Example %d, opt iter %d\n", ex, opt->iter); - printf("error_before_opt: %.6f\n", opt->loss_before); - printf("error_after_opt: %.6f\n", opt->loss_after); - printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); - printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); + size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + if (max_compute_size < best_compute_size) { + best_compute_size = max_compute_size; + best_order = gf->order; } - - ggml_free(ctx0); + ggml_allocr_free(alloc); + ggml_free(ctx_compute); } + size_t max_compute_size = best_compute_size; + printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); + printf("%s: evaluation order = %s\n", __func__, + (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : + (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : + "invalid"); + + // allocate compute tensors + mem_compute_data.resize(max_compute_size); + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = best_order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_train_graphs( + &model, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + ggml_allocr_free(alloc); + + std::vector train_tokens; + std::vector train_samples_begin; + std::vector train_samples_size; + printf("%s: tokenize training data\n", __func__); + tokenize_file(lctx, + params.common.fn_train_data, + params.common.sample_start, + params.common.include_sample_start, + params.common.overlapping_samples, + n_tokens, + train_tokens, + train_samples_begin, + train_samples_size); + GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); + + printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); + + size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); + const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); + if (changed_train_data) { + printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); + } + if (params.common.force_reshuffle) { + printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); + } + if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { + train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); + train->shuffle_sample_count = train_samples_size.size(); + train->shuffle_next_sample = 0; + train->shuffle_samples_hash = shuffle_samples_hash; + } + std::vector train_shuffled_samples_offs; + std::vector train_shuffled_samples_begin; + std::vector train_shuffled_samples_size; + train_shuffled_samples_offs.resize(train_samples_begin.size()); + train_shuffled_samples_begin.resize(train_samples_begin.size()); + train_shuffled_samples_size.resize(train_samples_size.size()); + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + train_shuffled_samples_offs.data(), + train_shuffled_samples_begin.data(), + train_shuffled_samples_size.data(), + train_samples_begin.data(), + train_samples_size.data(), + train_samples_size.size()); + printf("%s: begin training\n", __func__); + + save_train_files_data save_data; + save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; + save_data.fn_model_out = params.fn_model_out; + save_data.fn_vocab_model = params.fn_vocab_model; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + + struct train_opt_callback_data opt_cb_data; + opt_cb_data.params = ¶ms.common; + opt_cb_data.train = train; + opt_cb_data.save_cb = &save_train_files; + opt_cb_data.save_data = &save_data; + opt_cb_data.lctx = lctx; + opt_cb_data.last_save_iter = opt->iter; + opt_cb_data.tokens_data = train_tokens.data(); + opt_cb_data.tokens_size = train_tokens.size(); + opt_cb_data.samples_begin = train_samples_begin.data(); + opt_cb_data.samples_size = train_samples_size.data(); + opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); + opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); + opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); + opt_cb_data.samples_count = train_samples_size.size(); + opt_cb_data.tokens_input = tokens_input; + opt_cb_data.target_probs = target_probs; + opt_cb_data.first_iter = opt->iter; + opt_cb_data.first_epoch = train->train_epochs; + opt_cb_data.iter_at_last_epoch = -1; + opt_cb_data.last_time = ggml_time_ms(); + opt_cb_data.millis_per_iter = 0.0; + + // measure required memory for work buffer + size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; + printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); + + // context for work buffer + struct ggml_init_params ctx_work_params = { + max_work_size, // mem_size + NULL, // mem_buffer + false, // no_alloc + }; + struct ggml_context * ctx_work = ggml_init(ctx_work_params); + + int64_t t0 = ggml_time_ms(); + + ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); + + ggml_free(ctx_work); + ggml_free(ctx_compute); + ggml_free(ctx_input); int64_t t1 = ggml_time_ms(); - int64_t d = t1-t0; - double dd = (double) d * 1e-3; - printf("%s: total training time=%f seconds\n", __func__, dd); + printf("%s: total training time: ", __func__); + print_duration((double) (t1 - t0)); + printf("\n"); - if (params.n_examples > 0) { - save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt); - } + int new_iters = opt->iter - opt_cb_data.last_save_iter; + if (new_iters > 0) { + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; - if (strlen(params.fn_model_out) > 0) { - save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model); + save_train_files(&save_data, train); + opt_cb_data.last_save_iter = opt->iter; } if (alloc) { ggml_allocr_free(alloc); } - delete[] compute_addr; - delete[] compute_buf_0; + ggml_free(opt->ctx); + free_train_state(train); ggml_free(model.ctx); llama_free(lctx); llama_free_model(lmodel); diff --git a/ggml-alloc.c b/ggml-alloc.c index 304964be4..805759db7 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -77,7 +77,7 @@ struct free_block { size_t size; }; -#define MAX_FREE_BLOCKS 128 +#define MAX_FREE_BLOCKS 256 struct ggml_allocr { void * data; @@ -187,6 +187,7 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) } tensor->data = addr; + AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data); #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); @@ -218,7 +219,8 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens size_t size = ggml_allocr_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); - AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); + AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); + AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); @@ -631,3 +633,7 @@ static size_t ggml_allocr_alloc_graph_tensors_n( size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); } + +size_t ggml_allocr_max_size(struct ggml_allocr * alloc) { + return alloc->max_size; +} diff --git a/ggml-alloc.h b/ggml-alloc.h index 9559da758..0c224f174 100644 --- a/ggml-alloc.h +++ b/ggml-alloc.h @@ -19,6 +19,7 @@ GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor); GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); +GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); #ifdef __cplusplus diff --git a/ggml.c b/ggml.c index 3fcc44bdb..ea964babd 100644 --- a/ggml.c +++ b/ggml.c @@ -134,6 +134,7 @@ typedef void * thread_ret_t; #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 +#define GGML_VEC_MAD_UNROLL 32 // // logging @@ -3707,6 +3708,58 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float #endif } +// xs and vs are byte strides of x and v +inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { + + const float * restrict x[GGML_VEC_MAD_UNROLL]; + const float * restrict v[GGML_VEC_MAD_UNROLL]; + + for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) { + x[i] = (const float *) ((const char *) xv + i*xs); + v[i] = (const float *) ((const char *) vv + i*vs); + } + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + vx[k] = GGML_F32_VEC_SET1(v[k][0]); + } + + GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); + } + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = np; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#else + // scalar + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = 0; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#endif +} + //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #if defined(GGML_USE_ACCELERATE) @@ -4392,10 +4445,9 @@ static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); - return - (t0->ne[1] == t1->ne[1]) && - (t0->ne[2] == t1->ne[2]) && - (t0->ne[3] == t1->ne[3]); + return (t0->ne[1] == t1->ne[1]) && + (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable + (t1->ne[3]%t0->ne[3] == 0); } enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { @@ -5065,7 +5117,36 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { return tensor; } +void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { + const int64_t ne2 = tensor->ne[2]; + const int64_t ne1 = tensor->ne[1]; + const int64_t ne0 = tensor->ne[0]; + + const int64_t i3_ = (i/(ne2*ne1*ne0)); + const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0); + const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0; + const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0); + + if (i0) { + * i0 = i0_; + } + if (i1) { + * i1 = i1_; + } + if (i2) { + * i2 = i2_; + } + if (i3) { + * i3 = i3_; + } +} + int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]); + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5102,6 +5183,12 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { } void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5135,7 +5222,74 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { } } +int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + return ((int8_t *) data)[0]; + } break; + case GGML_TYPE_I16: + { + return ((int16_t *) data)[0]; + } break; + case GGML_TYPE_I32: + { + return ((int32_t *) data)[0]; + } break; + case GGML_TYPE_F16: + { + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + } break; + case GGML_TYPE_F32: + { + return ((float *) data)[0]; + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return 0.0f; +} + +void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]); + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5172,6 +5326,12 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { } void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5205,6 +5365,68 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { } } +float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + return ((int8_t *) data)[0]; + } break; + case GGML_TYPE_I16: + { + return ((int16_t *) data)[0]; + } break; + case GGML_TYPE_I32: + { + return ((int32_t *) data)[0]; + } break; + case GGML_TYPE_F16: + { + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + } break; + case GGML_TYPE_F32: + { + return ((float *) data)[0]; + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return 0.0f; +} + +void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + void * ggml_get_data(const struct ggml_tensor * tensor) { return tensor->data; } @@ -5347,6 +5569,44 @@ struct ggml_tensor * ggml_add_inplace( return ggml_add_impl(ctx, a, b, true); } +// ggml_add_cast + +static struct ggml_tensor * ggml_add_cast_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + // TODO: support less-strict constraint + // GGML_ASSERT(ggml_can_repeat(b, a)); + GGML_ASSERT(ggml_can_repeat_rows(b, a)); + GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input + + bool is_node = false; + + if (a->grad || b->grad) { + // TODO: support backward pass for broadcasting + GGML_ASSERT(ggml_are_same_shape(a, b)); + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + return ggml_add_cast_impl(ctx, a, b, type); +} + // ggml_add1 static struct ggml_tensor * ggml_add1_impl( @@ -5783,7 +6043,6 @@ struct ggml_tensor * ggml_repeat( result->op = GGML_OP_REPEAT; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = b; return result; } @@ -5811,7 +6070,6 @@ struct ggml_tensor * ggml_repeat_back( result->op = GGML_OP_REPEAT_BACK; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = b; return result; } @@ -6186,8 +6444,9 @@ struct ggml_tensor * ggml_out_prod( is_node = true; } - const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); + // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3] + const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne); result->op = GGML_OP_OUT_PROD; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6461,7 +6720,7 @@ struct ggml_tensor * ggml_reshape( struct ggml_tensor * a, struct ggml_tensor * b) { GGML_ASSERT(ggml_is_contiguous(a)); - GGML_ASSERT(ggml_is_contiguous(b)); + // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); bool is_node = false; @@ -6834,7 +7093,6 @@ struct ggml_tensor * ggml_get_rows_back( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = b; - result->src[2] = c; return result; } @@ -7540,27 +7798,30 @@ struct ggml_tensor * ggml_flash_attn_back( // d shape [D,N,ne2,ne3] // q shape [D,N,ne2,ne3] - // k shape [D,M,ne2,ne3] - // v shape [M,D,ne2,ne3] + // k shape [D,M,kvne2,ne3] + // v shape [M,D,kvne2,ne3] - const int64_t D = q->ne[0]; - const int64_t N = q->ne[1]; - const int64_t M = k->ne[1]; - const int64_t ne2 = q->ne[2]; - const int64_t ne3 = q->ne[3]; + const int64_t D = q->ne[0]; + const int64_t N = q->ne[1]; + const int64_t M = k->ne[1]; + const int64_t ne2 = q->ne[2]; + const int64_t ne3 = q->ne[3]; + const int64_t kvne2 = k->ne[2]; GGML_ASSERT(k->ne[0] == D); GGML_ASSERT(v->ne[0] == M); GGML_ASSERT(v->ne[1] == D); GGML_ASSERT(d->ne[0] == D); GGML_ASSERT(d->ne[1] == N); - GGML_ASSERT(k->ne[2] == ne2); + GGML_ASSERT(k->ne[2] == kvne2); GGML_ASSERT(k->ne[3] == ne3); - GGML_ASSERT(v->ne[2] == ne2); + GGML_ASSERT(v->ne[2] == kvne2); GGML_ASSERT(v->ne[3] == ne3); GGML_ASSERT(d->ne[2] == ne2); GGML_ASSERT(d->ne[3] == ne3); + GGML_ASSERT(ne2 % kvne2 == 0); + bool is_node = false; if (q->grad || k->grad || v->grad) { @@ -7570,14 +7831,23 @@ struct ggml_tensor * ggml_flash_attn_back( } // store gradients of q, k and v as continuous tensors concatenated in result. - // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3] - // gradq->data = result->data - // gradk->data = result->data + nb0*D*N*ne2*ne3 - // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3 // note: v and gradv are actually transposed, i.e. v->ne[0] != D. - int64_t ne[4] = {D,M+N+M,ne2,ne3}; + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); + const int64_t elem_v = ggml_nelements(v); - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + enum ggml_type result_type = GGML_TYPE_F32; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN); + + const size_t nelements = (end + tsize - 1)/tsize; + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements); int32_t masked_i = masked ? 1 : 0; ggml_set_op_params(result, &masked_i, sizeof(masked_i)); @@ -9006,8 +9276,9 @@ static void ggml_compute_forward_add_q_f32( const int nth = params->nth; const enum ggml_type type = src0->type; + const enum ggml_type dtype = dst->type; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; - ggml_from_float_t const quantize_row_q = type_traits[type].from_float; + ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); @@ -9019,7 +9290,6 @@ static void ggml_compute_forward_add_q_f32( GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ggml_is_quantized(src0->type)); - GGML_ASSERT(dst->type == src0->type); GGML_ASSERT(src1->type == GGML_TYPE_F32); // rows per thread @@ -9057,7 +9327,11 @@ static void ggml_compute_forward_add_q_f32( // add src1 ggml_vec_acc_f32(ne00, wdata, src1_row); // quantize row to dst - quantize_row_q(wdata, dst_row, ne00); + if (quantize_row_q != NULL) { + quantize_row_q(wdata, dst_row, ne00); + } else { + memcpy(dst_row, wdata, ne0*nb0); + } } } @@ -10153,11 +10427,61 @@ static void ggml_compute_forward_repeat_f32( } } +static void ggml_compute_forward_repeat_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS; + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0); + ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01); + // ggml_vec_cpy_f16(ne00, y, x) + for (int i = 0; i < ne00; ++i) { + y[i] = x[i]; + } + } + } + } + } + } + } + } +} + static void ggml_compute_forward_repeat( const struct ggml_compute_params * params, const struct ggml_tensor * src0, struct ggml_tensor * dst) { switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_repeat_f16(params, src0, dst); + } break; case GGML_TYPE_F32: { ggml_compute_forward_repeat_f32(params, src0, dst); @@ -11497,8 +11821,8 @@ static void ggml_compute_forward_out_prod_f32( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); GGML_TENSOR_BINARY_OP_LOCALS; @@ -11539,6 +11863,146 @@ static void ggml_compute_forward_out_prod_f32( return; } + // dst[:,:,:,:] = 0 + // for i2,i3: + // for i1: + // for i01: + // for i0: + // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + + // parallelize by last three dimensions + + // total rows in dst + const int64_t nr = ne1*ne2*ne3; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + // block-tiling attempt + const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32); + const int64_t blck_1 = 16; + + for (int64_t bir = ir0; bir < ir1; bir += blck_1) { + const int64_t bir1 = MIN(bir + blck_1, ir1); + for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) { + const int64_t bne01 = MIN(bi01 + blck_0, ne01); + for (int64_t ir = bir; ir < bir1; ++ir) { + // dst indices + const int64_t i3 = ir/(ne2*ne1); + const int64_t i2 = (ir - i3*ne2*ne1)/ne1; + const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); + + const int64_t i02 = i2; + const int64_t i03 = i3; + + //const int64_t i10 = i1; + const int64_t i12 = i2; + const int64_t i13 = i3; + +#if GGML_VEC_MAD_UNROLL > 2 + const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL); + for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1); + } + for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#else + for (int64_t i01 = bi01; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#endif + } + } + } + + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_out_prod_q_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 dim0 + GGML_ASSERT(nb00 == ggml_type_size(type)); + + // dst dim0 cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + // GGML_ASSERT(nb0 <= nb1); + // GGML_ASSERT(nb1 <= nb2); + // GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne00); + GGML_ASSERT(ne1 == ne10); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + + // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod + // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + + if (params->type == GGML_TASK_INIT) { + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + // parallelize by last three dimensions // total rows in dst @@ -11558,6 +12022,8 @@ static void ggml_compute_forward_out_prod_f32( // for i0: // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; + for (int64_t ir = ir0; ir < ir1; ++ir) { // dst indices const int64_t i3 = ir/(ne2*ne1); @@ -11578,10 +12044,8 @@ static void ggml_compute_forward_out_prod_f32( float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); - ggml_vec_mad_f32(ne0, d, s0, *s1); - // for (int64_t i0 = 0; i0 < ne0; ++i0) { - // d[i0] += s0[i0] * s1[i1]; - // } + dequantize_row_q(s0, wdata, ne0); + ggml_vec_mad_f32(ne0, d, wdata, *s1); } } @@ -11610,10 +12074,13 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: - case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { - GGML_ASSERT(false); // todo - // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); } break; case GGML_TYPE_F16: { @@ -12001,14 +12468,15 @@ static void ggml_compute_forward_get_rows_back_f32_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_are_same_shape(opt0, dst)); - GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); - ggml_compute_forward_dup_same_cont(params, opt0, dst); + // ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_INIT) { + memset(dst->data, 0, ggml_nbytes(dst)); + } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -12034,11 +12502,8 @@ static void ggml_compute_forward_get_rows_back_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_are_same_shape(opt0, dst)); - GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); @@ -12072,16 +12537,15 @@ static void ggml_compute_forward_get_rows_back( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst); + ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst); + ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst); } break; default: { @@ -14143,10 +14607,11 @@ static void ggml_compute_forward_flash_attn_f32( S[i] = -INFINITY; } - for (int64_t ic = 0; ic < nek1; ++ic) { + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14159,20 +14624,18 @@ static void ggml_compute_forward_flash_attn_f32( } // scale - ggml_vec_scale_f32(nek1, S, scale); + ggml_vec_scale_f32(masked_begin, S, scale); - if (masked) { - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = -INFINITY; - } - } + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; } // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SW values to zero { float max = -INFINITY; - ggml_vec_max_f32(M, &max, S); + ggml_vec_max_f32(masked_begin, &max, S); ggml_float sum = 0.0; { @@ -14186,10 +14649,15 @@ static void ggml_compute_forward_flash_attn_f32( ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } float * SS = S + i; for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (SS[j] == -INFINITY) { + if (i + j >= masked_begin) { + break; + } else if (SS[j] == -INFINITY) { SS[j] = 0.0f; } else { #ifndef GGML_FLASH_ATTN_EXP_FP16 @@ -14214,10 +14682,10 @@ static void ggml_compute_forward_flash_attn_f32( assert(sum > 0.0); sum = 1.0/sum; - ggml_vec_scale_f32(M, S, sum); + ggml_vec_scale_f32(masked_begin, S, sum); #ifndef NDEBUG - for (int i = 0; i < M; ++i) { + for (int i = 0; i < masked_begin; ++i) { assert(!isnan(S[i])); assert(!isinf(S[i])); } @@ -14230,9 +14698,13 @@ static void ggml_compute_forward_flash_attn_f32( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f32(nek1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f32(masked_begin, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S); } } @@ -14329,7 +14801,7 @@ static void ggml_compute_forward_flash_attn_f16( for (int64_t ic = 0; ic < nek1; ++ic) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14344,7 +14816,7 @@ static void ggml_compute_forward_flash_attn_f16( for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14369,6 +14841,8 @@ static void ggml_compute_forward_flash_attn_f16( } // softmax + // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero. + // dont forget to set their S values to zero { float max = -INFINITY; ggml_vec_max_f32(M, &max, S); @@ -14425,6 +14899,7 @@ static void ggml_compute_forward_flash_attn_f16( S16[i] = GGML_FP32_TO_FP16(S[i]); } + // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16). if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { for (int64_t ic = 0; ic < nev1; ++ic) { // dst indices @@ -14432,9 +14907,13 @@ static void ggml_compute_forward_flash_attn_f16( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f16(nek1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16(nev0, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S16); } } else { @@ -14444,9 +14923,13 @@ static void ggml_compute_forward_flash_attn_f16( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f16_unroll(nek1, nbv1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16_unroll(nev0, nbv1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S16); } } @@ -14705,10 +15188,37 @@ static void ggml_compute_forward_flash_attn_back_f32( return; } - // parallelize by q rows using ggml_vec_dot_f32 + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); - // total rows in q - const int nr = neq2*neq3; + enum ggml_type result_type = dst->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + + void * grad_q = (char *) dst->data; + void * grad_k = (char *) dst->data + offs_k; + void * grad_v = (char *) dst->data + offs_v; + + const size_t nbgq1 = nb0*neq0; + const size_t nbgq2 = nb0*neq0*neq1; + const size_t nbgq3 = nb0*neq0*neq1*neq2; + + const size_t nbgk1 = nb0*nek0; + const size_t nbgk2 = nb0*nek0*nek1; + const size_t nbgk3 = nb0*nek0*nek1*neq2; + + const size_t nbgv1 = nb0*nev0; + const size_t nbgv2 = nb0*nev0*nev1; + const size_t nbgv3 = nb0*nev0*nev1*neq2; + + // parallelize by k rows using ggml_vec_dot_f32 + + // total rows in k + const int nr = nek2*nek3; // rows per thread const int dr = (nr + nth - 1)/nth; @@ -14721,268 +15231,243 @@ static void ggml_compute_forward_flash_attn_back_f32( //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + // how often k2 (and v2) is repeated in q2 + int nrep = neq2/nek2; + for (int ir = ir0; ir < ir1; ++ir) { // q indices - const int iq3 = ir/(neq2); - const int iq2 = ir - iq3*neq2; - for ( int iq1 = 0; iq1 < neq1; ++iq1) { + const int ik3 = ir/(nek2); + const int ik2 = ir - ik3*nek2; + const int iq3 = ik3; + const int id3 = ik3; + const int iv3 = ik3; + const int iv2 = ik2; - // not sure about CACHE_LINE_SIZE_F32.. - // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? - float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); - float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); + for (int irep = 0; irep < nrep; ++irep) { + const int iq2 = ik2 + irep*nek2; + const int id2 = iq2; - for (int i = M; i < Mup; ++i) { - S[i] = -INFINITY; - } + // (ik2 + irep*nek2) % nek2 == ik2 + for (int iq1 = 0; iq1 < neq1; ++iq1) { + const int id1 = iq1; - for (int64_t ic = 0; ic < nek1; ++ic) { - // k indices - const int ik3 = iq3; - const int ik2 = iq2; - const int ik1 = ic; + // not sure about CACHE_LINE_SIZE_F32.. + // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? + float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); + float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); - // S indices - const int i1 = ik1; - - ggml_vec_dot_f32(neq0, - S + i1, - (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), - (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); - } - - // scale - ggml_vec_scale_f32(nek1, S, scale); - - if (masked) { - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = -INFINITY; - } + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; } - } - // softmax - { - float max = -INFINITY; - ggml_vec_max_f32(M, &max, S); + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { + // k indices + const int ik1 = ic; - ggml_float sum = 0.0; + // S indices + const int i1 = ik1; + + ggml_vec_dot_f32(neq0, + S + i1, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + + // scale + ggml_vec_scale_f32(masked_begin, S, scale); + + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; + } + + // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SM values to zero { + float max = -INFINITY; + ggml_vec_max_f32(masked_begin, &max, S); + + ggml_float sum = 0.0; + { #ifdef GGML_SOFT_MAX_ACCELERATE - max = -max; - vDSP_vsadd(SM, 1, &max, SM, 1, Mup); - vvexpf(SM, SM, &Mup); - ggml_vec_sum_f32(Mup, &sum, SM); + max = -max; + vDSP_vsadd(SM, 1, &max, SM, 1, Mup); + vvexpf(SM, SM, &Mup); + ggml_vec_sum_f32(Mup, &sum, SM); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); - ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; - for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { - float * SR = S + i; - float * SW = SM + i; + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } + float * SR = S + i; + float * SW = SM + i; - for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (SR[j] == -INFINITY) { - SW[j] = 0.0f; - } else { + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (i + j >= masked_begin) { + break; + } else if (SR[j] == -INFINITY) { + SW[j] = 0.0f; + } else { #ifndef GGML_FLASH_ATTN_EXP_FP16 - const float val = expf(SR[j] - max); + const float val = expf(SR[j] - max); #else - ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); - memcpy(&scvt[j], &s, sizeof(uint16_t)); - const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); + ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); #endif - sump[j] += (ggml_float)val; - SW[j] = val; + sump[j] += (ggml_float)val; + SW[j] = val; + } } } - } - for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { - sum += sump[i]; - } + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } #endif - } - - assert(sum > 0.0); - - sum = 1.0/sum; - ggml_vec_scale_f32(M, SM, sum); - - } - - // step-by-step explanation - { - // forward-process shape grads from backward process - // parallel_for iq2,iq3: - // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur] - // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] - // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur] - // for iq1: - // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur - // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur - // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 - // S0 = -Inf [D,1,1,1] - // ~S1[i] = dot(kcur[:D,i], qcur) - // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale - // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) - // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur - // ~S5[i] = dot(vcur[:,i], S4) - // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3] - // ~dst[i,iq1,iq2,iq3] = S5[i] ^ - // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3] - // dst backward-/ grad[dst] = d - // - // output gradients with their dependencies: - // - // grad[kcur] = grad[S1].T @ qcur - // grad[S1] = diag_mask_zero(grad[S3], P) * scale - // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // grad[S4] = grad[S5] @ vcur - // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur - // grad[qcur] = grad[S1] @ kcur - // grad[vcur] = grad[S5].T @ S4 - // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 - // - // in post-order: - // - // S1 = qcur @ kcur.T - // S2 = S1 * scale - // S3 = diag_mask_inf(S2, P) - // S4 = softmax(S3) - // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur - // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // grad[S1] = diag_mask_zero(grad[S3], P) * scale - // grad[qcur] = grad[S1] @ kcur - // grad[kcur] = grad[S1].T @ qcur - // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 - // - // using less variables (SM=S4): - // - // S = diag_mask_inf(qcur @ kcur.T * scale, P) - // SM = softmax(S) - // S = d[:D,iq1,iq2,iq3] @ vcur - // dot_SM_gradSM = dot(SM, S) - // S = SM * (S - dot(SM, S)) - // S = diag_mask_zero(S, P) * scale - // - // grad[q][:D,iq1,iq2,iq3] += S @ kcur - // grad[k][:D,:M,iq2,iq3] += S.T @ qcur - // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM - } - - // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur - // S = d[:D,iq1,iq2,iq3] @ vcur - // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3] - ggml_vec_set_f32(M, S, 0); - for (int64_t ic = 0; ic < D; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - - ggml_vec_mad_f32(M, - S, - (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), - *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); - } - - // S = SM * (S - dot(SM, S)) - float dot_SM_gradSM = 0; - ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S); - ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); - ggml_vec_mul_f32 (M, S, S, SM); - - // S = diag_mask_zero(S, P) * scale - if (masked) { - // for (int64_t i = P + iq1 + 1; i < M; i++) { - // S[i] = 0; - // } - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = 0; } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(masked_begin, SM, sum); + } - } - ggml_vec_scale_f32(M, S, scale); - void * grad_q = (char *) dst->data; - void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3; - void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3; + // step-by-step explanation + { + // forward-process shape grads from backward process + // parallel_for ik2,ik3: + // for irep: + // iq2 = ik2 + irep*nek2 + // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur] + // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] + // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur] + // for iq1: + // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur + // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur + // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 + // S0 = -Inf [D,1,1,1] + // ~S1[i] = dot(kcur[:D,i], qcur) + // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale + // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) + // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur + // ~S5[i] = dot(vcur[:,i], S4) + // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3] + // ~dst[i,iq1,iq2,iq3] = S5[i] ^ + // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3] + // dst backward-/ grad[dst] = d + // + // output gradients with their dependencies: + // + // grad[kcur] = grad[S1].T @ qcur + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S4] = grad[S5] @ vcur + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[qcur] = grad[S1] @ kcur + // grad[vcur] = grad[S5].T @ S4 + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // in post-order: + // + // S1 = qcur @ kcur.T + // S2 = S1 * scale + // S3 = diag_mask_inf(S2, P) + // S4 = softmax(S3) + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[qcur] = grad[S1] @ kcur + // grad[kcur] = grad[S1].T @ qcur + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // using less variables (SM=S4): + // + // S = diag_mask_inf(qcur @ kcur.T * scale, P) + // SM = softmax(S) + // S = d[:D,iq1,iq2,iq3] @ vcur + // dot_SM_gradSM = dot(SM, S) + // S = SM * (S - dot(SM, S)) + // S = diag_mask_zero(S, P) * scale + // + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[k][:D,:M,ik2,ik3] += S.T @ qcur + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + } - const size_t nbgq1 = nb0*neq0; - const size_t nbgq2 = nb0*neq0*neq1; - const size_t nbgq3 = nb0*neq0*neq1*neq2; + // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // for ic: + // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3] + // exclude known future zero S[..] values from operation + ggml_vec_set_f32(masked_begin, S, 0); + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + S, + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } - const size_t nbgk1 = nb0*nek0; - const size_t nbgk2 = nb0*nek0*nek1; - const size_t nbgk3 = nb0*nek0*nek1*neq2; + // S = SM * (S - dot(SM, S)) + float dot_SM_gradSM = 0; + ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S); + ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); + ggml_vec_mul_f32 (masked_begin, S, S, SM); - const size_t nbgv1 = nb0*nev0; - const size_t nbgv2 = nb0*nev0*nev1; - const size_t nbgv3 = nb0*nev0*nev1*neq2; + // S = diag_mask_zero(S, P) * scale + // already done by above ggml_vec_set_f32 - // S shape [M,1] - // SM shape [M,1] - // kcur shape [D,M] - // qcur shape [D,1] - // vcur shape [M,D] - // - // grad[q][:D,iq1,iq2,iq3] += S @ kcur - // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] - // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic] - // - //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T) - //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T) - for (int64_t ic = 0; ic < M; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + // exclude known zero S[..] values from operation + ggml_vec_scale_f32(masked_begin, S, scale); - ggml_vec_mad_f32(D, - (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)), - (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)), - S[ic]); - } + // S shape [M,1] + // SM shape [M,1] + // kcur shape [D,M] + // qcur shape [D,1] + // vcur shape [M,D] - // grad[k][:D,:M,iq2,iq3] += S.T @ qcur - // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] - // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] - for (int64_t ic = 0; ic < M; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] + // for ic: + // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)), + (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)), + S[ic]); + } - // ggml_vec_set_f32(D, - // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), - // 0); - ggml_vec_mad_f32(D, - (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), - (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)), - S[ic]); - } + // grad[k][:D,:M,iq2,iq3] += S.T @ qcur + // for ic: + // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] + // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), + S[ic]); + } - // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM - // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M] - // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M] - for (int64_t ic = 0; ic < D; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - - // ggml_vec_set_f32(M, - // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), - // 0); - ggml_vec_mad_f32(M, - (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), - SM, - *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + // for ic: + // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M] + // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M] + // exclude known zero SM[..] values from mad + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)), + SM, + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } } } } @@ -15896,7 +16381,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } break; case GGML_OP_GET_ROWS_BACK: { - ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor); } break; case GGML_OP_DIAG: { @@ -16069,7 +16554,218 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm //////////////////////////////////////////////////////////////////////////////// -static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) { +static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small"); + +static size_t hash(void * p) { + return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; +} + +static size_t hash_find(void * hash_table[], void * p) { + size_t h = hash(p); + + // linear probing + size_t i = h; + while (hash_table[i] != NULL && hash_table[i] != p) { + i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; + if (i == h) { + // visited all hash table entries -> not found + return GGML_GRAPH_HASHTABLE_SIZE; + } + } + return i; +} + +static bool hash_insert(void * hash_table[], void * p) { + size_t i = hash_find(hash_table, p); + + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + + if (hash_table[i] == p) { + return true; + } + + // insert + GGML_ASSERT(hash_table[i] == NULL); + hash_table[i] = p; + return false; +} + +static bool hash_contains(void * hash_table[], void * p) { + size_t i = hash_find(hash_table, p); + return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); +} + +struct hash_map { + void * keys[GGML_GRAPH_HASHTABLE_SIZE]; + void * vals[GGML_GRAPH_HASHTABLE_SIZE]; +}; + +static struct hash_map * new_hash_map(void) { + struct hash_map * result = malloc(sizeof(struct hash_map)); + for (int i=0; ikeys[i] = NULL; + result->vals[i] = NULL; + } + return result; +} + +static void free_hash_map(struct hash_map * map) { + free(map); +} + +// gradient checkpointing + +static struct ggml_tensor * ggml_recompute_graph_node( + struct ggml_context * ctx, + struct ggml_cgraph * graph, + struct hash_map * replacements, + struct ggml_tensor * node) { + + if (node == NULL) { + return NULL; + } + + if (node->is_param) { + return node; + } + + if (!hash_contains(graph->visited_hash_table, node)) { + return node; + } + + int count_children = 0; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + if (node->src[k]) { + ++count_children; + } + } + + if (count_children == 0) { + return node; + } + + size_t i = hash_find(replacements->keys, node); + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + if (replacements->keys[i] == node) { + return (struct ggml_tensor *) replacements->vals[i]; + } + + struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); + + // insert clone into replacements + GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite + replacements->keys[i] = node; + replacements->vals[i] = clone; + + clone->op = node->op; + clone->grad = node->grad; + clone->is_param = node->is_param; + clone->extra = node->extra; + for (int k = 0; k < GGML_MAX_DIMS; ++k) { + clone->nb[k] = node->nb[k]; + } + for (int k = 0; k < GGML_MAX_SRC; ++k) { + clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); + } + if (node->view_src != NULL) { + clone->data = (node->view_src->data == NULL) + ? NULL // view_src not yet allocated + : (char *) node->view_src->data // view_src already allocated + + node->view_offs; + clone->view_src = node->view_src; + clone->view_offs = node->view_offs; + } + + GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); + GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); + memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); + ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); + + return clone; +} + +void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints) { + *gb_tmp = *gf; + ggml_build_backward_expand(ctx, gf, gb_tmp, true); + + if (n_checkpoints <= 0) { + *gb = *gb_tmp; + return; + } + + struct hash_map * replacements = new_hash_map(); + + // insert checkpoints in replacements + for (int i = 0; i < n_checkpoints; ++i) { + size_t k = hash_find(replacements->keys, checkpoints[i]); + GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite + replacements->keys[k] = checkpoints[i]; + replacements->vals[k] = checkpoints[i]; + } + + *gb = *gf; + // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], + // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), + // by recomputing them from checkpoints + for (int i = gf->n_nodes; in_nodes; ++i) { + struct ggml_tensor * node = gb_tmp->nodes[i]; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + // insert new tensors recomputing src, reusing already made replacements, + // remember replacements: remember new tensors with mapping from corresponding gf nodes + // recurse for input tensors, + // unless (i.e. terminating when) input tensors are replacments (like checkpoints) + node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); + } + // insert rewritten backward node with replacements made into resulting backward graph gb + ggml_build_forward_expand(gb, node); + } + + free_hash_map(replacements); +} + +// functions to change gradients considering the case that input a might be initial gradient with zero value + +static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return b; + } else { + return ggml_add_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0)); + return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false); + } else { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); + } +} + +static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return ggml_repeat(ctx, b, a); + } else { + return ggml_add1_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return ggml_neg(ctx, b); + } else { + return ggml_sub_impl(ctx, a, b, false); + } +} + +static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) { struct ggml_tensor * src0 = tensor->src[0]; struct ggml_tensor * src1 = tensor->src[1]; @@ -16077,34 +16773,34 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_OP_DUP: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_OP_ADD: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace); + src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table); } } break; case GGML_OP_ADD1: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_add_impl(ctx, + src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean - inplace); + zero_table); } } break; case GGML_OP_ACC: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { const size_t nb1 = ((int32_t *) tensor->op_params)[0]; @@ -16121,117 +16817,117 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor nb1, nb2, nb3, offset); src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1->grad), - inplace); + zero_table); } } break; case GGML_OP_SUB: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace); + src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table); } } break; case GGML_OP_MUL: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, src1, tensor->grad), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_mul(ctx, src0, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_DIV: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_div(ctx, tensor->grad, src1), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_sub_impl(ctx, + ggml_sub_or_set(ctx, src1->grad, ggml_mul(ctx, tensor->grad, ggml_div(ctx, tensor, src1)), - inplace); + zero_table); } } break; case GGML_OP_SQR: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale(ctx, ggml_mul(ctx, src0, tensor->grad), ggml_new_f32(ctx, 2.0f)), - inplace); + zero_table); } } break; case GGML_OP_SQRT: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale(ctx, ggml_div(ctx, tensor->grad, tensor), ggml_new_f32(ctx, 0.5f)), - inplace); + zero_table); } } break; case GGML_OP_LOG: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_div(ctx, tensor->grad, src0), - inplace); + zero_table); } } break; case GGML_OP_SUM: { if (src0->grad) { src0->grad = - ggml_add1_impl(ctx, + ggml_add1_or_set(ctx, src0->grad, tensor->grad, - inplace); + zero_table); } } break; case GGML_OP_SUM_ROWS: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_repeat(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_MEAN: @@ -16243,20 +16939,20 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_repeat_back(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_REPEAT_BACK: { if (src0->grad) { // TODO: test this - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_repeat(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_CONCAT: @@ -16278,10 +16974,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor float eps; memcpy(&eps, tensor->op_params, sizeof(float)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rms_norm_back(ctx, src0, tensor->grad, eps), - inplace); + zero_table); } } break; case GGML_OP_RMS_NORM_BACK: @@ -16305,37 +17001,49 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix // ds1 = t.T.dot(dt) - // tensor.shape [m,p] - // src0.shape [n,m] - // src1.shape [n,p] + // tensor.shape [m,p,qq,rr] + // src0.shape [n,m,q1,r1] + // src1.shape [n,p,qq,rr] // necessary for llama if (src0->grad) { + struct ggml_tensor * s1_tg = + ggml_out_prod(ctx, // [n,m,qq,rr] + src1, // [n,p,qq,rr] + tensor->grad); // [m,p,qq,rr] + const int64_t qq = s1_tg->ne[2]; + const int64_t rr = s1_tg->ne[3]; + const int64_t q1 = src0->ne[2]; + const int64_t r1 = src0->ne[3]; + const bool ne2_broadcasted = qq > q1; + const bool ne3_broadcasted = rr > r1; + if (ne2_broadcasted || ne3_broadcasted) { + // sum broadcast repetitions of s1_tg into shape of src0 + s1_tg = ggml_repeat_back(ctx, s1_tg, src0); + } src0->grad = - ggml_add_impl(ctx, - src0->grad, - ggml_out_prod(ctx, // [n,m] - src1, // [n,p] - tensor->grad), // [m,p] - inplace); + ggml_add_or_set(ctx, + src0->grad, // [n,m,q1,r1] + s1_tg, // [n,m,q1,r1] + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, - src1->grad, - // ggml_mul_mat(ctx, // [n,p] - // ggml_cont(ctx, // [m,n] - // ggml_transpose(ctx, src0)), // [m,n] - // tensor->grad), // [m,p] + ggml_add_or_set(ctx, + src1->grad, // [n,p,qq,rr] + // ggml_mul_mat(ctx, // [n,p,qq,rr] + // ggml_cont(ctx, // [m,n,q1,r1] + // ggml_transpose(ctx, src0)), // [m,n,q1,r1] + // tensor->grad), // [m,p,qq,rr] // // when src0 is bigger than tensor->grad (this is mostly the case in llama), // // avoid transpose of src0, rather transpose smaller tensor->grad // // and then use ggml_out_prod - ggml_out_prod(ctx, // [n,p] - src0, // [n,m] - ggml_transpose(ctx, // [p,m] - tensor->grad)), // [m,p] - inplace); + ggml_out_prod(ctx, // [n,p,qq,rr] + src0, // [n,m,q1,r1] + ggml_transpose(ctx, // [p,m,qq,rr] + tensor->grad)), // [m,p,qq,rr] + zero_table); } } break; case GGML_OP_OUT_PROD: @@ -16347,17 +17055,17 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale_impl(ctx, tensor->grad, src1, false), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)), - inplace); + zero_table); } } break; case GGML_OP_SET: @@ -16384,23 +17092,23 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_acc_impl(ctx, tensor->grad, ggml_neg(ctx, tensor_grad_view), nb1, nb2, nb3, offset, false), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1->grad), - inplace); + zero_table); } } break; case GGML_OP_CPY: @@ -16411,7 +17119,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // tensor = src0 * 1 + src1 * 0 if (src0->grad) { // dsrc0 = dtensor * 1 - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { // dsrc1 = dtensor * 0 -> noop @@ -16423,7 +17131,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { GGML_ASSERT(ggml_is_contiguous(src0->grad)); GGML_ASSERT(ggml_is_contiguous(tensor->grad)); - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_OP_RESHAPE: @@ -16431,9 +17139,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, - ggml_reshape(ctx, tensor->grad, src0->grad), - inplace); + ggml_add_or_set(ctx, src0->grad, + ggml_reshape(ctx, + ggml_is_contiguous(tensor->grad) + ? tensor->grad + : ggml_cont(ctx, tensor->grad), + src0->grad), + zero_table); } } break; case GGML_OP_VIEW: @@ -16462,7 +17174,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor nb3 = (nb3 / n0) * ng; } - src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace); + src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table); } } break; case GGML_OP_PERMUTE: @@ -16480,14 +17192,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor axes_backward[axis2] = 2; axes_backward[axis3] = 3; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_permute(ctx, tensor->grad, axes_backward[0], axes_backward[1], axes_backward[2], axes_backward[3]), - inplace); + zero_table); } } break; case GGML_OP_TRANSPOSE: @@ -16495,9 +17207,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_transpose(ctx, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_GET_ROWS: @@ -16505,9 +17217,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama (only for tokenizer) if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, + // last ggml_get_rows_back argument src0->grad is only + // necessary to setup correct output shape ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad), - inplace); + zero_table); } if (src1->grad) { // noop @@ -16527,9 +17241,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { const int n_past = ((int32_t *) tensor->op_params)[0]; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), - inplace); + zero_table); } } break; case GGML_OP_DIAG_MASK_ZERO: @@ -16538,9 +17252,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { const int n_past = ((int32_t *) tensor->op_params)[0]; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), - inplace); + zero_table); } } break; case GGML_OP_SOFT_MAX: @@ -16548,9 +17262,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_soft_max_back(ctx, tensor->grad, tensor), - inplace); + zero_table); } } break; @@ -16575,7 +17289,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rope_back(ctx, tensor->grad, @@ -16587,7 +17301,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor freq_scale, xpos_base, xpos_down), - inplace); + zero_table); } } break; case GGML_OP_ROPE_BACK: @@ -16606,7 +17320,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rope_impl(ctx, tensor->grad, @@ -16619,7 +17333,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor xpos_base, xpos_down, false), - inplace); + zero_table); } } break; case GGML_OP_ALIBI: @@ -16670,145 +17384,42 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor masked); } - if (src0->grad) { - struct ggml_tensor * grad_q = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = 0; - switch(src0->n_dims) { - case 2: - { - grad_q = ggml_view_2d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - nb0*src0->ne[0], - offset); - } break; - case 3: - { - grad_q = ggml_view_3d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - src0->ne[2], - nb0*src0->ne[0], - nb0*src0->ne[0]*src0->ne[1], - offset); - } break; - case 4: - { - grad_q = ggml_view_4d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - src0->ne[2], - src0->ne[3], - nb0*src0->ne[0], - nb0*src0->ne[0]*src0->ne[1], - nb0*src0->ne[0]*src0->ne[1]*src0->ne[2], - offset); - } break; - } + struct ggml_tensor * src2 = tensor->src[2]; + const int64_t elem_q = ggml_nelements(src0); + const int64_t elem_k = ggml_nelements(src1); + const int64_t elem_v = ggml_nelements(src2); - src0->grad = ggml_add_impl(ctx, + enum ggml_type result_type = flash_grad->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + + if (src0->grad) { + struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q); + struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0); + src0->grad = ggml_add_or_set(ctx, src0->grad, grad_q, - inplace); + zero_table); } - if (src1->grad) { - struct ggml_tensor * grad_k = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]; - switch(src1->n_dims) { - case 2: - { - grad_k = ggml_view_2d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - nb0*src1->ne[0], - offset); - } break; - case 3: - { - grad_k = ggml_view_3d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - src1->ne[2], - nb0*src1->ne[0], - nb0*src1->ne[0]*src1->ne[1], - offset); - } break; - case 4: - { - grad_k = ggml_view_4d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - src1->ne[2], - src1->ne[3], - nb0*src1->ne[0], - nb0*src1->ne[0]*src1->ne[1], - nb0*src1->ne[0]*src1->ne[1]*src1->ne[2], - offset); - } break; - } - - src1->grad = ggml_add_impl(ctx, + struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k); + struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1); + src1->grad = ggml_add_or_set(ctx, src1->grad, grad_k, - inplace); + zero_table); } - - struct ggml_tensor * opt0 = tensor->src[2]; - - if (opt0->grad) { - struct ggml_tensor * grad_v = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3] - + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3]; - switch(opt0->n_dims) { - case 2: - { - grad_v = ggml_view_2d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - nb0*opt0->ne[0], - offset); - } break; - case 3: - { - grad_v = ggml_view_3d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - opt0->ne[2], - nb0*opt0->ne[0], - nb0*opt0->ne[0]*opt0->ne[1], - offset); - } break; - case 4: - { - grad_v = ggml_view_4d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - opt0->ne[2], - opt0->ne[3], - nb0*opt0->ne[0], - nb0*opt0->ne[0]*opt0->ne[1], - nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2], - offset); - } break; - } - - opt0->grad = ggml_add_impl(ctx, - opt0->grad, + if (src2->grad) { + struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v); + struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2); + src2->grad = ggml_add_or_set(ctx, + src2->grad, grad_v, - inplace); + zero_table); } } break; case GGML_OP_FLASH_FF: @@ -16828,12 +17439,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, ggml_sgn(ctx, src0), tensor->grad), - inplace); + zero_table); } } break; case GGML_UNARY_OP_SGN: @@ -16845,7 +17456,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_UNARY_OP_NEG: { if (src0->grad) { - src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_UNARY_OP_STEP: @@ -16865,12 +17476,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_UNARY_OP_RELU: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, ggml_step(ctx, src0), tensor->grad), - inplace); + zero_table); } } break; case GGML_UNARY_OP_GELU: @@ -16885,10 +17496,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_silu_back(ctx, src0, tensor->grad), - inplace); + zero_table); } } break; default: @@ -16911,13 +17522,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_OP_CROSS_ENTROPY_LOSS: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_cross_entropy_loss_back(ctx, src0, src1, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: @@ -16933,34 +17544,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor GGML_ASSERT(false); } break; } -} -static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small"); - -static size_t hash(void * p) { - return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; -} - -static bool hash_insert(void * hash_table[], void * p) { - size_t h = hash(p); - - // linear probing - size_t i = h; - while (hash_table[i] != NULL && hash_table[i] != p) { - i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; - if (i == h) { - // hash table is full - GGML_ASSERT(false); + for (int i = 0; i < GGML_MAX_SRC; ++i) { + if (tensor->src[i] && tensor->src[i]->grad) { + GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad)); } } - - if (hash_table[i] == p) { - return true; - } - - // insert - hash_table[i] = p; - return false; } static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { @@ -16978,8 +17567,12 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * } for (int i = 0; i < GGML_MAX_SRC; ++i) { - if (node->src[i]) { - ggml_visit_parents(cgraph, node->src[i]); + const int k = + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i : + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) : + /* unknown order, just fall back to using i*/ i; + if (node->src[k]) { + ggml_visit_parents(cgraph, node->src[k]); } } @@ -17038,6 +17631,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { /*.grads =*/ { NULL }, /*.leafs =*/ { NULL }, /*.hash_table =*/ { NULL }, + /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, @@ -17063,12 +17657,22 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * } } + // remember original gradients which start with zero values + void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE); + memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE); + for (int i = 0; i < gf->n_nodes; i++) { + if (gf->grads[i]) { + hash_insert(zero_table, gf->grads[i]); + } + } + for (int i = gf->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = gf->nodes[i]; - // because we detached the grad nodes from the original graph, we can afford inplace operations + // inplace operations to add gradients are not created by ggml_compute_backward + // use allocator to automatically make inplace operations if (node->grad) { - ggml_compute_backward(ctx, node, keep); + ggml_compute_backward(ctx, node, zero_table); } } @@ -17080,6 +17684,8 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * ggml_build_forward_expand(gb, node->grad); } } + + free(zero_table); } struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { @@ -17099,6 +17705,7 @@ struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) { /*.grads =*/ { NULL }, /*.leafs =*/ { NULL }, /*.hash_table =*/ { NULL }, + /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, @@ -17489,7 +18096,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { } break; case GGML_OP_CONCAT: case GGML_OP_MUL_MAT: - case GGML_OP_OUT_PROD: { n_tasks = n_threads; @@ -17531,6 +18137,18 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { cur = 0; } + work_size = MAX(work_size, cur); + } break; + case GGML_OP_OUT_PROD: + { + n_tasks = n_threads; + + size_t cur = 0; + + if (ggml_is_quantized(node->src[0]->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; + } + work_size = MAX(work_size, cur); } break; case GGML_OP_SCALE: @@ -18624,7 +19242,7 @@ static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * } static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { - int i = 0; + int64_t i = 0; for (int p = 0; p < np; ++p) { const int64_t ne = ggml_nelements(ps[p]) ; // TODO: add function to get all elements at once @@ -18634,6 +19252,17 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g } } +static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) { + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale; + } + } +} + // // ADAM // @@ -18682,26 +19311,43 @@ static enum ggml_opt_result ggml_opt_adam( const float eps = params.adam.eps; const float gclip = params.adam.gclip; const int decay_min_ndim = params.adam.decay_min_ndim; + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + float * g = opt->adam.g->data; // gradients float * m = opt->adam.m->data; // first moment float * v = opt->adam.v->data; // second moment float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values - if (callback) { - callback(callback_data, &sched); - } - - // compute the function value - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; - ggml_graph_compute(gb, &cplan); - opt->adam.fx_prev = ggml_get_f32_1d(f, 0); + bool cancel = false; + + // compute the function value + float fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + if (cancel) { + return GGML_OPT_DID_NOT_CONVERGE; + } + fx *= accum_norm; + + opt->adam.fx_prev = fx; opt->adam.fx_best = opt->adam.fx_prev; if (pf) { pf[opt->iter % params.past] = opt->adam.fx_prev; @@ -18724,6 +19370,9 @@ static enum ggml_opt_result ggml_opt_adam( // run the optimizer for (int t = 0; t < params.adam.n_iter; ++t) { + if (cancel) { + break; + } opt->iter = iter0 + t + 1; GGML_PRINT_DEBUG ("=== iter %d ===\n", t); @@ -18746,12 +19395,8 @@ static enum ggml_opt_result ggml_opt_adam( if (gclip > 0.0f) { // gradient clipping ggml_float sum = 0.0; - for (int p = 0; p < np; ++p) { - const int64_t ne = ggml_nelements(ps[p]); - for (int64_t j = 0; j < ne; ++j) { - float g = ggml_get_f32_1d(ps[p]->grad, j); - sum += (ggml_float)(g*g); - } + for (int64_t i = 0; i < nx; ++i) { + sum += (ggml_float)(g[i]*g[i]); } ggml_float norm = sqrt(sum); if (norm > (ggml_float) gclip) { @@ -18765,10 +19410,10 @@ static enum ggml_opt_result ggml_opt_adam( const int64_t ne = ggml_nelements(ps[p]); const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched; for (int64_t j = 0; j < ne; ++j) { - float x = ggml_get_f32_1d(ps[p], j); - float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm; - m[i] = m[i]*beta1 + g*(1.0f - beta1); - v[i] = v[i]*beta2 + g*g*(1.0f - beta2); + float x = ggml_get_f32_1d(ps[p], j); + float g_ = g[i]*gnorm; + m[i] = m[i]*beta1 + g_*(1.0f - beta1); + v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2); float mh = m[i]*beta1h; float vh = v[i]*beta2h; vh = sqrtf(vh) + eps; @@ -18779,16 +19424,26 @@ static enum ggml_opt_result ggml_opt_adam( } } - if (callback) { - callback(callback_data, &sched); + fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); } + if (cancel) { + break; + } + fx *= accum_norm; - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - - ggml_graph_compute(gb, &cplan); - - const float fx = ggml_get_f32_1d(f, 0); opt->loss_after = fx; @@ -18868,11 +19523,11 @@ static enum ggml_opt_result linesearch_backtracking( float * step, const float * xp, struct ggml_tensor * f, - struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cplan * cplan, const int np, struct ggml_tensor * ps[], + bool * cancel, ggml_opt_callback callback, void * callback_data) { int count = 0; @@ -18886,6 +19541,9 @@ static enum ggml_opt_result linesearch_backtracking( const float dec = 0.5f; const float inc = 2.1f; + const int n_accum = MAX(1, params->n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + if (*step <= 0.f) { return GGML_LINESEARCH_INVALID_PARAMETERS; } @@ -18902,13 +19560,7 @@ static enum ggml_opt_result linesearch_backtracking( finit = *fx; dgtest = params->lbfgs.ftol*dginit; - while (true) { - if (callback) { - // LBFG-S does not support learning rate -> ignore learning schedule - float sched = 0; - callback(callback_data, &sched); - } - + while (!*cancel) { ggml_vec_cpy_f32(nx, x, xp); ggml_vec_mad_f32(nx, x, d, *step); @@ -18916,14 +19568,28 @@ static enum ggml_opt_result linesearch_backtracking( { ggml_opt_set_params(np, ps, x); - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); + *fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, cancel); + if (*cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + *fx += ggml_get_f32_1d(f, 0); + } + if (*cancel) { + break; + } + *fx *= accum_norm; - ggml_graph_compute(gb, cplan); - - ggml_opt_get_grad(np, ps, g); - - *fx = ggml_get_f32_1d(f, 0); } ++count; @@ -19024,6 +19690,9 @@ static enum ggml_opt_result ggml_opt_lbfgs( float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + float fx = 0.0f; // cost function value float xnorm = 0.0f; // ||x|| float gnorm = 0.0f; // ||g|| @@ -19037,24 +19706,33 @@ static enum ggml_opt_result ggml_opt_lbfgs( float * lm_s = opt->lbfgs.lms->data; float * lm_y = opt->lbfgs.lmy->data; - if (callback) { - // LBFG-S does not support learning rate -> ignore learning schedule - float sched = 0; - callback(callback_data, &sched); - } + bool cancel = false; // evaluate the function value and its gradient { ggml_opt_set_params(np, ps, x); - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - - ggml_graph_compute(gb, &cplan); - - ggml_opt_get_grad(np, ps, g); - - fx = ggml_get_f32_1d(f, 0); + fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + if (cancel) { + return GGML_OPT_DID_NOT_CONVERGE; + } + fx *= accum_norm; opt->loss_before = fx; opt->loss_after = fx; @@ -19112,7 +19790,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); - ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data); + ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); + if (!cancel) { + break; + } if (ls < 0) { // linesearch failed - go back to the previous point and return @@ -19241,6 +19922,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .print_forward_graph = true, .print_backward_graph = true, + .n_gradient_accumulation = 1, + .adam = { .n_iter = 10000, .sched = 1.000f, @@ -19269,6 +19952,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .print_forward_graph = true, .print_backward_graph = true, + .n_gradient_accumulation = 1, + .lbfgs = { .m = 6, .n_iter = 100, @@ -19299,13 +19984,32 @@ GGML_API void ggml_opt_init( opt->iter = 0; opt->nx = nx; opt->just_initialized = true; + if (opt->ctx == NULL) { + struct ggml_init_params ctx_opt_params; + if (opt->params.type == GGML_OPT_ADAM) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3; + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } else if (opt->params.type == GGML_OPT_LBFGS) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2); + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } + ctx_opt_params.mem_buffer = NULL; + ctx_opt_params.no_alloc = false; + + opt->ctx = ggml_init(ctx_opt_params); + } switch (opt->params.type) { case GGML_OPT_ADAM: { - opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->adam.pf = params.past > 0 - ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) : NULL; ggml_set_zero(opt->adam.m); ggml_set_zero(opt->adam.v); @@ -19315,18 +20019,18 @@ GGML_API void ggml_opt_init( } break; case GGML_OPT_LBFGS: { - opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->lbfgs.pf = params.past > 0 - ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) : NULL; - opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); - opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); - opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); - opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); ggml_set_zero(opt->lbfgs.x); ggml_set_zero(opt->lbfgs.xp); ggml_set_zero(opt->lbfgs.g); diff --git a/ggml.h b/ggml.h index d1086173d..0d99ae23e 100644 --- a/ggml.h +++ b/ggml.h @@ -214,8 +214,8 @@ #define GGML_QNT_VERSION_FACTOR 1000 // do not change this #define GGML_MAX_DIMS 4 -#define GGML_MAX_NODES 4096 -#define GGML_MAX_PARAMS 256 +#define GGML_MAX_NODES 16384 +#define GGML_MAX_PARAMS 1024 #define GGML_MAX_CONTEXTS 64 #define GGML_MAX_SRC 6 #define GGML_MAX_NAME 64 @@ -526,7 +526,15 @@ extern "C" { // next prime after GGML_MAX_NODES // #define GGML_GRAPH_HASHTABLE_SIZE 4099 // next prime after GGML_MAX_NODES * 2 (nodes + leafs) - #define GGML_GRAPH_HASHTABLE_SIZE 8273 + // #define GGML_GRAPH_HASHTABLE_SIZE 8273 + // #define GGML_GRAPH_HASHTABLE_SIZE 16411 + #define GGML_GRAPH_HASHTABLE_SIZE 32771 + + enum ggml_cgraph_eval_order { + GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, + GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, + GGML_CGRAPH_EVAL_ORDER_COUNT + }; // computation graph struct ggml_cgraph { @@ -539,6 +547,8 @@ extern "C" { void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE]; + enum ggml_cgraph_eval_order order; + // performance int perf_runs; int64_t perf_cycles; @@ -686,12 +696,21 @@ extern "C" { GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); + // Converts a flat index into coordinates + GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3); + GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); + GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value); + GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); + GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value); + GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); @@ -725,6 +744,12 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type); + GGML_API struct ggml_tensor * ggml_add1( struct ggml_context * ctx, struct ggml_tensor * a, @@ -834,6 +859,7 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // sums repetitions in a into shape of b GGML_API struct ggml_tensor * ggml_repeat_back( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1689,6 +1715,16 @@ extern "C" { // dump the graph into a file using the dot format GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); + // build gradient checkpointing backward graph gb for gf using provided checkpoints + // gb_tmp will contain original backward graph with rewritten backward process nodes, + // but without the second forward pass nodes. + GGML_API void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints); // // optimization // @@ -1723,7 +1759,7 @@ extern "C" { GGML_LINESEARCH_INVALID_PARAMETERS, }; - typedef void (*ggml_opt_callback)(void * data, float * sched); + typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel); typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data); // optimization parameters @@ -1755,6 +1791,8 @@ extern "C" { bool print_forward_graph; bool print_backward_graph; + int n_gradient_accumulation; + // ADAM parameters struct { int n_iter; @@ -1800,6 +1838,7 @@ extern "C" { float loss_after; struct { + struct ggml_tensor * g; // current gradient struct ggml_tensor * m; // first moment struct ggml_tensor * v; // second moment struct ggml_tensor * pf; // past function values diff --git a/llama.cpp b/llama.cpp index 15de7600c..7668cb1a7 100644 --- a/llama.cpp +++ b/llama.cpp @@ -6298,7 +6298,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // TODO: after the GGUF PR, this likely won't work and needs to be updated static int llama_apply_lora_from_file_internal( - const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads + const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads ) { LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); @@ -6327,7 +6327,7 @@ static int llama_apply_lora_from_file_internal( int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); - float scaling = (float)lora_alpha / (float)lora_r; + float scaling = scale * (float)lora_alpha / (float)lora_r; LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); @@ -6543,9 +6543,10 @@ static int llama_apply_lora_from_file_internal( ggml_set_name(r, "r_cpy"); } - struct ggml_cgraph gf = ggml_build_forward(r); + struct ggml_cgraph * gf = ggml_new_graph(lora_ctx); + ggml_build_forward_expand(gf, r); - ggml_graph_compute_helper(work_buffer, &gf, n_threads); + ggml_graph_compute_helper(work_buffer, gf, n_threads); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); @@ -6926,6 +6927,10 @@ uint64_t llama_model_n_params(const struct llama_model * model) { return nparams; } +struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { + return ggml_get_tensor(model->ctx, name); +} + int llama_model_quantize( const char * fname_inp, const char * fname_out, @@ -6939,18 +6944,18 @@ int llama_model_quantize( } } -int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } -int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; diff --git a/llama.h b/llama.h index e07c09f14..046284d74 100644 --- a/llama.h +++ b/llama.h @@ -287,6 +287,9 @@ extern "C" { // Returns the total number of parameters in the model LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); + // Get a llama model tensor + LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); + // Returns 0 on success LLAMA_API int llama_model_quantize( const char * fname_inp, @@ -302,15 +305,17 @@ extern "C" { LLAMA_API DEPRECATED(int llama_apply_lora_from_file( struct llama_context * ctx, const char * path_lora, + float scale, const char * path_base_model, int n_threads), "use llama_model_apply_lora_from_file instead"); LLAMA_API int llama_model_apply_lora_from_file( const struct llama_model * model, - const char * path_lora, - const char * path_base_model, - int n_threads); + const char * path_lora, + float scale, + const char * path_base_model, + int n_threads); // // KV cache diff --git a/tests/test-grad0.cpp b/tests/test-grad0.cpp index 7b0c0fcdb..4f49dc55a 100644 --- a/tests/test-grad0.cpp +++ b/tests/test-grad0.cpp @@ -251,18 +251,20 @@ static bool check_gradient( printf("GGML_N_THREADS = %d\n", n_threads); } - struct ggml_cgraph gf = ggml_build_forward (f); - struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); + struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f); + struct ggml_cgraph * gb = ggml_new_graph(ctx0); + *gb = *gf; + ggml_build_backward_expand(ctx0, gf, gb, false); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); - ggml_graph_reset (&gf); + ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); + ggml_graph_compute_with_ctx(ctx0, gb, n_threads); - // ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); - // ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); + // ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot"); + // ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot"); for (int i = 0; i < nargs; ++i) { const int nelements = ggml_nelements(x[i]); @@ -273,13 +275,13 @@ static bool check_gradient( const float xp = x0 + eps; ggml_set_f32_1d(x[i], k, xp); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); const double f0 = ggml_get_f32_1d(f, 0); ggml_set_f32_1d(x[i], k, xm); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); const double f1 = ggml_get_f32_1d(f, 0); const double g0 = (f0 - f1)/(2.0*(double) eps); @@ -287,10 +289,10 @@ static bool check_gradient( ggml_set_f32_1d(x[i], k, x0); // compute gradient using backward graph - ggml_graph_reset (&gf); + ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); + ggml_graph_compute_with_ctx(ctx0, gb, n_threads); const double g1 = ggml_get_f32_1d(x[i]->grad, k); @@ -373,7 +375,7 @@ static bool check_mat_mul( int main(int argc, const char ** argv) { struct ggml_init_params params = { - /* .mem_size = */ 128*1024*1024, + /* .mem_size = */ 256*1024*1024, /* .mem_buffer = */ NULL, /* .no_alloc = */ false, }; @@ -405,6 +407,7 @@ int main(int argc, const char ** argv) { } } + unsigned seed_iter = 1; // original loop: 1000 int niter = 4; @@ -416,6 +419,10 @@ int main(int argc, const char ** argv) { niter = atoi(argv[1]); } for (int iter = 0; iter < niter; ++iter) { + srand(seed_iter); + seed_iter = rand(); + unsigned seed = rand(); + printf("test-grad0: iter:%d/%d\n", iter, niter); struct ggml_context * ctx0 = ggml_init(params); @@ -425,6 +432,7 @@ int main(int argc, const char ** argv) { // add f32 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -441,6 +449,7 @@ int main(int argc, const char ** argv) { // add f16 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -457,6 +466,7 @@ int main(int argc, const char ** argv) { // sub { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -473,6 +483,7 @@ int main(int argc, const char ** argv) { // mul { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -489,6 +500,7 @@ int main(int argc, const char ** argv) { // div { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -505,6 +517,7 @@ int main(int argc, const char ** argv) { // sqr { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -521,6 +534,7 @@ int main(int argc, const char ** argv) { // sqrt { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -537,6 +551,7 @@ int main(int argc, const char ** argv) { // log { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -553,6 +568,7 @@ int main(int argc, const char ** argv) { // sum { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -570,6 +586,7 @@ int main(int argc, const char ** argv) { // sum_rows { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -587,6 +604,7 @@ int main(int argc, const char ** argv) { // mean, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -604,6 +622,7 @@ int main(int argc, const char ** argv) { // argmax if (0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -620,6 +639,7 @@ int main(int argc, const char ** argv) { // repeat { + srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); @@ -642,6 +662,7 @@ int main(int argc, const char ** argv) { // repeat back { + srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); @@ -680,6 +701,7 @@ int main(int argc, const char ** argv) { // sgn { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -696,6 +718,7 @@ int main(int argc, const char ** argv) { // neg { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -712,6 +735,7 @@ int main(int argc, const char ** argv) { // step { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -729,6 +753,7 @@ int main(int argc, const char ** argv) { // tanh, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -745,33 +770,45 @@ int main(int argc, const char ** argv) { // mul_mat { + srand(seed); const int nargs = 2; - for (int ndims = 2; ndims <= 2; ++ndims) { + for (int ndims = 2; ndims <= 4; ++ndims) { + int max_nrep = (ndims >= 3) ? 2 : 1; x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); - { - int64_t ne2[4]; - get_random_dims(ne2, 4); - ne2[0] = ne[0]; - x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); + for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) { + for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) { + { + int64_t ne2[4]; + get_random_dims(ne2, 4); + ne2[0] = ne[0]; + ne2[2] = nrep2 * ne[2]; + ne2[3] = nrep3 * ne[3]; + x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); + } + + ggml_set_param(ctx0, x[0]); + ggml_set_param(ctx0, x[1]); + + struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); + struct ggml_tensor * f = ggml_sum(ctx0, m); + + GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); + + check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + if (ndims == 2) { + // check_mat_mul does not support ndims > 2 + check_mat_mul(m, x[1], x[0]); + } + } } - - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); - - struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); - struct ggml_tensor * f = ggml_sum(ctx0, m); - - GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); - - check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); - check_mat_mul(m, x[1], x[0]); } } // elu, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -788,6 +825,7 @@ int main(int argc, const char ** argv) { // relu { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -805,6 +843,7 @@ int main(int argc, const char ** argv) { // gelu, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -821,6 +860,7 @@ int main(int argc, const char ** argv) { // silu { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -842,6 +882,7 @@ int main(int argc, const char ** argv) { // rms_norm { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -858,6 +899,7 @@ int main(int argc, const char ** argv) { // scale { + srand(seed); const int nargs = 2; int64_t ne2[4]; @@ -878,6 +920,7 @@ int main(int argc, const char ** argv) { // cpy f32 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -895,6 +938,7 @@ int main(int argc, const char ** argv) { // cpy f16 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -912,6 +956,7 @@ int main(int argc, const char ** argv) { // reshape (1d->nd) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -935,6 +980,7 @@ int main(int argc, const char ** argv) { // reshape (nd->1d) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -958,6 +1004,7 @@ int main(int argc, const char ** argv) { // acc 1d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; const int nargs = 2; @@ -985,6 +1032,7 @@ int main(int argc, const char ** argv) { // acc 2d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1017,6 +1065,7 @@ int main(int argc, const char ** argv) { // acc 3d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1051,6 +1100,7 @@ int main(int argc, const char ** argv) { // acc 4d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1087,6 +1137,7 @@ int main(int argc, const char ** argv) { // set_1d { + srand(seed); int64_t ne2[4]; const int nargs = 2; @@ -1114,6 +1165,7 @@ int main(int argc, const char ** argv) { // set_2d { + srand(seed); int64_t ne2[4]; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1146,6 +1198,7 @@ int main(int argc, const char ** argv) { // view_1d { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -1169,6 +1222,7 @@ int main(int argc, const char ** argv) { // view_2d { + srand(seed); int64_t ne2[4]; int64_t nb2[4]; @@ -1199,6 +1253,7 @@ int main(int argc, const char ** argv) { // view_3d { + srand(seed); int64_t ne2[4] = {1,1,1,1}; int64_t nb2[4] = {0,0,0,0}; @@ -1230,6 +1285,7 @@ int main(int argc, const char ** argv) { // permute { + srand(seed); int64_t ne2[4]; const int nargs = 1; @@ -1263,6 +1319,7 @@ int main(int argc, const char ** argv) { // transpose { + srand(seed); int64_t ne2[4]; const int nargs = 1; @@ -1290,6 +1347,7 @@ int main(int argc, const char ** argv) { // get_rows { + srand(seed); int64_t ne2[4] = {ne[0], ne[1], 1, 1}; int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1}; const int nargs = 1; @@ -1306,6 +1364,7 @@ int main(int argc, const char ** argv) { // diag_mask_inf { + srand(seed); const int nargs = 1; const int ndims = 2; @@ -1321,6 +1380,7 @@ int main(int argc, const char ** argv) { // diag_mask_zero { + srand(seed); const int nargs = 1; const int ndims = 2; @@ -1336,6 +1396,7 @@ int main(int argc, const char ** argv) { // softmax { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1357,11 +1418,16 @@ int main(int argc, const char ** argv) { ggml_new_f32(ctx0, eps)))); check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY); + // NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf. + // this may result in different gradients too finite differences. + // when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause. + // if only the table lookup causes gradients to differ this is acceptable. } } // cross_entropy_loss { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1392,6 +1458,7 @@ int main(int argc, const char ** argv) { // rope f32 { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1431,6 +1498,7 @@ int main(int argc, const char ** argv) { // rope f16 { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1470,6 +1538,7 @@ int main(int argc, const char ** argv) { // flash_attn f32 { + srand(seed); const int nargs = 3; int64_t ne2[4]; @@ -1482,28 +1551,31 @@ int main(int argc, const char ** argv) { for (int masked = 0; masked <= 1; ++masked) { for (int ndims = 2; ndims <= 4; ++ndims) { - int64_t neq[4] = { D, N, B, ne[3] }; - int64_t nek[4] = { D, M, B, ne[3] }; - int64_t nev[4] = { M, D, B, ne[3] }; - if (ndims == 2) { - neq[2] = 1; neq[3] = 1; - nek[2] = 1; nek[3] = 1; - nev[2] = 1; nev[3] = 1; - } else if (ndims == 3) { - neq[3] = 1; - nek[3] = 1; - nev[3] = 1; + int max_nrep = (ndims >= 3) ? 2 : 1; + for (int nrep = 1; nrep < max_nrep; ++nrep) { + int64_t neq[4] = { D, N, B*nrep, ne[3] }; + int64_t nek[4] = { D, M, B, ne[3] }; + int64_t nev[4] = { M, D, B, ne[3] }; + if (ndims == 2) { + neq[2] = 1; neq[3] = 1; + nek[2] = 1; nek[3] = 1; + nev[2] = 1; nev[3] = 1; + } else if (ndims == 3) { + neq[3] = 1; + nek[3] = 1; + nev[3] = 1; + } + x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); + x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); + x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); + ggml_set_param(ctx0, x[0]); + ggml_set_param(ctx0, x[1]); + ggml_set_param(ctx0, x[2]); + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); + + check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); } - x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); - x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); - x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); - ggml_set_param(ctx0, x[2]); - - struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - - check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); } } } @@ -1511,6 +1583,7 @@ int main(int argc, const char ** argv) { // flash_attn f16, not yet fully implemented if(0) { + srand(seed); const int nargs = 3; int64_t ne2[4]; From 0512d66670de3f650c579519833c085014b0f200 Mon Sep 17 00:00:00 2001 From: Eve <139727413+netrunnereve@users.noreply.github.com> Date: Thu, 28 Sep 2023 19:31:04 +0000 Subject: [PATCH 4/8] ci : multithreaded builds (#3311) * mac and linux threads * windows * Update build.yml * Update build.yml * Update build.yml * automatically get thread count * windows syntax * try to fix freebsd * Update build.yml * Update build.yml * Update build.yml --- .github/workflows/build.yml | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index bf7d94c72..2fb101d78 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -38,13 +38,13 @@ jobs: - name: Build id: make_build run: | - CC=gcc-8 make + CC=gcc-8 make -j $(nproc) - name: Test id: make_test run: | - CC=gcc-8 make tests - make test + CC=gcc-8 make tests -j $(nproc) + make test -j $(nproc) ubuntu-latest-cmake: runs-on: ubuntu-latest @@ -66,7 +66,7 @@ jobs: mkdir build cd build cmake .. - cmake --build . --config Release + cmake --build . --config Release -j $(nproc) - name: Test id: cmake_test @@ -101,7 +101,7 @@ jobs: mkdir build cd build cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} - cmake --build . --config ${{ matrix.build_type }} + cmake --build . --config ${{ matrix.build_type }} -j $(nproc) - name: Test id: cmake_test @@ -135,7 +135,7 @@ jobs: mkdir build cd build cmake -DLLAMA_MPI=ON .. - cmake --build . --config Release + cmake --build . --config Release -j $(nproc) - name: Test id: cmake_test @@ -160,13 +160,13 @@ jobs: - name: Build id: make_build run: | - make + make -j $(sysctl -n hw.logicalcpu) - name: Test id: make_test run: | - make tests - make test + make tests -j $(sysctl -n hw.logicalcpu) + make test -j $(sysctl -n hw.logicalcpu) macOS-latest-cmake: runs-on: macos-latest @@ -189,7 +189,7 @@ jobs: mkdir build cd build cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF .. - cmake --build . --config Release + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) - name: Test id: cmake_test @@ -223,7 +223,7 @@ jobs: -DLLAMA_BUILD_SERVER=OFF \ -DCMAKE_SYSTEM_NAME=iOS \ -DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 - cmake --build . --config Release + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) macOS-latest-cmake-tvos: runs-on: macos-latest @@ -251,7 +251,7 @@ jobs: -DLLAMA_BUILD_SERVER=OFF \ -DCMAKE_SYSTEM_NAME=tvOS \ -DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 - cmake --build . --config Release + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) windows-latest-cmake: runs-on: windows-latest @@ -324,7 +324,7 @@ jobs: mkdir build cd build cmake .. ${{ matrix.defines }} - cmake --build . --config Release + cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} - name: Add clblast.dll id: add_clblast_dll @@ -415,7 +415,7 @@ jobs: mkdir build cd build cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON - cmake --build . --config Release + cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} - name: Determine tag name id: tag @@ -472,7 +472,7 @@ jobs: # run: | # sudo pkg update # sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas -# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 +# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu` release: if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} From 16bc66d9479edd5ee12ec734973554d4493c5dfa Mon Sep 17 00:00:00 2001 From: slaren Date: Thu, 28 Sep 2023 21:42:38 +0200 Subject: [PATCH 5/8] llama.cpp : split llama_context_params into model and context params (#3301) * llama.cpp : split llama_context_params into model and context params ggml-ci * fix metal build * fix freq_base/scale default to model value * llama-bench : keep the same model between tests when possible * move n_threads to llama_context_params, add n_threads_batch * fix mpi build * remove kv_size(), cuda scratch fixes * remove low-vram option * add n_threads_batch to system info, refactor to get_system_info() * add documentation about --threads-batch to the READMEs * llama-bench fix * main : fix rope freq/scale warning * llama.cpp : add llama_get_model common : add llama_tokenize from model * remove duplicated ctx/model functions ggml-ci * cuda : print total VRAM used --- common/common.cpp | 110 ++-- common/common.h | 12 +- common/train.cpp | 10 +- examples/batched/batched.cpp | 39 +- examples/beam-search/beam-search.cpp | 4 +- examples/embd-input/embd-input-lib.cpp | 13 +- examples/embd-input/embd-input-test.cpp | 2 +- examples/embedding/embedding.cpp | 21 +- examples/finetune/finetune.cpp | 12 +- examples/llama-bench/llama-bench.cpp | 159 +++-- examples/main/README.md | 4 +- examples/main/main.cpp | 41 +- examples/parallel/parallel.cpp | 6 +- examples/perplexity/perplexity.cpp | 73 +-- examples/quantize-stats/quantize-stats.cpp | 17 +- examples/save-load-state/save-load-state.cpp | 26 +- examples/server/README.md | 4 +- examples/server/server.cpp | 50 +- examples/simple/simple.cpp | 24 +- examples/speculative/speculative.cpp | 16 +- .../train-text-from-scratch.cpp | 12 +- ggml-cuda.cu | 24 +- llama.cpp | 545 ++++++++---------- llama.h | 84 ++- tests/test-tokenizer-0-falcon.cpp | 12 +- tests/test-tokenizer-0-llama.cpp | 12 +- tests/test-tokenizer-1-llama.cpp | 14 +- 27 files changed, 713 insertions(+), 633 deletions(-) diff --git a/common/common.cpp b/common/common.cpp index 8764a7be3..6e8c08cb8 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -129,6 +129,15 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { if (params.n_threads <= 0) { params.n_threads = std::thread::hardware_concurrency(); } + } else if (arg == "-tb" || arg == "--threads-batch") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads_batch = std::stoi(argv[i]); + if (params.n_threads_batch <= 0) { + params.n_threads_batch = std::thread::hardware_concurrency(); + } } else if (arg == "-p" || arg == "--prompt") { if (++i >= argc) { invalid_param = true; @@ -451,12 +460,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.mul_mat_q = false; #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n"); -#endif // GGML_USE_CUBLAS - } else if (arg == "--low-vram" || arg == "-lv") { -#ifdef GGML_USE_CUBLAS - params.low_vram = true; -#else - fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mmap") { params.use_mmap = false; @@ -630,7 +633,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" (can be specified more than once for multiple prompts).\n"); printf(" --color colorise output to distinguish prompt and user input from generations\n"); printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); - printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); + printf(" -tb N, --threads-batch N\n"); + printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); printf(" -p PROMPT, --prompt PROMPT\n"); printf(" prompt to start generation with (default: empty)\n"); printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); @@ -645,7 +650,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -f FNAME, --file FNAME\n"); printf(" prompt file to start generation.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); - printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); @@ -705,7 +710,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); - printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); #ifdef GGML_USE_CUBLAS printf(" -nommq, --no-mul-mat-q\n"); printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n"); @@ -726,6 +730,18 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf("\n"); } +std::string get_system_info(const gpt_params & params) { + std::ostringstream os; + + os << "system_info: n_threads = " << params.n_threads; + if (params.n_threads_batch != -1) { + os << " (n_threads_batch = " << params.n_threads_batch << ")"; + } + os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); + + return os.str(); +} + std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { @@ -749,40 +765,50 @@ std::string gpt_random_prompt(std::mt19937 & rng) { // Model utils // -struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { - auto lparams = llama_context_default_params(); +struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { + auto mparams = llama_model_default_params(); - lparams.n_ctx = params.n_ctx; - lparams.n_batch = params.n_batch; if (params.n_gpu_layers != -1) { - lparams.n_gpu_layers = params.n_gpu_layers; + mparams.n_gpu_layers = params.n_gpu_layers; } - lparams.main_gpu = params.main_gpu; - lparams.tensor_split = params.tensor_split; - lparams.low_vram = params.low_vram; - lparams.mul_mat_q = params.mul_mat_q; - lparams.seed = params.seed; - lparams.f16_kv = params.memory_f16; - lparams.use_mmap = params.use_mmap; - lparams.use_mlock = params.use_mlock; - lparams.logits_all = params.logits_all; - lparams.embedding = params.embedding; - lparams.rope_freq_base = params.rope_freq_base; - lparams.rope_freq_scale = params.rope_freq_scale; + mparams.main_gpu = params.main_gpu; + mparams.tensor_split = params.tensor_split; + mparams.use_mmap = params.use_mmap; + mparams.use_mlock = params.use_mlock; - return lparams; + return mparams; +} + +struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { + auto cparams = llama_context_default_params(); + + cparams.n_ctx = params.n_ctx; + cparams.n_batch = params.n_batch; + cparams.n_threads = params.n_threads; + cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + cparams.mul_mat_q = params.mul_mat_q; + cparams.seed = params.seed; + cparams.f16_kv = params.memory_f16; + cparams.logits_all = params.logits_all; + cparams.embedding = params.embedding; + cparams.rope_freq_base = params.rope_freq_base; + cparams.rope_freq_scale = params.rope_freq_scale; + + return cparams; } std::tuple llama_init_from_gpt_params(gpt_params & params) { - auto lparams = llama_context_params_from_gpt_params(params); + auto mparams = llama_model_params_from_gpt_params(params); - llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); + llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return std::make_tuple(nullptr, nullptr); } - llama_context * lctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_params_from_gpt_params(params); + + llama_context * lctx = llama_new_context_with_model(model, cparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); @@ -815,7 +841,7 @@ std::tuple llama_init_from_gpt_par LOG("warming up the model with an empty run\n"); std::vector tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; - llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads); + llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); llama_kv_cache_tokens_rm(lctx, -1, -1); llama_reset_timings(lctx); } @@ -828,16 +854,23 @@ std::tuple llama_init_from_gpt_par // std::vector llama_tokenize( - struct llama_context * ctx, + const struct llama_context * ctx, + const std::string & text, + bool add_bos) { + return llama_tokenize(llama_get_model(ctx), text, add_bos); +} + +std::vector llama_tokenize( + const struct llama_model * model, const std::string & text, bool add_bos) { // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); - n_tokens = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); + n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); + int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -847,10 +880,10 @@ std::vector llama_tokenize( std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(ctx, token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -905,7 +938,7 @@ llama_token llama_sample_token( std::vector & candidates, int idx) { const int n_ctx = llama_n_ctx(ctx); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; @@ -1191,7 +1224,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); - fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx)); + fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); @@ -1258,7 +1291,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); } fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); - fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); diff --git a/common/common.h b/common/common.h index 64601f997..0e2d3fa6c 100644 --- a/common/common.h +++ b/common/common.h @@ -36,6 +36,7 @@ int32_t get_num_physical_cores(); struct gpt_params { uint32_t seed = -1; // RNG seed int32_t n_threads = get_num_physical_cores(); + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) @@ -95,7 +96,6 @@ struct gpt_params { bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score - bool low_vram = false; // if true, reduce VRAM usage at the cost of performance bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided @@ -126,6 +126,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); +std::string get_system_info(const gpt_params & params); + std::string gpt_random_prompt(std::mt19937 & rng); void process_escapes(std::string& input); @@ -135,6 +137,7 @@ void process_escapes(std::string& input); // std::tuple llama_init_from_gpt_params(gpt_params & params); +struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); // @@ -144,7 +147,12 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param // tokenizes a string into a vector of tokens // should work similar to Python's `tokenizer.encode` std::vector llama_tokenize( - struct llama_context * ctx, + const struct llama_context * ctx, + const std::string & text, + bool add_bos); + +std::vector llama_tokenize( + const struct llama_model * model, const std::string & text, bool add_bos); diff --git a/common/train.cpp b/common/train.cpp index 4a1280966..35a4cf9e6 100644 --- a/common/train.cpp +++ b/common/train.cpp @@ -858,7 +858,7 @@ size_t tokenize_file( out_tokens.resize(buf.size() + n_max_tokens_overhead); int n_tokens = llama_tokenize( - lctx, + llama_get_model(lctx), buf.data(), (int) buf.size(), out_tokens.data(), @@ -867,7 +867,7 @@ size_t tokenize_file( if (n_tokens < 0) { out_tokens.resize(-n_tokens); n_tokens = llama_tokenize( - lctx, + llama_get_model(lctx), buf.data(), (int) buf.size(), out_tokens.data(), @@ -920,7 +920,7 @@ size_t tokenize_file( size_t found_max_sample_size = 0; size_t max_token_text_size = 0; - int n_vocab = llama_n_vocab(lctx); + int n_vocab = llama_n_vocab(llama_get_model(lctx)); for (llama_token token=0; token < n_vocab; ++token) { max_token_text_size = std::max( max_token_text_size, @@ -961,7 +961,7 @@ size_t tokenize_file( // tokenize the sample tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); - int n_tokens = llama_tokenize(lctx, + int n_tokens = llama_tokenize(llama_get_model(lctx), buf_sample.data(), (int) buf_sample.size(), tok_sample.data(), @@ -969,7 +969,7 @@ size_t tokenize_file( false); if (n_tokens < 0) { tok_sample.resize(-n_tokens); - n_tokens = llama_tokenize(lctx, + n_tokens = llama_tokenize(llama_get_model(lctx), buf_sample.data(), (int) buf_sample.size(), tok_sample.data(), diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp index 4dd1d553d..688ef2213 100644 --- a/examples/batched/batched.cpp +++ b/examples/batched/batched.cpp @@ -40,20 +40,35 @@ int main(int argc, char ** argv) { llama_backend_init(params.numa); - llama_context_params ctx_params = llama_context_default_params(); + // initialize the model - ctx_params.seed = 1234; - ctx_params.n_ctx = n_len*n_parallel; // FIXME: use n_kv_req instead (tokenize with model after #3301) - ctx_params.n_batch = std::max(n_len, n_parallel); - // ctx_params.n_gpu_layers = 99; // offload all layers to the GPU + llama_model_params model_params = llama_model_default_params(); - llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); + // model_params.n_gpu_layers = 99; // offload all layers to the GPU + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } + // tokenize the prompt + + std::vector tokens_list; + tokens_list = ::llama_tokenize(model, params.prompt, true); + const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; + + // initialize the context + + llama_context_params ctx_params = llama_context_default_params(); + + ctx_params.seed = 1234; + ctx_params.n_ctx = n_kv_req; + ctx_params.n_batch = std::max(n_len, n_parallel); + ctx_params.n_threads = params.n_threads; + ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { @@ -61,13 +76,7 @@ int main(int argc, char ** argv) { return 1; } - // tokenize the prompt - - std::vector tokens_list; - tokens_list = ::llama_tokenize(ctx, params.prompt, true); - const int n_ctx = llama_n_ctx(ctx); - const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); @@ -106,7 +115,7 @@ int main(int argc, char ** argv) { // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; - if (llama_decode(ctx, batch, params.n_threads) != 0) { + if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } @@ -146,7 +155,7 @@ int main(int argc, char ** argv) { continue; } - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); auto * logits = llama_get_logits_ith(ctx, i_batch[i]); std::vector candidates; @@ -210,7 +219,7 @@ int main(int argc, char ** argv) { n_cur += 1; // evaluate the current batch with the transformer model - if (llama_decode(ctx, batch, params.n_threads)) { + if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } diff --git a/examples/beam-search/beam-search.cpp b/examples/beam-search/beam-search.cpp index 63da7c3ec..f078ab8a8 100644 --- a/examples/beam-search/beam-search.cpp +++ b/examples/beam-search/beam-search.cpp @@ -160,7 +160,7 @@ int main(int argc, char ** argv) int n_past = 0; - if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0), params.n_threads)) + if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0))) { fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ ); return 1; @@ -170,7 +170,7 @@ int main(int argc, char ** argv) beam_search_callback_data callback_data{ctx, {}}; size_t const beam_width = static_cast(params.n_beams); int const n_predict = 256; - llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads); + llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict); std::cout << "\n\n"; for (llama_token const token_id : callback_data.response) { diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index 9bd4d3470..99e6bdad5 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -48,8 +48,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct MyModel * ret = new MyModel(); ret->ctx = ctx; @@ -71,7 +70,7 @@ bool eval_float(void * model, float * input, int N){ MyModel * mymodel = (MyModel*)model; llama_context * ctx = mymodel->ctx; gpt_params params = mymodel->params; - int n_emb = llama_n_embd(ctx); + int n_emb = llama_n_embd(llama_get_model(ctx)); int n_past = mymodel->n_past; int n_batch = N; // params.n_batch; @@ -81,7 +80,7 @@ bool eval_float(void * model, float * input, int N){ n_eval = n_batch; } llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, }; - if (llama_decode(ctx, batch, params.n_threads)) { + if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } @@ -102,7 +101,7 @@ bool eval_tokens(void * model, std::vector tokens) { if (n_eval > params.n_batch) { n_eval = params.n_batch; } - if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } @@ -133,7 +132,7 @@ llama_token sampling_id(struct MyModel* mymodel) { // out of user input, sample next token const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; @@ -149,7 +148,7 @@ llama_token sampling_id(struct MyModel* mymodel) { llama_token id = 0; { auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(llama_get_model(ctx)); // Apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { diff --git a/examples/embd-input/embd-input-test.cpp b/examples/embd-input/embd-input-test.cpp index e5e040f62..dc4a0e488 100644 --- a/examples/embd-input/embd-input-test.cpp +++ b/examples/embd-input/embd-input-test.cpp @@ -8,7 +8,7 @@ int main(int argc, char** argv) { auto mymodel = create_mymodel(argc, argv); int N = 10; int max_tgt_len = 500; - int n_embd = llama_n_embd(mymodel->ctx); + int n_embd = llama_n_embd(llama_get_model(mymodel->ctx)); // add random float embd to test evaluation float * data = new float[N*n_embd]; diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 18cefa237..14075609e 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -42,17 +42,18 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); - if (params.n_ctx > n_ctx_train) { + const int n_ctx_train = llama_n_ctx_train(model); + const int n_ctx = llama_n_ctx(ctx); + + if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", - __func__, n_ctx_train, params.n_ctx); + __func__, n_ctx_train, n_ctx); } // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } int n_past = 0; @@ -70,15 +71,15 @@ int main(int argc, char ** argv) { fprintf(stderr, "\n"); } - if (embd_inp.size() > (size_t)params.n_ctx) { + if (embd_inp.size() > (size_t)n_ctx) { fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n", - __func__, embd_inp.size(), params.n_ctx); + __func__, embd_inp.size(), n_ctx); return 1; } while (!embd_inp.empty()) { int n_tokens = std::min(params.n_batch, (int) embd_inp.size()); - if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } @@ -86,8 +87,8 @@ int main(int argc, char ** argv) { embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens); } - const int n_embd = llama_n_embd(ctx); - const auto embeddings = llama_get_embeddings(ctx); + const int n_embd = llama_n_embd(model); + const auto * embeddings = llama_get_embeddings(ctx); for (int i = 0; i < n_embd; i++) { printf("%f ", embeddings[i]); diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 6e29e1c15..b61165fb7 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -304,7 +304,7 @@ static void init_model(struct llama_model * input, struct my_llama_model * model gguf_free(mctx); } - hparams.n_vocab = llama_model_n_vocab(input); + hparams.n_vocab = llama_n_vocab(input); hparams.n_ctx = n_ctx; // get tensors from llama_model (possibly mmapped) @@ -1540,12 +1540,14 @@ int main(int argc, char ** argv) { printf("%s: seed: %u\n", __func__, params.common.seed); srand(params.common.seed); - struct llama_context_params llama_params = llama_context_default_params(); - llama_params.vocab_only = false; + struct llama_model_params llama_mparams = llama_model_default_params(); + llama_mparams.vocab_only = false; printf("%s: model base = '%s'\n", __func__, params.fn_model_base); - struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_params); - struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams); + + struct llama_context_params llama_cparams = llama_context_default_params(); + struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams); struct my_llama_model model; init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx); diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 058e34d5c..93bb0c8b1 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -132,7 +132,6 @@ struct cmd_params { std::vector n_gpu_layers; std::vector main_gpu; std::vector mul_mat_q; - std::vector low_vram; std::vector> tensor_split; int reps; bool verbose; @@ -149,7 +148,6 @@ static const cmd_params cmd_params_defaults = { /* n_gpu_layers */ {99}, /* main_gpu */ {0}, /* mul_mat_q */ {true}, - /* low_vram */ {false}, /* tensor_split */ {{}}, /* reps */ 5, /* verbose */ false, @@ -167,9 +165,8 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -b, --batch-size (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str()); printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); - printf(" -ngl N, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); - printf(" -mg i, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); - printf(" -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str()); + printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); + printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -ts, --tensor_split \n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); @@ -255,13 +252,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { break; } params.main_gpu = split(argv[i], split_delim); - } else if (arg == "-lv" || arg == "--low-vram") { - if (++i >= argc) { - invalid_param = true; - break; - } - auto p = split(argv[i], split_delim); - params.low_vram.insert(params.low_vram.end(), p.begin(), p.end()); } else if (arg == "-mmq" || arg == "--mul-mat-q") { if (++i >= argc) { invalid_param = true; @@ -336,7 +326,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } - if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } @@ -353,21 +342,34 @@ struct cmd_params_instance { int n_gpu_layers; int main_gpu; bool mul_mat_q; - bool low_vram; std::array tensor_split; - llama_context_params to_llama_params() const { - llama_context_params lparams = llama_context_default_params(); - lparams.n_ctx = n_prompt + n_gen; - lparams.n_batch = n_batch; - lparams.f16_kv = !f32_kv; - lparams.n_gpu_layers = n_gpu_layers; - lparams.main_gpu = main_gpu; - lparams.mul_mat_q = mul_mat_q; - lparams.low_vram = low_vram; - lparams.tensor_split = tensor_split.data(); + llama_model_params to_llama_mparams() const { + llama_model_params mparams = llama_model_default_params(); - return lparams; + mparams.n_gpu_layers = n_gpu_layers; + mparams.main_gpu = main_gpu; + mparams.tensor_split = tensor_split.data(); + + return mparams; + } + + bool equal_mparams(const cmd_params_instance & other) const { + return model == other.model && + n_gpu_layers == other.n_gpu_layers && + main_gpu == other.main_gpu && + tensor_split == other.tensor_split; + } + + llama_context_params to_llama_cparams() const { + llama_context_params cparams = llama_context_default_params(); + + cparams.n_ctx = n_prompt + n_gen; + cparams.n_batch = n_batch; + cparams.f16_kv = !f32_kv; + cparams.mul_mat_q = mul_mat_q; + + return cparams; } }; @@ -375,13 +377,12 @@ static std::vector get_cmd_params_instances_int(const cmd_p std::vector instances; for (const auto & m : params.model) - for (const auto & nb : params.n_batch) - for (const auto & fk : params.f32_kv) for (const auto & nl : params.n_gpu_layers) for (const auto & mg : params.main_gpu) - for (const auto & mmq : params.mul_mat_q) - for (const auto & lv : params.low_vram) for (const auto & ts : params.tensor_split) + for (const auto & nb : params.n_batch) + for (const auto & fk : params.f32_kv) + for (const auto & mmq : params.mul_mat_q) for (const auto & nt : params.n_threads) { cmd_params_instance instance = { /* .model = */ m, @@ -393,7 +394,6 @@ static std::vector get_cmd_params_instances_int(const cmd_p /* .n_gpu_layers = */ nl, /* .main_gpu = */ mg, /* .mul_mat_q = */ mmq, - /* .low_vram = */ lv, /* .tensor_split = */ ts, }; instances.push_back(instance); @@ -404,6 +404,56 @@ static std::vector get_cmd_params_instances_int(const cmd_p static std::vector get_cmd_params_instances(const cmd_params & params) { std::vector instances; +#if 1 + // this ordering minimizes the number of times that each model needs to be reloaded + for (const auto & m : params.model) + for (const auto & nl : params.n_gpu_layers) + for (const auto & mg : params.main_gpu) + for (const auto & ts : params.tensor_split) + for (const auto & nb : params.n_batch) + for (const auto & fk : params.f32_kv) + for (const auto & mmq : params.mul_mat_q) + for (const auto & nt : params.n_threads) { + for (const auto & n_prompt : params.n_prompt) { + if (n_prompt == 0) { + continue; + } + cmd_params_instance instance = { + /* .model = */ m, + /* .n_prompt = */ n_prompt, + /* .n_gen = */ 0, + /* .n_batch = */ nb, + /* .f32_kv = */ fk, + /* .n_threads = */ nt, + /* .n_gpu_layers = */ nl, + /* .main_gpu = */ mg, + /* .mul_mat_q = */ mmq, + /* .tensor_split = */ ts, + }; + instances.push_back(instance); + } + + for (const auto & n_gen : params.n_gen) { + if (n_gen == 0) { + continue; + } + cmd_params_instance instance = { + /* .model = */ m, + /* .n_prompt = */ 0, + /* .n_gen = */ n_gen, + /* .n_batch = */ nb, + /* .f32_kv = */ fk, + /* .n_threads = */ nt, + /* .n_gpu_layers = */ nl, + /* .main_gpu = */ mg, + /* .mul_mat_q = */ mmq, + /* .tensor_split = */ ts, + }; + instances.push_back(instance); + } + } +#else + // this ordering separates the prompt and generation tests for (const auto & n_prompt : params.n_prompt) { if (n_prompt == 0) { continue; @@ -419,6 +469,7 @@ static std::vector get_cmd_params_instances(const cmd_param auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0); instances.insert(instances.end(), instances_gen.begin(), instances_gen.end()); } +#endif return instances; } @@ -443,7 +494,6 @@ struct test { int n_gpu_layers; int main_gpu; bool mul_mat_q; - bool low_vram; std::array tensor_split; int n_prompt; int n_gen; @@ -463,7 +513,6 @@ struct test { n_gpu_layers = inst.n_gpu_layers; main_gpu = inst.main_gpu; mul_mat_q = inst.mul_mat_q; - low_vram = inst.low_vram; tensor_split = inst.tensor_split; n_prompt = inst.n_prompt; n_gen = inst.n_gen; @@ -524,7 +573,7 @@ struct test { "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_threads", "f16_kv", - "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split", + "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts" @@ -543,7 +592,7 @@ struct test { return INT; } if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" || - field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") { + field == "f16_kv" || field == "mul_mat_q") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { @@ -574,7 +623,7 @@ struct test { cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv), - std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str, + std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str, std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ts()), std::to_string(stdev_ts()) @@ -766,9 +815,6 @@ struct markdown_printer : public printer { if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { fields.push_back("mul_mat_q"); } - if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) { - fields.push_back("low_vram"); - } if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { fields.push_back("tensor_split"); } @@ -889,17 +935,23 @@ struct sql_printer : public printer { static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { std::vector tokens(n_batch, llama_token_bos(ctx)); int n_processed = 0; + + llama_set_n_threads(ctx, n_threads, n_threads); + while (n_processed < n_prompt) { int n_tokens = std::min(n_prompt - n_processed, n_batch); - llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0), n_threads); + llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0)); n_processed += n_tokens; } } static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { llama_token token = llama_token_bos(ctx); + + llama_set_n_threads(ctx, n_threads, n_threads); + for (int i = 0; i < n_gen; i++) { - llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0), n_threads); + llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0)); } } @@ -958,17 +1010,25 @@ int main(int argc, char ** argv) { std::vector params_instances = get_cmd_params_instances(params); - for (const auto & inst : params_instances) { - // TODO: keep the model between tests when possible - llama_context_params lparams = inst.to_llama_params(); + llama_model * lmodel = nullptr; + const cmd_params_instance * prev_inst = nullptr; - llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams); - if (lmodel == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); - return 1; + for (const auto & inst : params_instances) { + // keep the same model between tests when possible + if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) { + if (lmodel) { + llama_free_model(lmodel); + } + + lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams()); + if (lmodel == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); + return 1; + } + prev_inst = &inst; } - llama_context * ctx = llama_new_context_with_model(lmodel, lparams); + llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams()); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str()); llama_free_model(lmodel); @@ -1006,9 +1066,10 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); - llama_free_model(lmodel); } + llama_free_model(lmodel); + p->print_footer(); llama_backend_free(); diff --git a/examples/main/README.md b/examples/main/README.md index 26e1e28dd..a9561c383 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -262,7 +262,8 @@ These options help improve the performance and memory usage of the LLaMA models. ### Number of Threads -- `-t N, --threads N`: Set the number of threads to use during computation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance. +- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance. +- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. In some systems, it is beneficial to use a higher number of threads during batch processing than during generation. If not specified, the number of threads used for batch processing will be the same as the number of threads used for generation. ### Mlock @@ -305,6 +306,5 @@ These options provide extra functionality and customization when running the LLa - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. -- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 1ed543cbc..fd506773f 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -140,12 +140,17 @@ int main(int argc, char ** argv) { return 0; } - if (params.rope_freq_base != 10000.0) { - LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base); + if (params.n_ctx != 0 && params.n_ctx < 8) { + LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); + params.n_ctx = 8; } - if (params.rope_freq_scale != 1.0) { - LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); + if (params.rope_freq_base != 0.0) { + LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); + } + + if (params.rope_freq_scale != 0.0) { + LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); } LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); @@ -184,20 +189,19 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); - if (params.n_ctx > n_ctx_train) { + const int n_ctx_train = llama_n_ctx_train(model); + const int n_ctx = llama_n_ctx(ctx); + LOG("n_ctx: %d\n", n_ctx); + + if (n_ctx > n_ctx_train) { LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", - __func__, n_ctx_train, params.n_ctx); - } else if (params.n_ctx < 8) { - LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); - params.n_ctx = 8; + __func__, n_ctx_train, n_ctx); } // print system information { LOG_TEE("\n"); - LOG_TEE("system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + LOG_TEE("%s\n", get_system_info(params).c_str()); } std::string path_session = params.path_prompt_cache; @@ -211,7 +215,7 @@ int main(int argc, char ** argv) { if (fp != NULL) { std::fclose(fp); - session_tokens.resize(params.n_ctx); + session_tokens.resize(n_ctx); size_t n_token_count_out = 0; if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); @@ -226,7 +230,7 @@ int main(int argc, char ** argv) { } } - const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; LOG("add_bos: %d\n", add_bos); std::vector embd_inp; @@ -267,9 +271,6 @@ int main(int argc, char ** argv) { LOG("guidance_offset: %s", log_tostr(guidance_offset)); } - const int n_ctx = llama_n_ctx(ctx); - LOG("n_ctx: %d\n", n_ctx); - if ((int) embd_inp.size() > n_ctx - 4) { LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; @@ -466,7 +467,7 @@ int main(int argc, char ** argv) { std::vector embd; std::vector embd_guidance; - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); @@ -576,7 +577,7 @@ int main(int argc, char ** argv) { for (int i = 0; i < input_size; i += params.n_batch) { int n_eval = std::min(input_size - i, params.n_batch); - if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0), params.n_threads)) { + if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } @@ -593,7 +594,7 @@ int main(int argc, char ** argv) { LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); - if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 790189af9..0434ded23 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -108,7 +108,7 @@ int main(int argc, char ** argv) { fflush(stderr); const int n_ctx = llama_n_ctx(ctx); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(model); std::vector clients(n_clients); for (size_t i = 0; i < clients.size(); ++i) { @@ -153,7 +153,7 @@ int main(int argc, char ** argv) { batch.logits[i] = false; } - if (llama_decode(ctx, batch, params.n_threads) != 0) { + if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } @@ -272,7 +272,7 @@ int main(int argc, char ** argv) { 0, 0, 0, // unused }; - const int ret = llama_decode(ctx, batch_view, params.n_threads); + const int ret = llama_decode(ctx, batch_view); if (ret != 0) { if (n_batch == 1 || ret < 0) { // if you get here, it means the KV cache is full - try increasing it via the context size diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index de08bd4a1..7d0038bd4 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -150,16 +150,18 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); - if (int(tokens.size()) < 2*params.n_ctx) { - fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, - params.n_ctx); + const int n_ctx = llama_n_ctx(ctx); + + if (int(tokens.size()) < 2*n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, + n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } @@ -175,20 +177,20 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & return {tokens, -1, logit_history, prob_history}; } - const int calc_chunk = params.n_ctx; + const int calc_chunk = n_ctx; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, - tokens.size(), params.n_ctx, params.ppl_stride); + tokens.size(), n_ctx, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; @@ -215,7 +217,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & const int batch_size = std::min(end - batch_start, n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); - if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { //fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } @@ -250,7 +252,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & } //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); - for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) { + for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( @@ -287,8 +289,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; + const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -298,9 +301,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); - if (int(tokens.size()) < 2*params.n_ctx) { - fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, - params.n_ctx); + if (int(tokens.size()) < 2*n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, + n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } @@ -311,10 +314,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par std::vector prob_history; prob_history.resize(tokens.size()); - const int n_chunk_max = tokens.size() / params.n_ctx; + const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; @@ -326,10 +329,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par std::vector workers(std::thread::hardware_concurrency() - 1); for (int i = 0; i < n_chunk; ++i) { - const int start = i * params.n_ctx; - const int end = start + params.n_ctx; + const int start = i * n_ctx; + const int end = start + n_ctx; - const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; + const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; @@ -350,7 +353,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par tokens[batch_start] = llama_token_bos(ctx); } - if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } @@ -358,7 +361,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // restore the original token in case it was set to BOS tokens[batch_start] = token_org; - const auto batch_logits = llama_get_logits(ctx); + const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } @@ -387,10 +390,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. - const int first = params.n_ctx/2; - process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, + const int first = n_ctx/2; + process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); - count += params.n_ctx - first - 1; + count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { @@ -399,7 +402,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); - printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2); + printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); } fflush(stdout); } @@ -420,7 +423,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par } static std::vector hellaswag_evaluate_tokens( - llama_context * ctx, std::vector & tokens, int n_past, int n_batch, int n_vocab, int n_thread + llama_context * ctx, std::vector & tokens, int n_past, int n_batch, int n_vocab ) { std::vector result; result.reserve(tokens.size() * n_vocab); @@ -428,7 +431,7 @@ static std::vector hellaswag_evaluate_tokens( for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { size_t n_tokens = tokens.size() - i_chunk * n_batch; n_tokens = std::min(n_tokens, size_t(n_batch)); - if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0), n_thread)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {}; } @@ -475,7 +478,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models @@ -530,7 +533,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { printf("\ntask\tacc_norm\n"); double acc = 0.0f; - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + const int n_ctx = llama_n_ctx(ctx); std::vector> ending_tokens(4); @@ -558,7 +562,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { auto query_size = query_embd.size(); // Stop if query wont fit the ctx window - if (query_size > (size_t)params.n_ctx) { + if (query_size > (size_t)n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } @@ -571,7 +575,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // clear the KV cache llama_kv_cache_tokens_rm(ctx, -1, -1); - auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads); + auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; @@ -608,7 +612,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { query_size = query_embd.size(); // Stop if query wont fit the ctx window - if (context_size + query_size > (size_t)params.n_ctx) { + if (context_size + query_size > (size_t)n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } @@ -620,7 +624,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { //} // Evaluate the query - logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads); + logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; @@ -716,7 +720,7 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); + const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); @@ -725,8 +729,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct results_perplexity results; diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 94edb94d9..dd76b1cee 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -309,21 +309,22 @@ int main(int argc, char ** argv) { llama_context * ctx; { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); + mparams.use_mlock = false; - lparams.n_ctx = 256; - lparams.seed = 1; - lparams.f16_kv = false; - lparams.use_mlock = false; - - model = llama_load_model_from_file(params.model.c_str(), lparams); + model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + cparams.n_ctx = 256; + cparams.seed = 1; + cparams.f16_kv = false; + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 6e4d40b9e..acc6dbdfd 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -23,23 +23,17 @@ int main(int argc, char ** argv) { params.n_predict = 16; } - auto lparams = llama_context_default_params(); - - lparams.n_ctx = params.n_ctx; - lparams.seed = params.seed; - lparams.f16_kv = params.memory_f16; - lparams.use_mmap = params.use_mmap; - lparams.use_mlock = params.use_mlock; - auto n_past = 0; auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); // init - auto * model = llama_load_model_from_file(params.model.c_str(), lparams); + llama_model * model; + llama_context * ctx; + + std::tie(model, ctx) = llama_init_from_gpt_params( params ); if (model == nullptr) { return 1; } - auto * ctx = llama_new_context_with_model(model, lparams); if (ctx == nullptr) { llama_free_model(model); return 1; @@ -54,7 +48,7 @@ int main(int argc, char ** argv) { } // evaluate prompt - llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0), params.n_threads); + llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0)); last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); n_past += n_prompt_tokens; @@ -79,7 +73,7 @@ int main(int argc, char ** argv) { for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -91,7 +85,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx); llama_free_model(model); @@ -106,7 +100,7 @@ int main(int argc, char ** argv) { llama_free(ctx); // make new context - auto * ctx2 = llama_new_context_with_model(model, lparams); + auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); // Load state (rng, logits, embedding and kv_cache) from file { @@ -139,7 +133,7 @@ int main(int argc, char ** argv) { // second run for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx2); - auto n_vocab = llama_n_vocab(ctx2); + auto n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -151,7 +145,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx2); llama_free_model(model); diff --git a/examples/server/README.md b/examples/server/README.md index 517608046..d409e8408 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -4,14 +4,14 @@ This example demonstrates a simple HTTP API server and a simple web front end to Command line options: -- `--threads N`, `-t N`: Set the number of threads to use during computation. +- `--threads N`, `-t N`: Set the number of threads to use during generation. +- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`). - `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. - `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. -- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`. - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended. - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 9b9624832..fe9a4255e 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -200,6 +200,7 @@ struct llama_server_context llama_model *model = nullptr; llama_context *ctx = nullptr; gpt_params params; + int n_ctx; grammar_parser::parse_state parsed_grammar; llama_grammar *grammar = nullptr; @@ -239,7 +240,7 @@ struct llama_server_context num_prompt_tokens = 0; num_tokens_predicted = 0; generated_text = ""; - generated_text.reserve(params.n_ctx); + generated_text.reserve(n_ctx); generated_token_probs.clear(); truncated = false; stopped_eos = false; @@ -265,8 +266,8 @@ struct llama_server_context LOG_ERROR("unable to load model", {{"model", params_.model}}); return false; } - - last_n_tokens.resize(params.n_ctx); + n_ctx = llama_n_ctx(ctx); + last_n_tokens.resize(n_ctx); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); return true; } @@ -351,19 +352,19 @@ struct llama_server_context { params.n_keep = (int)num_prompt_tokens; } - params.n_keep = std::min(params.n_ctx - 4, params.n_keep); + params.n_keep = std::min(n_ctx - 4, params.n_keep); // if input prompt is too big, truncate like normal - if (num_prompt_tokens >= (size_t)params.n_ctx) + if (num_prompt_tokens >= (size_t)n_ctx) { - const int n_left = (params.n_ctx - params.n_keep) / 2; + const int n_left = (n_ctx - params.n_keep) / 2; std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); - std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); + std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin()); LOG_VERBOSE("input truncated", { - {"n_ctx", params.n_ctx}, + {"n_ctx", n_ctx}, {"n_keep", params.n_keep}, {"n_left", n_left}, {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, @@ -413,7 +414,7 @@ struct llama_server_context completion_token_output result; result.tok = -1; - if (embd.size() >= (size_t)params.n_ctx) + if (embd.size() >= (size_t)n_ctx) { // Shift context @@ -433,7 +434,7 @@ struct llama_server_context truncated = true; LOG_VERBOSE("input truncated", { - {"n_ctx", params.n_ctx}, + {"n_ctx", n_ctx}, {"n_keep", params.n_keep}, {"n_left", n_left}, }); @@ -447,12 +448,11 @@ struct llama_server_context n_eval = params.n_batch; } - if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0), params.n_threads)) + if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0))) { LOG_ERROR("failed to eval", { {"n_eval", n_eval}, {"n_past", n_past}, - {"n_threads", params.n_threads}, {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, }); has_next_token = false; @@ -470,11 +470,11 @@ struct llama_server_context // out of user input, sample next token const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; const float repeat_penalty = params.repeat_penalty; const float alpha_presence = params.presence_penalty; const float alpha_frequency = params.frequency_penalty; @@ -486,7 +486,7 @@ struct llama_server_context { auto *logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); // Apply params.logit_bias map for (const auto &it : params.logit_bias) @@ -505,7 +505,7 @@ struct llama_server_context // Apply penalties float nl_logit = logits[llama_token_nl(ctx)]; - auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); + auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); llama_sample_repetition_penalty(ctx, &candidates_p, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_repeat, repeat_penalty); @@ -690,7 +690,7 @@ struct llama_server_context std::vector getEmbedding() { - static const int n_embd = llama_n_embd(ctx); + static const int n_embd = llama_n_embd(model); if (!params.embedding) { LOG_WARNING("embedding disabled", { @@ -734,7 +734,6 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); - printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); printf(" -nommq, --no-mul-mat-q\n"); printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n"); printf(" Not recommended since this is both slower and uses more VRAM.\n"); @@ -918,14 +917,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); -#endif // GGML_USE_CUBLAS - } - else if (arg == "--low-vram" || arg == "-lv") - { -#ifdef GGML_USE_CUBLAS - params.low_vram = true; -#else - LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mul-mat-q" || arg == "-nommq") @@ -1031,7 +1022,7 @@ static json format_generation_settings(llama_server_context &llama) eos_bias->second < 0.0f && std::isinf(eos_bias->second); return json{ - {"n_ctx", llama.params.n_ctx}, + {"n_ctx", llama.n_ctx}, {"model", llama.params.model_alias}, {"seed", llama.params.seed}, {"temp", llama.params.temp}, @@ -1191,7 +1182,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla const auto &logit_bias = body.find("logit_bias"); if (logit_bias != body.end() && logit_bias->is_array()) { - const int n_vocab = llama_n_vocab(llama.ctx); + const int n_vocab = llama_n_vocab(llama.model); for (const auto &el : *logit_bias) { if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) @@ -1324,6 +1315,7 @@ int main(int argc, char **argv) {"commit", BUILD_COMMIT}}); LOG_INFO("system info", { {"n_threads", params.n_threads}, + {"n_threads_batch", params.n_threads_batch}, {"total_threads", std::thread::hardware_concurrency()}, {"system_info", llama_print_system_info()}, }); @@ -1387,7 +1379,7 @@ int main(int argc, char **argv) if (llama.params.n_beams) { // Fill llama.generated_token_probs vector with final beam. llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams, - llama.n_past, llama.n_remain, llama.params.n_threads); + llama.n_past, llama.n_remain); // Translate llama.generated_token_probs to llama.generated_text. append_to_generated_text_from_generated_token_probs(llama); } else { diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index 1616a4a75..24fb16b78 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -33,18 +33,28 @@ int main(int argc, char ** argv) { llama_backend_init(params.numa); - llama_context_params ctx_params = llama_context_default_params(); + // initialize the model - ctx_params.seed = 1234; - ctx_params.n_ctx = 2048; + llama_model_params model_params = llama_model_default_params(); - llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); + // model_params.n_gpu_layers = 99; // offload all layers to the GPU + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } + // initialize the context + + llama_context_params ctx_params = llama_context_default_params(); + + ctx_params.seed = 1234; + ctx_params.n_ctx = 2048; + ctx_params.n_threads = params.n_threads; + ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { @@ -97,7 +107,7 @@ int main(int argc, char ** argv) { // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; - if (llama_decode(ctx, batch, params.n_threads) != 0) { + if (llama_decode(ctx, batch) != 0) { LOG_TEE("%s: llama_decode() failed\n", __func__); return 1; } @@ -112,7 +122,7 @@ int main(int argc, char ** argv) { while (n_cur <= n_len) { // sample the next token { - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); std::vector candidates; @@ -154,7 +164,7 @@ int main(int argc, char ** argv) { n_cur += 1; // evaluate the current batch with the transformer model - if (llama_decode(ctx, batch, params.n_threads)) { + if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 2445d78dc..c5e5b234f 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -70,16 +70,16 @@ int main(int argc, char ** argv) { const auto t_enc_start = ggml_time_us(); // eval the prompt with both models - llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0), params.n_threads); - llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0), params.n_threads); - llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0), params.n_threads); + llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); + llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); + llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0)); const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab const int n_ctx = llama_n_ctx(ctx_tgt); - const int n_vocab = llama_n_vocab(ctx_tgt); - //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft)); + const int n_vocab = llama_n_vocab(model_tgt); + //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); // how many tokens to draft each time int n_draft = params.n_draft; @@ -173,7 +173,7 @@ int main(int argc, char ** argv) { } llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx); - llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0), params.n_threads); + llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0)); ++n_past_dft; // heuristic for n_draft @@ -258,7 +258,7 @@ int main(int argc, char ** argv) { // evaluate the drafted token on the draft model llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx); - llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0), params.n_threads); + llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0)); ++n_past_cur; if (grammar_dft != NULL) { @@ -268,7 +268,7 @@ int main(int argc, char ** argv) { // evaluate the target model on the drafted tokens llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx); - llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0), params.n_threads); + llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0)); ++n_past_tgt; // the first token is always proposed by the traget model before the speculation loop diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index d5205aff6..a9cf8a381 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -976,14 +976,16 @@ int main(int argc, char ** argv) { printf("%s: seed: %u\n", __func__, params.common.seed); srand(params.common.seed); - struct llama_context_params llama_params = llama_context_default_params(); - llama_params.vocab_only = true; + struct llama_model_params mparams = llama_model_default_params(); + mparams.vocab_only = true; - struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); - struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); + struct llama_context_params cparams = llama_context_default_params(); + + struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams); + struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams); struct my_llama_model model; - model.hparams.n_vocab = llama_n_vocab(lctx); + model.hparams.n_vocab = llama_n_vocab(lmodel); model.hparams.n_ctx = params.common.n_ctx; model.hparams.n_embd = params.n_embd; model.hparams.n_head = params.n_head; diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 29fb7abd4..86d1fe203 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,3 +1,4 @@ +#include #include #include #include @@ -467,7 +468,7 @@ static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static bool g_mul_mat_q = true; static void * g_scratch_buffer = nullptr; -static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default +static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_offset = 0; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; @@ -6738,14 +6739,10 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these - if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && - src1->type == GGML_TYPE_F32 && - dst->type == GGML_TYPE_F32 && - (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { - return true; - } - - return false; + return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32); } static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ @@ -6901,6 +6898,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream); } else { + fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, + ggml_type_name(src0->type), ggml_type_name(src1->type)); GGML_ASSERT(false); } @@ -7198,7 +7197,12 @@ void ggml_cuda_set_mul_mat_q(const bool mul_mat_q) { } void ggml_cuda_set_scratch_size(const size_t scratch_size) { - g_scratch_size = scratch_size; + // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously + // it still won't always work as expected, but it's better than nothing + if (scratch_size > g_scratch_size) { + ggml_cuda_free_scratch(); + } + g_scratch_size = std::max(g_scratch_size, scratch_size); } void ggml_cuda_free_scratch() { diff --git a/llama.cpp b/llama.cpp index 7668cb1a7..685712d17 100644 --- a/llama.cpp +++ b/llama.cpp @@ -887,10 +887,10 @@ static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(ctx, token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -931,9 +931,9 @@ static const size_t MB = kB*kB; static const size_t GB = kB*kB*kB; struct llama_hparams { + bool vocab_only; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on - uint32_t n_ctx; // context size used during inference uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; @@ -944,8 +944,8 @@ struct llama_hparams { float f_norm_eps; float f_norm_rms_eps; - float rope_freq_base; - float rope_freq_scale; + float rope_freq_base_train; + float rope_freq_scale_train; bool operator!=(const llama_hparams & other) const { return static_cast(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT @@ -962,15 +962,18 @@ struct llama_hparams { uint32_t n_embd_gqa() const { return n_embd/n_gqa(); } +}; - size_t kv_size() const { - size_t result = 2ull; - result *= (size_t) n_embd_gqa(); - result *= (size_t) n_ctx; - result *= (size_t) n_layer; - result *= sizeof(ggml_fp16_t); - return result; - } +struct llama_cparams { + uint32_t n_ctx; // context size used during inference + uint32_t n_batch; + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + float rope_freq_base; + float rope_freq_scale; + + bool mul_mat_q; }; struct llama_layer { @@ -1148,11 +1151,8 @@ struct llama_model { }; struct llama_context { - llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} + llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { - if (model_owner) { - delete &model; - } #ifdef GGML_USE_METAL if (ctx_metal) { ggml_metal_free(ctx_metal); @@ -1163,27 +1163,26 @@ struct llama_context { } } + llama_cparams cparams; + + const llama_model & model; + + // key + value cache for the self attention + struct llama_kv_cache kv_self; + std::mt19937 rng; bool has_evaluated_once = false; + int64_t t_start_us; + int64_t t_load_us; int64_t t_sample_us = 0; - int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; + int64_t t_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled - int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) - - const llama_model & model; - - bool model_owner = false; - - int64_t t_load_us; - int64_t t_start_us; - - // key + value cache for the self attention - struct llama_kv_cache kv_self; + int32_t n_eval = 0; // number of eval calls // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; @@ -1218,10 +1217,10 @@ static bool llama_kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, + uint32_t n_ctx, int n_gpu_layers) { const uint32_t n_embd = hparams.n_embd_gqa(); const uint32_t n_layer = hparams.n_layer; - const uint32_t n_ctx = hparams.n_ctx; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; @@ -1255,11 +1254,20 @@ static bool llama_kv_cache_init( (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS + size_t vram_kv_cache = 0; + if (n_gpu_layers > (int)n_layer + 1) { ggml_cuda_assign_buffers_no_scratch(cache.v); + LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.v); } if (n_gpu_layers > (int)n_layer + 2) { ggml_cuda_assign_buffers_no_scratch(cache.k); + LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.k); + } + if (vram_kv_cache > 0) { + LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); } #endif // GGML_USE_CUBLAS @@ -1715,7 +1723,7 @@ struct llama_model_loader { lmlock->grow_to(size_lock); } break; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS case GGML_BACKEND_GPU: case GGML_BACKEND_GPU_SPLIT: // old code: @@ -1748,7 +1756,15 @@ struct llama_model_loader { // load LLaMA models // -static std::string llama_model_ftype_name(enum llama_ftype ftype) { +static std::string llama_model_arch_name(llm_arch arch) { + auto it = LLM_ARCH_NAMES.find(arch); + if (it == LLM_ARCH_NAMES.end()) { + return "unknown"; + } + return it->second; +} + +static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } @@ -1804,10 +1820,7 @@ static void llm_load_arch(llama_model_loader & ml, llama_model & model) { static void llm_load_hparams( llama_model_loader & ml, - llama_model & model, - int n_ctx, - float rope_freq_base, - float rope_freq_scale) { + llama_model & model) { struct gguf_context * ctx = ml.ctx_gguf; const auto kv = LLM_KV(model.arch); @@ -1818,29 +1831,25 @@ static void llm_load_hparams( GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME)); // get hparams kv - GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST)); - GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); - GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); + GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST)); + GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); + GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); // n_head_kv is optional, default to n_head hparams.n_head_kv = hparams.n_head; GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); // rope_freq_base (optional) - if (rope_freq_base == 0.0f) { - rope_freq_base = 10000.0f; - GGUF_GET_KEY(ctx, rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); - } + hparams.rope_freq_base_train = 10000.0f; + GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); // rope_freq_scale (inverse of the kv) is optional - if (rope_freq_scale == 0.0f) { - float ropescale = 1.0f; - GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); - rope_freq_scale = 1.0f/ropescale; - } + float ropescale = 1.0f; + GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); + hparams.rope_freq_scale_train = 1.0f/ropescale; // sanity check for n_rot (optional) { @@ -1907,10 +1916,6 @@ static void llm_load_hparams( }; model.ftype = ml.ftype; - - hparams.n_ctx = n_ctx; - hparams.rope_freq_base = rope_freq_base; - hparams.rope_freq_scale = rope_freq_scale; } // TODO: This should probably be in llama.h @@ -2034,31 +2039,30 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { const auto & vocab = model.vocab; // hparams - LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); - LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); - LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix - LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); - LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); - LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); - LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx); - LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); - LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); - LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); - LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); - LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim - LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); - LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); - LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); - LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); - LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); - LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); - LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); - LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); - LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); + LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); + LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); + LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix + LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); + LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); + LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); + LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); + LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); + LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); + LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); + LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim + LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); + LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); + LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); + LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); + LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); + LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); + LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); + LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); + LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); if (ml.n_bytes < GB) { - LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } else { - LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } // general kv @@ -2076,13 +2080,9 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { static void llm_load_tensors( llama_model_loader & ml, llama_model & model, - int n_batch, int n_gpu_layers, int main_gpu, const float * tensor_split, - const bool mul_mat_q, - bool low_vram, - ggml_type memory_type, bool use_mlock, llama_progress_callback progress_callback, void * progress_callback_user_data) { @@ -2121,11 +2121,9 @@ static void llm_load_tensors( } (void) main_gpu; - (void) mul_mat_q; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); - ggml_cuda_set_mul_mat_q(mul_mat_q); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) @@ -2160,9 +2158,9 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2226,9 +2224,9 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2296,9 +2294,9 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2373,9 +2371,9 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2447,20 +2445,12 @@ static void llm_load_tensors( // print memory requirements { - const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; - // this is the total memory required to run the inference size_t mem_required = ctx_size + mmapped_size - vram_weights; // weights in VRAM not in memory - // this is the memory required by one llama_state - const size_t mem_required_state = scale*hparams.kv_size(); - - LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, - mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); - - (void) n_batch; + LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); @@ -2469,36 +2459,17 @@ static void llm_load_tensors( if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); } - size_t vram_kv_cache = 0; #ifdef GGML_USE_CUBLAS const int max_backend_supported_layers = hparams.n_layer + 3; - const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; - if (n_gpu_layers > (int) hparams.n_layer + 1) { - if (low_vram) { - LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); - } else { - LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); - vram_kv_cache += hparams.kv_size() / 2; - } - } - if (n_gpu_layers > (int) hparams.n_layer + 2) { - if (low_vram) { - LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); - } else { - LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); - vram_kv_cache += hparams.kv_size() / 2; - } - } + const int max_offloadable_layers = hparams.n_layer + 3; #elif defined(GGML_USE_CLBLAST) const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; #endif // GGML_USE_CUBLAS - LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", - __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); - LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n", - __func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up + LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); + LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0); #else (void) n_gpu_layers; #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) @@ -2511,7 +2482,7 @@ static void llm_load_tensors( } (void) tensor_split; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS { ggml_cuda_set_tensor_split(tensor_split); } @@ -2533,29 +2504,24 @@ static void llm_load_tensors( static bool llama_model_load( const std::string & fname, llama_model & model, - int n_ctx, - int n_batch, int n_gpu_layers, int main_gpu, const float * tensor_split, - const bool mul_mat_q, - float rope_freq_base, - float rope_freq_scale, - bool low_vram, - ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - std::unique_ptr ml(new llama_model_loader(fname, use_mmap)); + llama_model_loader ml(fname, use_mmap); - llm_load_arch (*ml, model); - llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale); - llm_load_vocab (*ml, model); + model.hparams.vocab_only = vocab_only; - llm_load_print_meta(*ml, model); + llm_load_arch (ml, model); + llm_load_hparams(ml, model); + llm_load_vocab (ml, model); + + llm_load_print_meta(ml, model); if (model.hparams.n_vocab != model.vocab.id_to_token.size()) { throw std::runtime_error("vocab size mismatch"); @@ -2567,8 +2533,8 @@ static bool llama_model_load( } llm_load_tensors( - *ml, model, n_batch, n_gpu_layers, - main_gpu, tensor_split, mul_mat_q, low_vram, memory_type, + ml, model, n_gpu_layers, + main_gpu, tensor_split, use_mlock, progress_callback, progress_callback_user_data); } catch (const std::exception & err) { LLAMA_LOG_ERROR("error loading model: %s\n", err.what()); @@ -2583,6 +2549,7 @@ static struct ggml_cgraph * llm_build_llama( const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -2590,7 +2557,7 @@ static struct ggml_cgraph * llm_build_llama( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -2598,8 +2565,8 @@ static struct ggml_cgraph * llm_build_llama( GGML_ASSERT(n_embd_head == hparams.n_rot); - const float freq_base = hparams.rope_freq_base; - const float freq_scale = hparams.rope_freq_scale; + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; @@ -2657,9 +2624,6 @@ static struct ggml_cgraph * llm_build_llama( // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded - // - // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal - // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; @@ -2975,6 +2939,7 @@ static struct ggml_cgraph * llm_build_baichaun( const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -2982,7 +2947,7 @@ static struct ggml_cgraph * llm_build_baichaun( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -2990,8 +2955,8 @@ static struct ggml_cgraph * llm_build_baichaun( GGML_ASSERT(n_embd_head == hparams.n_rot); - const float freq_base = hparams.rope_freq_base; - const float freq_scale = hparams.rope_freq_scale; + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; @@ -3047,9 +3012,6 @@ static struct ggml_cgraph * llm_build_baichaun( // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded - // - // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal - // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; @@ -3382,6 +3344,7 @@ static struct ggml_cgraph * llm_build_falcon( const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -3389,7 +3352,7 @@ static struct ggml_cgraph * llm_build_falcon( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -3397,8 +3360,8 @@ static struct ggml_cgraph * llm_build_falcon( GGML_ASSERT(n_embd_head == hparams.n_rot); - const float freq_base = hparams.rope_freq_base; - const float freq_scale = hparams.rope_freq_scale; + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; const float norm_eps = hparams.f_norm_eps; const int n_gpu_layers = model.n_gpu_layers; @@ -3457,9 +3420,6 @@ static struct ggml_cgraph * llm_build_falcon( // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded - // - // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal - // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; @@ -3753,6 +3713,7 @@ static struct ggml_cgraph * llm_build_starcoder( const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -3760,7 +3721,7 @@ static struct ggml_cgraph * llm_build_starcoder( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -4037,8 +3998,7 @@ static struct ggml_cgraph * llama_build_graph( // static int llama_decode_internal( llama_context & lctx, - llama_batch batch, - int n_threads) { + llama_batch batch) { const uint32_t n_tokens = batch.n_tokens; if (n_tokens == 0) { @@ -4046,6 +4006,15 @@ static int llama_decode_internal( return -1; } + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto n_batch = cparams.n_batch; + + GGML_ASSERT(n_tokens <= n_batch); + + int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT const int64_t t_start_us = ggml_time_us(); @@ -4058,9 +4027,6 @@ static int llama_decode_internal( GGML_ASSERT(n_threads > 0); - const auto & model = lctx.model; - const auto & hparams = model.hparams; - auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); @@ -4103,7 +4069,7 @@ static int llama_decode_internal( // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA? - kv_self.n = std::min((int32_t) hparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); + kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); //printf("kv_self.n = %d\n", kv_self.n); @@ -4128,6 +4094,8 @@ static int llama_decode_internal( ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data); } } + + ggml_cuda_set_mul_mat_q(cparams.mul_mat_q); #endif // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); @@ -5416,7 +5384,7 @@ void llama_sample_classifier_free_guidance( GGML_ASSERT(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(llama_get_model(ctx)); GGML_ASSERT(n_vocab == (int)candidates->size); GGML_ASSERT(!candidates->sorted); @@ -5445,7 +5413,7 @@ void llama_sample_classifier_free_guidance( llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { GGML_ASSERT(ctx); - auto N = float(llama_n_vocab(ctx)); + auto N = float(llama_n_vocab(llama_get_model(ctx))); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); @@ -5632,7 +5600,7 @@ struct llama_logit_info { }; llama_logit_info(llama_context * ctx) : logits(llama_get_logits(ctx)) - , n_vocab(llama_n_vocab(ctx)) + , n_vocab(llama_n_vocab(llama_get_model(ctx))) , max_l(*std::max_element(logits, logits + n_vocab)) , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l})) { } @@ -5670,7 +5638,6 @@ struct llama_beam_search_data { size_t n_beams; int n_past; int n_predict; - int n_threads; std::vector beams; std::vector next_beams; @@ -5680,12 +5647,11 @@ struct llama_beam_search_data { // Used to communicate to/from callback on beams state. std::vector beam_views; - llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads) + llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict) : ctx(ctx) , n_beams(n_beams) , n_past(n_past) , n_predict(n_predict) - , n_threads(n_threads) , beam_views(n_beams) { beams.reserve(n_beams); next_beams.reserve(n_beams); @@ -5722,7 +5688,7 @@ struct llama_beam_search_data { } else { // beam is not at end-of-sentence, so branch with next top_k tokens. if (!beam.tokens.empty()) { - llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0), n_threads); + llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0)); } llama_logit_info logit_info(ctx); std::vector next_tokens = logit_info.top_k(n_beams); @@ -5796,7 +5762,7 @@ struct llama_beam_search_data { callback(callback_data, get_beams_state(false)); // Sets common_prefix_length update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed. if (common_prefix_length) { - llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0), n_threads); + llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0)); n_past += common_prefix_length; } // Zero-out next_beam probabilities to place them last in following min-heap. @@ -5837,11 +5803,11 @@ struct llama_beam_search_data { void llama_beam_search(llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, - size_t n_beams, int n_past, int n_predict, int n_threads) { + size_t n_beams, int n_past, int n_predict) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); - llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads); + llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict); beam_search_data.loop(callback, callback_data); @@ -6061,11 +6027,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s nthread = std::thread::hardware_concurrency(); } - std::unique_ptr ml(new llama_model_loader(fname_inp, /*use_mmap*/ false)); + llama_model_loader ml(fname_inp, /*use_mmap*/ false); llama_model model; - llm_load_arch(*ml, model); - llm_load_hparams(*ml, model, 0, 0, 0); + llm_load_arch(ml, model); + llm_load_hparams(ml, model); if (params->only_copy) { ftype = model.ftype; @@ -6075,7 +6041,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s struct gguf_context * ctx_out = gguf_init_empty(); // copy the KV pairs from the input file - gguf_set_kv (ctx_out, ml->ctx_gguf); + gguf_set_kv (ctx_out, ml.ctx_gguf); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", ftype); @@ -6083,8 +6049,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s int n_attention_wv = 0; int n_feed_forward_w2 = 0; - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * meta = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * meta = ml.get_tensor_meta(i); const std::string name = ggml_get_name(meta); @@ -6120,8 +6086,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector> f32_conv_buf; // populate the original tensors so we get an initial meta data - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * meta = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * meta = ml.get_tensor_meta(i); gguf_add_tensor(ctx_out, meta); } @@ -6134,8 +6100,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * tensor = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * tensor = ml.get_tensor_meta(i); const std::string name = ggml_get_name(tensor); @@ -6143,10 +6109,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s read_data.resize(ggml_nbytes(tensor)); } tensor->data = read_data.data(); - ml->load_data_for(tensor); + ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", - ++idx, ml->n_tensors, + ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); @@ -6296,7 +6262,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } -// TODO: after the GGUF PR, this likely won't work and needs to be updated static int llama_apply_lora_from_file_internal( const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads ) { @@ -6575,33 +6540,40 @@ static int llama_apply_lora_from_file_internal( // // interface implementation // +struct llama_model_params llama_model_default_params() { + struct llama_model_params result = { + /*.n_gpu_layers =*/ 0, + /*.main_gpu =*/ 0, + /*.tensor_split =*/ nullptr, + /*.progress_callback =*/ nullptr, + /*.progress_callback_user_data =*/ nullptr, + /*.vocab_only =*/ false, + /*.use_mmap =*/ true, + /*.use_mlock =*/ false, + }; + +#ifdef GGML_USE_METAL + result.n_gpu_layers = 1; +#endif + + return result; +} struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, /*.n_batch =*/ 512, - /*.n_gpu_layers =*/ 0, - /*.main_gpu =*/ 0, - /*.tensor_split =*/ nullptr, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default + /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, - /*.progress_callback =*/ nullptr, - /*.progress_callback_user_data =*/ nullptr, - /*.low_vram =*/ false, /*.mul_mat_q =*/ true, /*.f16_kv =*/ true, /*.logits_all =*/ false, - /*.vocab_only =*/ false, - /*.use_mmap =*/ true, - /*.use_mlock =*/ false, /*.embedding =*/ false, }; -#ifdef GGML_USE_METAL - result.n_gpu_layers = 1; -#endif - return result; } @@ -6660,13 +6632,11 @@ int64_t llama_time_us(void) { struct llama_model * llama_load_model_from_file( const char * path_model, - struct llama_context_params params) { + struct llama_model_params params) { ggml_time_init(); llama_model * model = new llama_model; - ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; @@ -6683,9 +6653,9 @@ struct llama_model * llama_load_model_from_file( }; } - if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers, - params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale, - params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, + if (!llama_model_load(path_model, *model, params.n_gpu_layers, + params.main_gpu, params.tensor_split, + params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); delete model; @@ -6709,18 +6679,33 @@ struct llama_context * llama_new_context_with_model( llama_context * ctx = new llama_context(*model); + const auto & hparams = model->hparams; + auto & cparams = ctx->cparams; + + cparams.n_batch = params.n_batch; + cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; + cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base; + cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale; + cparams.n_threads = params.n_threads; + cparams.n_threads_batch = params.n_threads_batch; + cparams.mul_mat_q = params.mul_mat_q; + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } + LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); + LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); + LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); + ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; // reserve memory for context buffers - if (!params.vocab_only) { - if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, params.n_gpu_layers)) { + if (!hparams.vocab_only) { + if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; @@ -6731,11 +6716,9 @@ struct llama_context * llama_new_context_with_model( LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } - const auto & hparams = ctx->model.hparams; - // resized during inference if (params.logits_all) { - ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); + ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } @@ -6753,12 +6736,13 @@ struct llama_context * llama_new_context_with_model( ctx->alloc = ggml_allocr_new_measure(tensor_alignment); // build worst-case graph - const uint32_t n_tokens = std::min((int) hparams.n_ctx, params.n_batch); + int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); + int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, hparams.n_ctx - n_tokens, 0)); + ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0)); #ifdef GGML_USE_METAL - if (params.n_gpu_layers > 0) { + if (model->n_gpu_layers > 0) { ctx->ctx_metal = ggml_metal_init(1); if (!ctx->ctx_metal) { LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__); @@ -6773,7 +6757,7 @@ struct llama_context * llama_new_context_with_model( // measure memory requirements for the graph size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; - LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); + LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); // recreate allocator with exact memory requirements ggml_allocr_free(ctx->alloc); @@ -6786,24 +6770,42 @@ struct llama_context * llama_new_context_with_model( } #endif #ifdef GGML_USE_CUBLAS - if (params.low_vram) { - LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); - ggml_cuda_set_scratch_size(0); // disable scratch - } else { - ggml_cuda_set_scratch_size(alloc_size); - LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); + ggml_cuda_set_scratch_size(alloc_size); + LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); + + // calculate total VRAM usage + auto add_tensor = [](const ggml_tensor * t, size_t & size) { + if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) { + size += ggml_nbytes(t); + } + }; + size_t model_vram_size = 0; + for (const auto & kv : model->tensors_by_name) { + add_tensor(kv.second, model_vram_size); } + + size_t kv_vram_size = 0; + add_tensor(ctx->kv_self.k, kv_vram_size); + add_tensor(ctx->kv_self.v, kv_vram_size); + + size_t ctx_vram_size = alloc_size + kv_vram_size; + size_t total_vram_size = model_vram_size + ctx_vram_size; + + LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__, + total_vram_size / 1024.0 / 1024.0, + model_vram_size / 1024.0 / 1024.0, + ctx_vram_size / 1024.0 / 1024.0); #endif } #ifdef GGML_USE_METAL - if (params.n_gpu_layers > 0) { + if (model->n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers void * data_ptr = NULL; size_t data_size = 0; - if (params.use_mmap) { + if (ctx->model.mapping) { data_ptr = ctx->model.mapping->addr; data_size = ctx->model.mapping->size; } else { @@ -6822,11 +6824,8 @@ struct llama_context * llama_new_context_with_model( return NULL; \ } - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); - - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); - + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0)); #undef LLAMA_METAL_CHECK_BUF } @@ -6850,63 +6849,37 @@ struct llama_context * llama_new_context_with_model( return ctx; } -static struct llama_context * llama_init_from_file( - const char * path_model, - struct llama_context_params params) { - struct llama_model * model = llama_load_model_from_file(path_model, params); - if (!model) { - return nullptr; - } - - struct llama_context * ctx = llama_new_context_with_model(model, params); - ctx->model_owner = true; - - return ctx; -} - void llama_free(struct llama_context * ctx) { delete ctx; } -int llama_n_vocab(const struct llama_context * ctx) { - return llama_model_n_vocab(&ctx->model); +const llama_model * llama_get_model(const struct llama_context * ctx) { + return &ctx->model; } int llama_n_ctx(const struct llama_context * ctx) { - return llama_model_n_ctx(&ctx->model); + return ctx->cparams.n_ctx; } -int llama_n_ctx_train(const struct llama_context * ctx) { - return llama_model_n_ctx_train(&ctx->model); +enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { + return model->vocab.type; } -int llama_n_embd(const struct llama_context * ctx) { - return llama_model_n_embd(&ctx->model); -} - -enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) { - return ctx->model.vocab.type; -} - -int llama_model_n_vocab(const struct llama_model * model) { +int llama_n_vocab(const struct llama_model * model) { return model->vocab.id_to_token.size(); } -int llama_model_n_ctx(const struct llama_model * model) { - return model->hparams.n_ctx; -} - -int llama_model_n_ctx_train(const struct llama_model * model) { +int llama_n_ctx_train(const struct llama_model * model) { return model->hparams.n_ctx_train; } -int llama_model_n_embd(const struct llama_model * model) { +int llama_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s %s %s", - model->name.c_str(), + llama_model_arch_name(model->arch).c_str(), llama_model_type_name(model->type), llama_model_ftype_name(model->ftype).c_str()); } @@ -7131,9 +7104,11 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; + const auto & cparams = ctx->cparams; + const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = hparams.n_ctx; + const int n_ctx = cparams.n_ctx; const size_t kv_size = kv_self.buf.size; const int kv_ntok = kv_self.head; @@ -7239,9 +7214,11 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; + const auto & cparams = ctx->cparams; + const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = hparams.n_ctx; + const int n_ctx = cparams.n_ctx; size_t kv_size; int kv_ntok; @@ -7378,11 +7355,10 @@ int llama_eval( struct llama_context * ctx, llama_token * tokens, int32_t n_tokens, - int n_past, - int n_threads) { + int n_past) { llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); - const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0), n_threads); + const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0)); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } @@ -7394,13 +7370,12 @@ int llama_eval_embd( struct llama_context * ctx, float * embd, int32_t n_tokens, - int n_past, - int n_threads) { + int n_past) { llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, }; - const int ret = llama_decode_internal(*ctx, batch, n_threads); + const int ret = llama_decode_internal(*ctx, batch); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } @@ -7408,6 +7383,11 @@ int llama_eval_embd( return ret; } +void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { + ctx->cparams.n_threads = n_threads; + ctx->cparams.n_threads_batch = n_threads_batch; +} + struct llama_batch llama_batch_get_one( llama_token * tokens, int32_t n_tokens, @@ -7452,9 +7432,8 @@ void llama_batch_free(struct llama_batch batch) { int llama_decode( struct llama_context * ctx, - struct llama_batch batch, - int n_threads) { - const int ret = llama_decode_internal(*ctx, batch, n_threads); + struct llama_batch batch) { + const int ret = llama_decode_internal(*ctx, batch); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } @@ -7499,16 +7478,6 @@ llama_token llama_token_nl(const struct llama_context * ctx) { } int llama_tokenize( - struct llama_context * ctx, - const char * text, - int text_len, - llama_token * tokens, - int n_max_tokens, - bool add_bos) { - return llama_tokenize_with_model(&ctx->model, text, text_len, tokens, n_max_tokens, add_bos); -} - -int llama_tokenize_with_model( const struct llama_model * model, const char * text, int text_len, @@ -7529,13 +7498,9 @@ int llama_tokenize_with_model( return res.size(); } -int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) { - return llama_token_to_piece_with_model(&ctx->model, token, buf, length); -} - // does not write null-terminator to buf -int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) { - if (0 <= token && token < llama_model_n_vocab(model)) { +int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) { + if (0 <= token && token < llama_n_vocab(model)) { if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) { diff --git a/llama.h b/llama.h index 046284d74..96ff1f09c 100644 --- a/llama.h +++ b/llama.h @@ -149,32 +149,37 @@ extern "C" { llama_seq_id all_seq_id; // used if seq_id == NULL } llama_batch; - struct llama_context_params { - uint32_t seed; // RNG seed, -1 for random - int32_t n_ctx; // text context - int32_t n_batch; // prompt processing batch size - int32_t n_gpu_layers; // number of layers to store in VRAM - int32_t main_gpu; // the GPU that is used for scratch and small tensors - + struct llama_model_params { + int32_t n_gpu_layers; // number of layers to store in VRAM + int32_t main_gpu; // the GPU that is used for scratch and small tensors const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES) - // ref: https://github.com/ggerganov/llama.cpp/pull/2054 - float rope_freq_base; // RoPE base frequency - float rope_freq_scale; // RoPE frequency scaling factor - // called with a progress value between 0 and 1, pass NULL to disable llama_progress_callback progress_callback; // context pointer passed to the progress callback void * progress_callback_user_data; // Keep the booleans together to avoid misalignment during copy-by-value. - bool low_vram; // if true, reduce VRAM usage at the cost of performance - bool mul_mat_q; // if true, use experimental mul_mat_q kernels - bool f16_kv; // use fp16 for KV cache - bool logits_all; // the llama_eval() call computes all logits, not just the last one bool vocab_only; // only load the vocabulary, no weights bool use_mmap; // use mmap if possible bool use_mlock; // force system to keep model in RAM + }; + + struct llama_context_params { + uint32_t seed; // RNG seed, -1 for random + uint32_t n_ctx; // text context + uint32_t n_batch; // prompt processing batch size + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + // ref: https://github.com/ggerganov/llama.cpp/pull/2054 + float rope_freq_base; // RoPE base frequency + float rope_freq_scale; // RoPE frequency scaling factor + + // Keep the booleans together to avoid misalignment during copy-by-value. + bool mul_mat_q; // if true, use experimental mul_mat_q kernels + bool f16_kv; // use fp16 for KV cache + bool logits_all; // the llama_eval() call computes all logits, not just the last one bool embedding; // embedding mode only }; @@ -236,6 +241,7 @@ extern "C" { }; // Helpers for getting default parameters + LLAMA_API struct llama_model_params llama_model_default_params(void); LLAMA_API struct llama_context_params llama_context_default_params(void); LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void); @@ -249,7 +255,7 @@ extern "C" { LLAMA_API struct llama_model * llama_load_model_from_file( const char * path_model, - struct llama_context_params params); + struct llama_model_params params); LLAMA_API void llama_free_model(struct llama_model * model); @@ -266,17 +272,15 @@ extern "C" { LLAMA_API bool llama_mmap_supported (void); LLAMA_API bool llama_mlock_supported(void); - LLAMA_API int llama_n_vocab (const struct llama_context * ctx); + LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); + LLAMA_API int llama_n_ctx (const struct llama_context * ctx); - LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx); - LLAMA_API int llama_n_embd (const struct llama_context * ctx); - LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx); + LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); - LLAMA_API int llama_model_n_vocab (const struct llama_model * model); - LLAMA_API int llama_model_n_ctx (const struct llama_model * model); - LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model); - LLAMA_API int llama_model_n_embd (const struct llama_model * model); + LLAMA_API int llama_n_vocab (const struct llama_model * model); + LLAMA_API int llama_n_ctx_train(const struct llama_model * model); + LLAMA_API int llama_n_embd (const struct llama_model * model); // Get a string describing the model type LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); @@ -409,8 +413,7 @@ extern "C" { struct llama_context * ctx, llama_token * tokens, int32_t n_tokens, - int n_past, - int n_threads), + int n_past), "use llama_decode() instead"); // Same as llama_eval, but use float matrix input directly. @@ -419,8 +422,7 @@ extern "C" { struct llama_context * ctx, float * embd, int32_t n_tokens, - int n_past, - int n_threads), + int n_past), "use llama_decode() instead"); // Return batch for single sequence of tokens starting at pos_0 @@ -452,8 +454,12 @@ extern "C" { // < 0 - error LLAMA_API int llama_decode( struct llama_context * ctx, - struct llama_batch batch, - int n_threads); + struct llama_batch batch); + + // Set the number of threads used for decoding + // n_threads is the number of threads used for generation (single token) + // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) + LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); // Token logits obtained from the last call to llama_eval() // The logits for the last token are stored in the last row @@ -494,14 +500,6 @@ extern "C" { // Returns the number of tokens on success, no more than n_max_tokens // Returns a negative number on failure - the number of tokens that would have been returned LLAMA_API int llama_tokenize( - struct llama_context * ctx, - const char * text, - int text_len, - llama_token * tokens, - int n_max_tokens, - bool add_bos); - - LLAMA_API int llama_tokenize_with_model( const struct llama_model * model, const char * text, int text_len, @@ -514,12 +512,6 @@ extern "C" { // Does not write null terminator to the buffer. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens. LLAMA_API int llama_token_to_piece( - const struct llama_context * ctx, - llama_token token, - char * buf, - int length); - - LLAMA_API int llama_token_to_piece_with_model( const struct llama_model * model, llama_token token, char * buf, @@ -700,15 +692,13 @@ extern "C" { /// @param n_beams Number of beams to use. /// @param n_past Number of tokens already evaluated. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier. - /// @param n_threads Number of threads as passed to llama_eval(). LLAMA_API void llama_beam_search( struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, - int n_predict, - int n_threads); + int n_predict); // Performance information LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); diff --git a/tests/test-tokenizer-0-falcon.cpp b/tests/test-tokenizer-0-falcon.cpp index 836fb8ad2..d51851e20 100644 --- a/tests/test-tokenizer-0-falcon.cpp +++ b/tests/test-tokenizer-0-falcon.cpp @@ -62,18 +62,20 @@ int main(int argc, char **argv) { // load the vocab { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); - lparams.vocab_only = true; + mparams.vocab_only = true; - model = llama_load_model_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); @@ -82,7 +84,7 @@ int main(int argc, char **argv) { } } - if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_BPE) { + if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) { fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__); llama_free_model(model); llama_free(ctx); diff --git a/tests/test-tokenizer-0-llama.cpp b/tests/test-tokenizer-0-llama.cpp index dfb2e81a9..91c841f7b 100644 --- a/tests/test-tokenizer-0-llama.cpp +++ b/tests/test-tokenizer-0-llama.cpp @@ -64,18 +64,20 @@ int main(int argc, char **argv) { // load the vocab { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); - lparams.vocab_only = true; + mparams.vocab_only = true; - model = llama_load_model_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); @@ -84,7 +86,7 @@ int main(int argc, char **argv) { } } - if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_SPM) { + if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) { fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__); llama_free_model(model); llama_free(ctx); diff --git a/tests/test-tokenizer-1-llama.cpp b/tests/test-tokenizer-1-llama.cpp index a95d462cf..3b2fc87ac 100644 --- a/tests/test-tokenizer-1-llama.cpp +++ b/tests/test-tokenizer-1-llama.cpp @@ -52,18 +52,20 @@ int main(int argc, char **argv) { // load the vocab { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); - lparams.vocab_only = true; + mparams.vocab_only = true; - model = llama_load_model_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); @@ -72,7 +74,7 @@ int main(int argc, char **argv) { } } - GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM); + GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); #ifdef _WIN32 // We need this for unicode console support @@ -80,7 +82,7 @@ int main(int argc, char **argv) { atexit([]() { console::cleanup(); }); #endif - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(model); for (int i = 0; i < n_vocab; ++i) { std::string str = llama_detokenize_spm(ctx, std::vector(1, i)); From 7f1a0fe709ea1a861da2f3759f58a28bf8953c12 Mon Sep 17 00:00:00 2001 From: Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com> Date: Fri, 29 Sep 2023 03:51:52 +0800 Subject: [PATCH 6/8] ggml : release the requested thread pool resource (#3292) * Release the requested thread pool resource * Release the requested thread pool resource 2 --------- Co-authored-by: Zongfu ZF3 Qu --- ggml.c | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index ea964babd..078b2c422 100644 --- a/ggml.c +++ b/ggml.c @@ -89,7 +89,9 @@ static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(vo static int pthread_join(pthread_t thread, void * unused) { (void) unused; - return (int) WaitForSingleObject(thread, INFINITE); + int ret = (int) WaitForSingleObject(thread, INFINITE); + CloseHandle(thread); + return ret; } static int sched_yield (void) { From 0ccfc62a96a6b59a8faa14d1b350493f4cd51ae2 Mon Sep 17 00:00:00 2001 From: Hua Jiang Date: Thu, 28 Sep 2023 13:06:18 -0700 Subject: [PATCH 7/8] ggml_tensor: update the structure comments. (#3283) * ggml_tensor: update the structure comments. * remove semicolon Co-authored-by: slaren * Update ggml.h --------- Co-authored-by: Cebtenzzre Co-authored-by: slaren --- ggml.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ggml.h b/ggml.h index 0d99ae23e..d61c28b2c 100644 --- a/ggml.h +++ b/ggml.h @@ -473,8 +473,8 @@ extern "C" { int n_dims; int64_t ne[GGML_MAX_DIMS]; // number of elements size_t nb[GGML_MAX_DIMS]; // stride in bytes: - // nb[0] = sizeof(type) - // nb[1] = nb[0] * ne[0] + padding + // nb[0] = ggml_type_size(type) + // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding // nb[i] = nb[i-1] * ne[i-1] // compute data From bc39553c901a91cfcb757863586250838c83eeab Mon Sep 17 00:00:00 2001 From: Cebtenzzre Date: Thu, 28 Sep 2023 17:41:44 -0400 Subject: [PATCH 8/8] build : enable more non-default compiler warnings (#3200) --- .gitignore | 1 + CMakeLists.txt | 51 ++-- Makefile | 69 +++-- common/common.cpp | 3 +- common/log.h | 74 ++--- examples/baby-llama/baby-llama.cpp | 13 +- examples/llama-bench/llama-bench.cpp | 4 +- examples/main/main.cpp | 2 +- examples/quantize/quantize.cpp | 1 + .../train-text-from-scratch.cpp | 6 +- ggml.c | 288 ++++++++---------- ggml.h | 8 + llama.cpp | 14 +- pocs/vdot/q8dot.cpp | 8 +- tests/test-grad0.cpp | 6 +- tests/test-opt.cpp | 4 +- 16 files changed, 285 insertions(+), 267 deletions(-) diff --git a/.gitignore b/.gitignore index 8ba3b9f4b..f98132a22 100644 --- a/.gitignore +++ b/.gitignore @@ -45,6 +45,7 @@ models-mnt /main /metal /perplexity +/q8dot /quantize /quantize-stats /result diff --git a/CMakeLists.txt b/CMakeLists.txt index c4a649a97..d5acf8540 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -414,37 +414,38 @@ endif() if (LLAMA_ALL_WARNINGS) if (NOT MSVC) - set(c_flags - -Wall - -Wextra - -Wpedantic - -Wcast-qual - -Wdouble-promotion - -Wshadow - -Wstrict-prototypes - -Wpointer-arith - -Wmissing-prototypes - -Werror=implicit-int - -Wno-unused-function - ) - set(cxx_flags - -Wall - -Wextra - -Wpedantic - -Wcast-qual - -Wmissing-declarations - -Wno-unused-function - -Wno-multichar - ) - if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") - # g++ only - set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds) + set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) + set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int + -Werror=implicit-function-declaration) + set(cxx_flags -Wmissing-declarations -Wmissing-noreturn) + + if (CMAKE_C_COMPILER_ID MATCHES "Clang") + set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return) + set(cxx_flags ${cxx_flags} -Wmissing-prototypes -Wextra-semi) + + if ( + (CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR + (CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0) + ) + set(c_flags ${c_flags} -Wdouble-promotion) + endif() + elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU") + set(c_flags ${c_flags} -Wdouble-promotion) + set(cxx_flags ${cxx_flags} -Wno-array-bounds) + + if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0) + set(cxx_flags ${cxx_flags} -Wno-format-truncation) + endif() + if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0) + set(cxx_flags ${cxx_flags} -Wextra-semi) + endif() endif() else() # todo : msvc endif() add_compile_options( + ${warning_flags} "$<$:${c_flags}>" "$<$:${cxx_flags}>" ) diff --git a/Makefile b/Makefile index 53af3c692..08b83ca7e 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel finetune export-lora tests/test-c.o +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o # Binaries only useful for tests TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama @@ -19,6 +19,20 @@ ifndef UNAME_M UNAME_M := $(shell uname -m) endif +ifeq '' '$(findstring clang,$(shell $(CC) --version))' + CC_IS_GCC=1 + CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }') +else + CC_IS_CLANG=1 + ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))' + CC_IS_LLVM_CLANG=1 + else + CC_IS_APPLE_CLANG=1 + endif + CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \ + | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }') +endif + # Mac OS + Arm can report x86_64 # ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789 ifeq ($(UNAME_S),Darwin) @@ -87,9 +101,6 @@ CC := riscv64-unknown-linux-gnu-gcc CXX := riscv64-unknown-linux-gnu-g++ endif -CCV := $(shell $(CC) --version | head -n 1) -CXXV := $(shell $(CXX) --version | head -n 1) - # # Compile flags # @@ -173,20 +184,33 @@ ifdef LLAMA_DISABLE_LOGS endif # LLAMA_DISABLE_LOGS # warnings -MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \ - -Wmissing-prototypes -Werror=implicit-int -Wno-unused-function -MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wmissing-declarations -Wno-unused-function -Wno-multichar +WARN_FLAGS = -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function +MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int \ + -Werror=implicit-function-declaration +MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn -# TODO(cebtenzzre): remove this once PR #2632 gets merged -TTFS_CXXFLAGS = $(CXXFLAGS) -Wno-missing-declarations +ifeq ($(CC_IS_CLANG), 1) + # clang options + MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return + MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi -ifneq '' '$(findstring clang,$(shell $(CXX) --version))' - # clang++ only - MK_CXXFLAGS += -Wmissing-prototypes - TTFS_CXXFLAGS += -Wno-missing-prototypes + ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))' + MK_CFLAGS += -Wdouble-promotion + endif + ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))' + MK_CFLAGS += -Wdouble-promotion + endif else - # g++ only - MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds + # gcc options + MK_CFLAGS += -Wdouble-promotion + MK_HOST_CXXFLAGS += -Wno-array-bounds + + ifeq ($(shell expr $(CC_VER) \>= 070100), 1) + MK_HOST_CXXFLAGS += -Wno-format-truncation + endif + ifeq ($(shell expr $(CC_VER) \>= 080100), 1) + MK_HOST_CXXFLAGS += -Wextra-semi + endif endif # OS specific @@ -382,7 +406,7 @@ ifdef LLAMA_CUDA_CCBIN NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN) endif ggml-cuda.o: ggml-cuda.cu ggml-cuda.h - $(NVCC) $(NVCCFLAGS) -Wno-pedantic -c $< -o $@ + $(NVCC) $(NVCCFLAGS) -c $< -o $@ endif # LLAMA_CUBLAS ifdef LLAMA_CLBLAST @@ -472,8 +496,8 @@ $(info I CFLAGS: $(CFLAGS)) $(info I CXXFLAGS: $(CXXFLAGS)) $(info I NVCCFLAGS: $(NVCCFLAGS)) $(info I LDFLAGS: $(LDFLAGS)) -$(info I CC: $(CCV)) -$(info I CXX: $(CXXV)) +$(info I CC: $(shell $(CC) --version | head -n 1)) +$(info I CXX: $(shell $(CXX) --version | head -n 1)) $(info ) # @@ -554,7 +578,7 @@ gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS) - $(CXX) $(TTFS_CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @@ -601,11 +625,18 @@ tests: $(TEST_TARGETS) benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +run-benchmark-matmult: benchmark-matmult ./$@ +.PHONY: run-benchmark-matmult + vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) + tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) diff --git a/common/common.cpp b/common/common.cpp index 6e8c08cb8..ec181c6b3 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -755,10 +755,9 @@ std::string gpt_random_prompt(std::mt19937 & rng) { case 7: return "He"; case 8: return "She"; case 9: return "They"; - default: return "To"; } - return "The"; + GGML_UNREACHABLE(); } // diff --git a/common/log.h b/common/log.h index 18f3b9761..b8953fdca 100644 --- a/common/log.h +++ b/common/log.h @@ -225,31 +225,31 @@ enum LogTriState // USE LOG() INSTEAD // #ifndef _MSC_VER - #define LOG_IMPL(str, ...) \ - { \ + #define LOG_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ fflush(LOG_TARGET); \ } \ - } + } while (0) #else - #define LOG_IMPL(str, ...) \ - { \ + #define LOG_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ fflush(LOG_TARGET); \ } \ - } + } while (0) #endif // INTERNAL, DO NOT USE // USE LOG_TEE() INSTEAD // #ifndef _MSC_VER - #define LOG_TEE_IMPL(str, ...) \ - { \ + #define LOG_TEE_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ @@ -260,10 +260,10 @@ enum LogTriState fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \ fflush(LOG_TEE_TARGET); \ } \ - } + } while (0) #else - #define LOG_TEE_IMPL(str, ...) \ - { \ + #define LOG_TEE_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ @@ -274,7 +274,7 @@ enum LogTriState fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \ fflush(LOG_TEE_TARGET); \ } \ - } + } while (0) #endif // The '\0' as a last argument, is a trick to bypass the silly @@ -435,41 +435,41 @@ inline FILE *log_handler() { return log_handler1_impl(); } inline void log_test() { log_disable(); - LOG("01 Hello World to nobody, because logs are disabled!\n") + LOG("01 Hello World to nobody, because logs are disabled!\n"); log_enable(); - LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET)) - LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n") + LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET)); + LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n"); log_set_target(stderr); - LOG("04 Hello World to stderr!\n") - LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n") + LOG("04 Hello World to stderr!\n"); + LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n"); log_set_target(LOG_DEFAULT_FILE_NAME); - LOG("06 Hello World to default log file!\n") + LOG("06 Hello World to default log file!\n"); log_set_target(stdout); - LOG("07 Hello World to stdout!\n") + LOG("07 Hello World to stdout!\n"); log_set_target(LOG_DEFAULT_FILE_NAME); - LOG("08 Hello World to default log file again!\n") + LOG("08 Hello World to default log file again!\n"); log_disable(); - LOG("09 Hello World _1_ into the void!\n") + LOG("09 Hello World _1_ into the void!\n"); log_enable(); - LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n") + LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n"); log_disable(); log_set_target("llama.anotherlog.log"); - LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n") + LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n"); log_enable(); - LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n") + LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n"); log_set_target("llama.yetanotherlog.log"); - LOG("13 Hello World this time in yet new file?\n") + LOG("13 Hello World this time in yet new file?\n"); log_set_target(log_filename_generator("llama_autonamed", "log")); - LOG("14 Hello World in log with generated filename!\n") + LOG("14 Hello World in log with generated filename!\n"); #ifdef _MSC_VER - LOG_TEE("15 Hello msvc TEE without arguments\n") - LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test") - LOG_TEELN("17 Hello msvc TEELN without arguments\n") - LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test") - LOG("19 Hello msvc LOG without arguments\n") - LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test") - LOGLN("21 Hello msvc LOGLN without arguments\n") - LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test") + LOG_TEE("15 Hello msvc TEE without arguments\n"); + LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test"); + LOG_TEELN("17 Hello msvc TEELN without arguments\n"); + LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test"); + LOG("19 Hello msvc LOG without arguments\n"); + LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test"); + LOGLN("21 Hello msvc LOGLN without arguments\n"); + LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test"); #endif } @@ -542,7 +542,7 @@ inline void log_dump_cmdline_impl(int argc, char **argv) buf << " " << argv[i]; } } - LOGLN("Cmd:%s", buf.str().c_str()) + LOGLN("Cmd:%s", buf.str().c_str()); } #define log_tostr(var) log_var_to_string_impl(var).c_str() @@ -620,10 +620,10 @@ inline std::string log_var_to_string_impl(const std::vector & var) #define LOGLN(...) // dummy stub #undef LOG_TEE -#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf +#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf #undef LOG_TEELN -#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf +#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf #undef LOG_DISABLE #define LOG_DISABLE() // dummy stub diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index fb1a15c47..8155101d0 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -1,9 +1,12 @@ #include "ggml.h" #include "train.h" + #include #include -#include +#include #include +#include +#include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data @@ -64,7 +67,7 @@ static struct ggml_tensor * randomize_tensor( break; default: assert(false); - }; + } return tensor; } @@ -389,7 +392,7 @@ static void randomize_model_lora( free_random_normal_distribution(rnd); } -static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { +static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; @@ -415,14 +418,12 @@ static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * mod if (!cache->ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); - return false; + exit(1); } } cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - - return true; } static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 93bb0c8b1..a04115c96 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -655,9 +655,9 @@ struct printer { virtual ~printer() {} FILE * fout; - virtual void print_header(const cmd_params & params) { (void) params; }; + virtual void print_header(const cmd_params & params) { (void) params; } virtual void print_test(const test & t) = 0; - virtual void print_footer() { }; + virtual void print_footer() { } }; struct csv_printer : public printer { diff --git a/examples/main/main.cpp b/examples/main/main.cpp index fd506773f..3a4ed3f78 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -852,7 +852,7 @@ int main(int argc, char ** argv) { llama_backend_free(); #ifndef LOG_DISABLE_LOGS - LOG_TEE("Log end\n") + LOG_TEE("Log end\n"); #endif // LOG_DISABLE_LOGS return 0; diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 1c1d957e6..c7dd0d894 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -72,6 +72,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp // usage: // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] // +[[noreturn]] static void usage(const char * executable) { printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index a9cf8a381..5043f32d0 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -483,7 +483,7 @@ static struct ggml_tensor * llama_build_train_graphs( } #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ -{ \ +do { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ @@ -495,7 +495,7 @@ static struct ggml_tensor * llama_build_train_graphs( } else if (req) { \ die_fmt("key not found in model: %s", skey.c_str()); \ } \ -} +} while (0) static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read @@ -786,7 +786,7 @@ struct train_params { float rope_freq_scale; }; -struct train_params get_default_train_params() { +static struct train_params get_default_train_params() { struct train_params params; params.common = get_default_train_params_common(); params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; diff --git a/ggml.c b/ggml.c index 078b2c422..820fe2e74 100644 --- a/ggml.c +++ b/ggml.c @@ -245,18 +245,18 @@ inline static void * ggml_aligned_malloc(size_t size) { // #define GGML_TENSOR_UNARY_OP_LOCALS \ - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) #define GGML_TENSOR_BINARY_OP_LOCALS \ - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \ - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \ + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) #if defined(GGML_USE_ACCELERATE) #include @@ -1866,7 +1866,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F16x8_ADD vaddq_f16 #define GGML_F16x8_MUL vmulq_f16 #define GGML_F16x8_REDUCE(res, x) \ - { \ + do { \ int offset = GGML_F16_ARR >> 1; \ for (int i = 0; i < offset; ++i) { \ x[i] = vaddq_f16(x[i], x[offset+i]); \ @@ -1882,7 +1882,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ - } + } while (0) #define GGML_F16_VEC GGML_F16x8 #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO @@ -1943,7 +1943,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F32x8_ADD _mm256_add_ps #define GGML_F32x8_MUL _mm256_mul_ps #define GGML_F32x8_REDUCE(res, x) \ -{ \ +do { \ int offset = GGML_F32_ARR >> 1; \ for (int i = 0; i < offset; ++i) { \ x[i] = _mm256_add_ps(x[i], x[offset+i]); \ @@ -1960,7 +1960,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { _mm256_extractf128_ps(x[0], 1)); \ const __m128 t1 = _mm_hadd_ps(t0, t0); \ res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \ -} +} while (0) // TODO: is this optimal ? #define GGML_F32_VEC GGML_F32x8 @@ -5154,31 +5154,31 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); return ((int8_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); return ((int16_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); return ((int32_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); - } break; + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; - } break; + } default: { GGML_ASSERT(false); - } break; + } } return 0.0f; @@ -5228,29 +5228,17 @@ int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: - { - return ((int8_t *) data)[0]; - } break; + return ((int8_t *) data)[0]; case GGML_TYPE_I16: - { - return ((int16_t *) data)[0]; - } break; + return ((int16_t *) data)[0]; case GGML_TYPE_I32: - { - return ((int32_t *) data)[0]; - } break; + return ((int32_t *) data)[0]; case GGML_TYPE_F16: - { - return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); - } break; + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); case GGML_TYPE_F32: - { - return ((float *) data)[0]; - } break; + return ((float *) data)[0]; default: - { - GGML_ASSERT(false); - } break; + GGML_ASSERT(false); } return 0.0f; @@ -5297,31 +5285,31 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); return ((int8_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); return ((int16_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); return ((int32_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); - } break; + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; - } break; + } default: { GGML_ASSERT(false); - } break; + } } return 0.0f; @@ -5371,29 +5359,17 @@ float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: - { - return ((int8_t *) data)[0]; - } break; + return ((int8_t *) data)[0]; case GGML_TYPE_I16: - { - return ((int16_t *) data)[0]; - } break; + return ((int16_t *) data)[0]; case GGML_TYPE_I32: - { - return ((int32_t *) data)[0]; - } break; + return ((int32_t *) data)[0]; case GGML_TYPE_F16: - { - return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); - } break; + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); case GGML_TYPE_F32: - { - return ((float *) data)[0]; - } break; + return ((float *) data)[0]; default: - { - GGML_ASSERT(false); - } break; + GGML_ASSERT(false); } return 0.0f; @@ -8542,7 +8518,7 @@ static void ggml_compute_forward_dup_f16( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -8813,7 +8789,7 @@ static void ggml_compute_forward_dup_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -9094,7 +9070,7 @@ static void ggml_compute_forward_add_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9167,7 +9143,7 @@ static void ggml_compute_forward_add_f16_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -9221,7 +9197,7 @@ static void ggml_compute_forward_add_f16_f16( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -9272,7 +9248,7 @@ static void ggml_compute_forward_add_q_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -9398,7 +9374,7 @@ static void ggml_compute_forward_add1_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9453,7 +9429,7 @@ static void ggml_compute_forward_add1_f16_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -9503,7 +9479,7 @@ static void ggml_compute_forward_add1_f16_f16( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -9553,7 +9529,7 @@ static void ggml_compute_forward_add1_q_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const enum ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; @@ -9681,8 +9657,8 @@ static void ggml_compute_forward_acc_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during acc const size_t nb0 = ggml_element_size(src0); @@ -9771,7 +9747,7 @@ static void ggml_compute_forward_sub_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9861,7 +9837,7 @@ static void ggml_compute_forward_mul_f32( const int64_t nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9952,7 +9928,7 @@ static void ggml_compute_forward_div_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -10161,8 +10137,8 @@ static void ggml_compute_forward_sum_f32( assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) ggml_float sum = 0; ggml_float row_sum = 0; @@ -10193,8 +10169,8 @@ static void ggml_compute_forward_sum_f16( assert(src0->nb[0] == sizeof(ggml_fp16_t)); - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) float sum = 0; float row_sum = 0; @@ -10247,7 +10223,7 @@ static void ggml_compute_forward_sum_rows_f32( GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(dst->nb[0] == sizeof(float)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne0 == 1); GGML_ASSERT(ne1 == ne01); @@ -10297,7 +10273,7 @@ static void ggml_compute_forward_mean_f32( assert(src0->nb[0] == sizeof(float)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS assert(ne0 == 1); assert(ne1 == ne01); @@ -10397,7 +10373,7 @@ static void ggml_compute_forward_repeat_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne0/ne00); @@ -10508,7 +10484,7 @@ static void ggml_compute_forward_repeat_back_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne00/ne0); @@ -10586,7 +10562,7 @@ static void ggml_compute_forward_concat_f32( const int ith = params->ith; - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); @@ -11188,7 +11164,7 @@ static void ggml_compute_forward_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -11257,7 +11233,7 @@ static void ggml_compute_forward_rms_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -11322,7 +11298,7 @@ static void ggml_compute_forward_rms_norm_back_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -11497,7 +11473,7 @@ static void ggml_compute_forward_group_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const float eps = 1e-6f; // TODO: make this a parameter @@ -11608,7 +11584,7 @@ static void ggml_compute_forward_mul_mat( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -11826,7 +11802,7 @@ static void ggml_compute_forward_out_prod_f32( // int64_t t0 = ggml_perf_time_us(); // UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -12200,8 +12176,8 @@ static void ggml_compute_forward_set_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); @@ -12588,7 +12564,7 @@ static void ggml_compute_forward_diag_f32( // TODO: handle transposed/permuted matrices - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne00 == ne0); GGML_ASSERT(ne00 == ne1); @@ -13163,7 +13139,7 @@ static void ggml_compute_forward_rope_f32( memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13295,7 +13271,7 @@ static void ggml_compute_forward_rope_f16( memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13458,7 +13434,7 @@ static void ggml_compute_forward_rope_back_f32( memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13558,7 +13534,7 @@ static void ggml_compute_forward_rope_back_f16( const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13672,7 +13648,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13763,7 +13739,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13875,7 +13851,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13966,7 +13942,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -14084,7 +14060,7 @@ static void ggml_compute_forward_conv_1d( ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst); } else { GGML_ASSERT(false); // only stride 1 and 2 supported - }; + } } // ggml_compute_forward_conv_2d @@ -14101,7 +14077,7 @@ static void ggml_compute_forward_conv_2d_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -14221,7 +14197,7 @@ static void ggml_compute_forward_conv_transpose_2d( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -14480,7 +14456,7 @@ static void ggml_compute_forward_upscale_f32( const int ith = params->ith; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int scale_factor = dst->op_params[0]; @@ -14532,14 +14508,14 @@ static void ggml_compute_forward_flash_attn_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14722,14 +14698,14 @@ static void ggml_compute_forward_flash_attn_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14974,18 +14950,18 @@ static void ggml_compute_forward_flash_ff_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, nea, a, ne); - GGML_TENSOR_LOCALS(size_t, nba, a, nb); - GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne); - GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb); - GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne); - GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb); - GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne); - GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb); - GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne); - GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, nea, a, ne) + GGML_TENSOR_LOCALS(size_t, nba, a, nb) + GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne) + GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb) + GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne) + GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb) + GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne) + GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb) + GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne) + GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -15133,16 +15109,16 @@ static void ggml_compute_forward_flash_attn_back_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ned, d, ne); - GGML_TENSOR_LOCALS(size_t, nbd, d, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ned, d, ne) + GGML_TENSOR_LOCALS(size_t, nbd, d, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -15505,8 +15481,8 @@ static void ggml_compute_forward_win_part_f32( return; } - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t nep0 = ((const int32_t *)(dst->op_params))[0]; const int32_t nep1 = ((const int32_t *)(dst->op_params))[1]; @@ -15567,8 +15543,8 @@ static void ggml_compute_forward_win_unpart_f32( return; } - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t w = ((const int32_t *)(dst->op_params))[0]; @@ -15685,7 +15661,7 @@ static void ggml_compute_forward_get_rel_pos_f16( // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322 - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int64_t w = ne1; @@ -19637,7 +19613,7 @@ static enum ggml_opt_result linesearch_backtracking( (*step) *= width; } - return GGML_LINESEARCH_FAIL; + GGML_UNREACHABLE(); } static enum ggml_opt_result ggml_opt_lbfgs( @@ -19904,7 +19880,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( step[0] = 1.0; } - return GGML_OPT_DID_NOT_CONVERGE; + GGML_UNREACHABLE(); } struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { @@ -20638,10 +20614,10 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p } break; case GGUF_TYPE_ARRAY: case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break; - }; + } } break; case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); - }; + } if (!ok) { break; @@ -21369,10 +21345,10 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * } break; case GGUF_TYPE_ARRAY: case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break; - }; + } } break; case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); - }; + } } // write tensor infos diff --git a/ggml.h b/ggml.h index d61c28b2c..460857fa4 100644 --- a/ggml.h +++ b/ggml.h @@ -248,6 +248,14 @@ } \ } while (0) +#ifndef NDEBUG +#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached") +#elif defined(__GNUC__) +#define GGML_UNREACHABLE() __builtin_unreachable() +#else +#define GGML_UNREACHABLE() ((void) 0) +#endif + // used to copy the number of elements and stride in bytes of tensors into local variables. // main purpose is to reduce code duplication and improve readability. // diff --git a/llama.cpp b/llama.cpp index 685712d17..666acc212 100644 --- a/llama.cpp +++ b/llama.cpp @@ -449,7 +449,7 @@ struct LLM_TN { // #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ -{ \ +do { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ @@ -461,7 +461,7 @@ struct LLM_TN { } else if (req) { \ throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \ } \ -} +} while (0) // // ggml helpers @@ -1913,7 +1913,7 @@ static void llm_load_hparams( } } break; default: (void)0; - }; + } model.ftype = ml.ftype; } @@ -2438,7 +2438,7 @@ static void llm_load_tensors( } break; default: throw std::runtime_error("unknown architecture"); - }; + } } ml.done_getting_tensors(); @@ -3981,7 +3981,7 @@ static struct ggml_cgraph * llama_build_graph( } break; default: GGML_ASSERT(false); - }; + } return result; } @@ -4626,7 +4626,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); } break; - }; + } return output; } @@ -7520,7 +7520,7 @@ int llama_token_to_piece(const struct llama_model * model, llama_token token, ch buf[2] = '\x85'; return 3; } else if (llama_is_control_token(model->vocab, token)) { - ; + // do nothing } else if (llama_is_byte_token(model->vocab, token)) { if (length < 1) { return -1; diff --git a/pocs/vdot/q8dot.cpp b/pocs/vdot/q8dot.cpp index 4e0e02357..111770d55 100644 --- a/pocs/vdot/q8dot.cpp +++ b/pocs/vdot/q8dot.cpp @@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same"); static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same"); template -void fillQ4blocks(std::vector& blocks, std::mt19937& rndm) { +static void fillQ4blocks(std::vector& blocks, std::mt19937& rndm) { for (auto& b : blocks) { b.d = 1; for (int i=0; i& blocks, std::mt19937& rndm) { } } -void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { +static void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { for (auto& b : blocks) { b.d = 1; int sum = 0; @@ -66,7 +66,7 @@ void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { } } -float simpleDot(const block_q4_0& x, const block_q8_0& y) { +static float simpleDot(const block_q4_0& x, const block_q8_0& y) { int s1 = 0; //, s2 = 0; for (int i=0; i