sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
This commit is contained in:
parent
8cf19d60dc
commit
d1031cf49c
30 changed files with 365 additions and 4502 deletions
|
@ -58,28 +58,30 @@ inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n
|
|||
|
||||
// TODO: use common/sampling.h
|
||||
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
||||
// out of user input, sample next token
|
||||
const float temp = params.sampling_params.temp;
|
||||
const int32_t top_k = params.sampling_params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.sampling_params.top_k;
|
||||
const float top_p = params.sampling_params.top_p;
|
||||
const float tfs_z = params.sampling_params.tfs_z;
|
||||
const float typical_p = params.sampling_params.typical_p;
|
||||
// const int32_t repeat_last_n = params.sampling_params.repeat_last_n < 0 ? n_ctx : params.sampling_params.repeat_last_n;
|
||||
// const float repeat_penalty = params.sampling_params.repeat_penalty;
|
||||
// const float alpha_presence = params.sampling_params.presence_penalty;
|
||||
// const float alpha_frequency = params.sampling_params.frequency_penalty;
|
||||
const int mirostat = params.sampling_params.mirostat;
|
||||
const float mirostat_tau = params.sampling_params.mirostat_tau;
|
||||
const float mirostat_eta = params.sampling_params.mirostat_eta;
|
||||
// const bool penalize_nl = params.sampling_params.penalize_nl;
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = sparams.temp;
|
||||
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
|
||||
const float top_p = sparams.top_p;
|
||||
const float tfs_z = sparams.tfs_z;
|
||||
const float typical_p = sparams.typical_p;
|
||||
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
|
||||
// const float repeat_penalty = sparams.repeat_penalty;
|
||||
// const float alpha_presence = sparams.presence_penalty;
|
||||
// const float alpha_frequency = sparams.frequency_penalty;
|
||||
const int mirostat = sparams.mirostat;
|
||||
const float mirostat_tau = sparams.mirostat_tau;
|
||||
const float mirostat_eta = sparams.mirostat_eta;
|
||||
// const bool penalize_nl = sparams.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.sampling_params.logit_bias.begin(); it != params.sampling_params.logit_bias.end(); it++) {
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
|
@ -91,18 +93,18 @@ inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
|||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue