sampling : refactor init to use llama_sampling_params (#3696)

* sampling : refactor init to use llama_sampling_params

* llama : combine repetition, frequency and presence penalties in 1 call

* examples : remove embd-input and gptneox-wip

* sampling : rename penalty params + reduce size of "prev" vector

* sampling : add llama_sampling_print helper

* sampling : hide prev behind API and apply #3661

ggml-ci
This commit is contained in:
Georgi Gerganov 2023-10-20 21:07:23 +03:00 committed by GitHub
parent 8cf19d60dc
commit d1031cf49c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
30 changed files with 365 additions and 4502 deletions

View file

@ -107,7 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::string arg;
gpt_params default_params;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sampling_params;
llama_sampling_params & sparams = params.sparams;
for (int i = 1; i < argc; i++) {
arg = argv[i];
@ -241,25 +241,26 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
sparams.repeat_last_n = std::stoi(argv[i]);
sparams.penalty_last_n = std::stoi(argv[i]);
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
} else if (arg == "--repeat-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.repeat_penalty = std::stof(argv[i]);
sparams.penalty_repeat = std::stof(argv[i]);
} else if (arg == "--frequency-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.frequency_penalty = std::stof(argv[i]);
sparams.penalty_freq = std::stof(argv[i]);
} else if (arg == "--presence-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.presence_penalty = std::stof(argv[i]);
sparams.penalty_present = std::stof(argv[i]);
} else if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
@ -572,7 +573,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.grammar = argv[i];
sparams.grammar = argv[i];
} else if (arg == "--grammar-file") {
if (++i >= argc) {
invalid_param = true;
@ -587,7 +588,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.grammar)
std::back_inserter(sparams.grammar)
);
#ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters
@ -640,7 +641,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sampling_params;
const llama_sampling_params & sparams = params.sparams;
printf("usage: %s [options]\n", argv[0]);
printf("\n");
@ -678,10 +679,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n);
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
@ -878,7 +879,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
}
if (params.ignore_eos) {
params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
params.sparams.logit_bias[llama_token_eos(lctx)] = -INFINITY;
}
{
@ -1123,28 +1124,28 @@ std::string get_sortable_timestamp() {
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sampling_params;
const llama_sampling_params & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
@ -1178,8 +1179,8 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty);
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
@ -1238,14 +1239,14 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty);
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {

View file

@ -56,7 +56,7 @@ struct gpt_params {
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
// // sampling parameters
struct llama_sampling_params sampling_params;
struct llama_sampling_params sparams;
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
@ -66,7 +66,6 @@ struct gpt_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files

View file

@ -1,9 +1,9 @@
#include "sampling.h"
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params.sampling_params;
result->params = params;
result->grammar = nullptr;
// if there is a grammar, parse it
@ -23,7 +23,7 @@ struct llama_sampling_context * llama_sampling_init(const struct gpt_params & pa
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
}
result->prev.resize(params.n_ctx);
result->prev.resize(params.n_prev);
return result;
}
@ -66,25 +66,56 @@ void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * ds
dst->prev = src->prev;
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
return ctx->prev.back();
}
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
const int size = ctx_sampling->prev.size();
n = std::min(n, size);
std::string result;
for (int i = size - n; i < size; i++) {
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
}
return result;
}
std::string llama_sampling_print(const llama_sampling_params & params) {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const int n_ctx = llama_n_ctx(ctx_main);
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
@ -97,7 +128,7 @@ llama_token llama_sampling_sample(
float * logits = llama_get_logits_ith(ctx_main, idx);
// Apply params.logit_bias map
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
@ -117,14 +148,10 @@ llama_token llama_sampling_sample(
// apply penalties
if (!prev.empty()) {
const float nl_logit = logits[llama_token_nl(ctx_main)];
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
llama_sample_repetition_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - penalty_last_n,
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
@ -141,7 +168,7 @@ llama_token llama_sampling_sample(
}
if (temp <= 0) {
// Greedy sampling
// greedy sampling
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
@ -152,8 +179,9 @@ llama_token llama_sampling_sample(
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// Temperature sampling
// temperature sampling
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
@ -183,11 +211,12 @@ llama_token llama_sampling_sample(
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id) {
llama_token id,
bool apply_grammar) {
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL) {
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
}
}

View file

@ -10,30 +10,30 @@
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float frequency_penalty = 0.00f; // 0.0 = disabled
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.10f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
} llama_sampling_params;
// general sampler context
@ -58,7 +58,7 @@ struct llama_sampling_context {
#include "common.h"
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params);
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
void llama_sampling_free(struct llama_sampling_context * ctx);
@ -70,6 +70,15 @@ void llama_sampling_reset(llama_sampling_context * ctx);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// Get the last sampled token
llama_token llama_sampling_last(llama_sampling_context * ctx);
// Get a string representation of the last sampled tokens
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
// Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
@ -96,4 +105,5 @@ llama_token llama_sampling_sample(
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id);
llama_token id,
bool apply_grammar);