Merge 'origin/master' into hipblas

This commit is contained in:
Henri Vasserman 2023-07-29 12:59:48 +03:00
commit d2ade639f4
No known key found for this signature in database
GPG key ID: 2995FC0F58B1A986
30 changed files with 3024 additions and 1431 deletions

View file

@ -197,6 +197,8 @@ jobs:
strategy:
matrix:
include:
- build: 'noavx'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
- build: 'avx2'
defines: '-DLLAMA_BUILD_SERVER=ON'
- build: 'avx'

View file

@ -392,6 +392,7 @@ if (LLAMA_ALL_WARNINGS)
-Wshadow
-Wstrict-prototypes
-Wpointer-arith
-Wmissing-prototypes
)
set(cxx_flags
-Wall

View file

@ -63,7 +63,8 @@ ifdef LLAMA_SERVER_VERBOSE
endif
# warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
-Wmissing-prototypes
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
# OS specific
@ -381,7 +382,7 @@ embedding: examples/embedding/embedding.cpp build-info.h ggml.
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)

View file

@ -77,6 +77,7 @@ as the main playground for developing new features for the [ggml](https://github
**Supported models:**
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
@ -650,6 +651,19 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
### Obtaining and using the Facebook LLaMA 2 model
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML)
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML)
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML)
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML)
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML)
- Specify `-eps 1e-5` for best generation quality
- Specify `-gqa 8` for 70B models to work
### Verifying the model files
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.

165
convert.py Executable file → Normal file
View file

@ -133,7 +133,7 @@ TENSORS_SET = set(TENSORS_LIST)
def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
for n_mult in range(256, 1, -1):
for n_mult in range(8192, 1, -1):
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
if calc_ff == n_ff:
return n_mult
@ -141,11 +141,12 @@ def find_n_mult(n_ff: int, n_embd: int) -> int:
@dataclass
class Params:
n_vocab: int
n_embd: int
n_mult: int
n_head: int
n_layer: int
n_vocab: int
n_embd: int
n_mult: int
n_head: int
n_layer: int
n_kv_head: Optional[int] # This parameter is only used for Llama 2
@staticmethod
def guessed(model: 'LazyModel') -> 'Params':
@ -167,11 +168,12 @@ class Params:
n_head=n_embd // 128 # guessed
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = 256,
n_head = n_head,
n_layer = n_layer,
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = 256,
n_head = n_head,
n_layer = n_layer,
n_kv_head = None,
)
@staticmethod
@ -183,15 +185,17 @@ class Params:
n_head = config["num_attention_heads"];
n_layer = config["num_hidden_layers"];
n_ff = config["intermediate_size"];
n_kv_head = config.get("num_key_value_heads")
n_mult = find_n_mult(n_ff, n_embd);
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_kv_head = n_kv_head,
)
# LLaMA v2 70B params.json
@ -200,21 +204,22 @@ class Params:
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))
n_vocab = config["vocab_size"];
n_embd = config["dim"];
n_head = config["n_heads"];
n_layer = config["n_layers"];
n_mult = config["multiple_of"];
n_vocab = config["vocab_size"];
n_embd = config["dim"];
n_head = config["n_heads"];
n_layer = config["n_layers"];
n_mult = config["multiple_of"];
if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0]
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_kv_head = None,
)
@staticmethod
@ -234,14 +239,21 @@ class Params:
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
self.vocabtype = vocabtype
if self.vocabtype == "bpe":
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
else:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: Dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens))
else:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
if self.vocabtype == "bpe":
vocab_size: int = len(self.sentencepiece_tokenizer)
else:
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
@ -255,22 +267,32 @@ class SentencePieceVocab:
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
if self.vocabtype == "bpe":
from transformers.models.gpt2 import tokenization_gpt2
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i, item in enumerate(tokenizer):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
score: float = tokenizer.get_score(i)
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
score: float = -i
yield text, score
else:
for i in range(tokenizer.vocab_size()):
text: bytes
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
raise Exception(f"Invalid token: {piece}")
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
score: float = tokenizer.get_score(i)
yield text, score
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
for text in self.added_tokens_list:
@ -300,10 +322,12 @@ class GGMLVocab:
Vocab = Union[SentencePieceVocab, GGMLVocab]
def permute(weights: NDArray, n_head: int) -> NDArray:
def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
.swapaxes(1, 2)
.reshape(weights.shape))
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray:
@ -351,7 +375,7 @@ class Tensor(metaclass=ABCMeta):
@abstractmethod
def astype(self, data_type: DataType) -> 'Tensor': ...
@abstractmethod
def permute(self, n_head: int) -> 'Tensor': ...
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
@abstractmethod
@ -389,8 +413,8 @@ class UnquantizedTensor(Tensor):
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
def permute(self, n_head: int) -> 'UnquantizedTensor':
return UnquantizedTensor(permute(self.ndarray, n_head))
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
@ -438,26 +462,27 @@ class GGMLQuantizedTensor(Tensor):
def to_ggml(self) -> 'GGMLQuantizedTensor':
return self
def permute(self, n_head: int) -> 'GGMLQuantizedTensor':
return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type)
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type)
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
class DeferredPermutedTensor(Tensor):
def __init__(self, base: Tensor, n_head: int) -> None:
def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
self.base = base
self.n_head = n_head
self.n_kv_head = n_kv_head
self.data_type = self.base.data_type
def astype(self, data_type: DataType) -> Tensor:
return self.base.astype(data_type).permute(self.n_head)
return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
def to_ggml(self) -> GGMLCompatibleTensor:
return self.base.to_ggml().permute(self.n_head)
return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
def permute(self, n_head: int) -> Tensor:
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
raise Exception("shouldn't permute twice")
@ -549,8 +574,8 @@ class GPTQForLLaMaQuantizedTensor(Tensor):
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False)
return ret
def permute(self, n_head: int) -> Tensor:
return DeferredPermutedTensor(self, n_head)
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
return DeferredPermutedTensor(self, n_head, n_kv_head)
def to_ggml(self) -> GGMLQuantizedTensor:
# The output format looks like this:
@ -681,10 +706,10 @@ def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute(n_head)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
return lazy_tensor.load().permute(n_head, n_kv_head)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
def load() -> Tensor:
@ -709,7 +734,7 @@ def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
@ -1196,14 +1221,18 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
return {name: model[name] for name in TENSORS_LIST if name in model}
def load_vocab(path: Path) -> SentencePieceVocab:
def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
print(f"vocabtype: {vocabtype}")
# Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might
# be in the parent of that.
if path.is_dir():
path2 = path / "tokenizer.model"
vocab_file = "tokenizer.model"
if vocabtype == 'bpe':
vocab_file = "vocab.json"
path2 = path / vocab_file
# Use `.parent` instead of /.. to handle the symlink case better.
path3 = path.parent / "tokenizer.model"
path3 = path.parent / vocab_file
if path2.exists():
path = path2
elif path3.exists():
@ -1214,7 +1243,8 @@ def load_vocab(path: Path) -> SentencePieceVocab:
"if it's in another directory, pass the directory as --vocab-dir")
added_tokens_path = path.parent / "added_tokens.json"
print(f"Loading vocab file {path}")
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
vocabtype)
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
@ -1252,6 +1282,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path,
help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)")
args = parser.parse_args(args_in)
vocab: Vocab
@ -1259,7 +1290,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
model_plus = lazy_load_file(args.model)
do_dump_model(model_plus)
elif args.vocab_only:
vocab = load_vocab(args.vocab_dir or args.model)
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
assert args.outfile, "need --outfile if using --vocab-only"
outfile = args.outfile
OutputFile.write_vocab_only(outfile, vocab)
@ -1273,7 +1304,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
vocab = model_plus.vocab
else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir)
vocab = load_vocab(vocab_dir, args.vocabtype)
params = Params.load(model_plus)
model = model_plus.model
model = do_necessary_conversions(model, params)

View file

@ -8,6 +8,12 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#ifdef LLAMA_DEFAULT_RMS_EPS
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
#else
static const float rms_norm_eps = 5e-6f;
#endif
float frand() {
return (float)rand()/(float)RAND_MAX;
}
@ -562,7 +568,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@ -685,7 +691,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@ -729,7 +735,7 @@ struct ggml_tensor * forward(
{
// inpL shape [n_embd,N,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
@ -817,7 +823,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@ -981,7 +987,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@ -1034,7 +1040,7 @@ struct ggml_tensor * forward_batch(
{
// inpL shape [n_embd,N*n_batch,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@ -1104,7 +1110,7 @@ struct ggml_tensor * forward_lora(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@ -1251,7 +1257,7 @@ struct ggml_tensor * forward_lora(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@ -1295,7 +1301,7 @@ struct ggml_tensor * forward_lora(
{
// inpL shape [n_embd,N,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]

View file

@ -177,6 +177,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_gqa = std::stoi(argv[i]);
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
@ -396,8 +402,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.antiprompt.push_back(argv[i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--perplexity-lines") {
params.perplexity_lines = true;
} else if (arg == "--hellaswag") {
params.hellaswag = true;
} else if (arg == "--hellaswag-tasks") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hellaswag_tasks = std::stoi(argv[i]);
} else if (arg == "--ignore-eos") {
params.logit_bias[llama_token_eos()] = -INFINITY;
} else if (arg == "--no-penalize-nl") {
@ -426,6 +438,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
exit(0);
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix-bos") {
params.input_prefix_bos = true;
} else if (arg == "--in-prefix") {
if (++i >= argc) {
invalid_param = true;
@ -511,6 +525,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " not supported with --interactive or other interactive options\n");
fprintf(stdout, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
fprintf(stdout, " --random-prompt start with a randomized prompt.\n");
fprintf(stdout, " --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
fprintf(stdout, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
fprintf(stdout, " -f FNAME, --file FNAME\n");
@ -519,6 +534,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
@ -549,8 +565,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp);
fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n");
fprintf(stdout, " --perplexity-lines compute perplexity over each line of the prompt\n");
fprintf(stdout, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %d)\n", params.hellaswag_tasks);
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
if (llama_mlock_supported()) {
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
@ -615,6 +632,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
lparams.n_gqa = params.n_gqa;
lparams.rms_norm_eps = params.rms_norm_eps;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;

View file

@ -22,18 +22,19 @@
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = -1; // RNG seed
uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
@ -69,7 +70,10 @@ struct gpt_params {
std::string lora_adapter = ""; // lora adapter path
std::string lora_base = ""; // base model path for the lora adapter
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
@ -81,10 +85,10 @@ struct gpt_params {
bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\`
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token
bool perplexity = false; // compute perplexity over the prompt
bool perplexity_lines = false; // compute perplexity over each line of the prompt
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool mem_test = false; // compute maximum memory usage

View file

@ -202,9 +202,9 @@ Example usage: `--top-p 0.95`
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. The method adjusts the logits (token probabilities) by raising them to the power of the parameter z. A higher value of z (e.g., 2.0) will further suppress less likely tokens from the tail of the distribution, while a value of 1.0 disables the effect of TFS. By setting the parameter z, you can control how much the probabilities of less likely tokens are reduced.
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS.
Example usage: `--tfs 2.0`
Example usage: `--tfs 0.95`
### Locally Typical Sampling

View file

@ -325,6 +325,10 @@ int main(int argc, char ** argv) {
}
}
if (params.input_prefix_bos) {
fprintf(stderr, "Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
@ -633,16 +637,6 @@ int main(int argc, char ** argv) {
last_n_tokens.push_back(id);
}
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive && !params.instruct) {
id = llama_token_newline.front();
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
}
}
// add it to the context
embd.push_back(id);
@ -708,11 +702,34 @@ int main(int argc, char ** argv) {
}
}
// deal with end of text token in interactive mode
if (last_n_tokens.back() == llama_token_eos()) {
if (params.interactive) {
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
is_antiprompt = true;
}
is_interacting = true;
printf("\n");
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
fflush(stdout);
} else if (params.instruct) {
is_interacting = true;
}
}
if (n_past > 0 && is_interacting) {
if (params.instruct) {
printf("\n> ");
}
if (params.input_prefix_bos) {
embd_inp.push_back(llama_token_bos());
}
std::string buffer;
if (!params.input_prefix.empty()) {
buffer += params.input_prefix;
@ -776,13 +793,9 @@ int main(int argc, char ** argv) {
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos()) {
if (params.instruct) {
is_interacting = true;
} else {
fprintf(stderr, " [end of text]\n");
break;
}
if (!embd.empty() && embd.back() == llama_token_eos() && !(params.instruct || params.interactive)) {
fprintf(stderr, " [end of text]\n");
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.

View file

@ -121,8 +121,23 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
printf("\n");
}
void perplexity_lines(llama_context * ctx, const gpt_params & params) {
// Calculates perplexity over each line of the prompt
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Calculates hellaswag score (acc_norm) from prompt
//
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
//
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
//
// Datafile layout:
// ['??'] denotes json fields
// 6 lines per task:
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
// ['label'] - The index the best common sense ending aka gold ending
// ['endings'][0] - Endings added to the first part of the query
// ['endings'][1]
// ['endings'][2]
// ['endings'][3]
std::vector<std::string> prompt_lines;
std::istringstream strstream(params.prompt);
@ -132,63 +147,149 @@ void perplexity_lines(llama_context * ctx, const gpt_params & params) {
prompt_lines.push_back(line);
}
if( prompt_lines.size() % 6 != 0) {
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
return;
}
size_t hs_task_count = prompt_lines.size()/6;
fprintf(stderr, "%s : loaded %lu tasks from prompt.\n", __func__, hs_task_count);
// This is needed as usual for LLaMA models
bool prepend_bos = true;
// Number of tasks to use when computing the score
if ( params.hellaswag_tasks < hs_task_count ) {
hs_task_count = params.hellaswag_tasks;
}
// The tasks should be randomized so the score stabilizes quickly.
bool randomize_tasks = true;
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
std::mt19937 rng(1);
// Dataholder for hellaswag tasks
struct hs_data_t {
std::string context;
size_t gold_ending_idx;
std::string ending[4];
size_t ending_logprob_count[4];
double ending_logprob[4];
};
fprintf(stderr, "%s : selecting %lu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
// Select and read data from prompt lines
hs_data_t *hs_data = new hs_data_t[hs_task_count];
for (size_t i=0; i < hs_task_count; i++) {
size_t idx = i;
// Select a random example of those left in the prompt
if (randomize_tasks) {
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
idx = dist(rng);
}
hs_data[i].context = prompt_lines[idx*6];
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
for (size_t j=0; j < 4; j++) {
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
}
// Delete the selected random example from the prompt
if (randomize_tasks) {
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
}
}
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
printf("\ntask\tacc_norm\n");
double acc = 0.0f;
const int n_vocab = llama_n_vocab(ctx);
int counttotal = 0;
size_t n_lines = prompt_lines.size();
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
double nll = 0.0;
// Tokenize the context to count tokens
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
size_t context_size = context_embd.size();
fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);
for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
printf("\nLine\tPPL line\tPPL cumulative\n");
// Tokenize the query
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
size_t query_size = query_embd.size();
for (size_t i = 0; i < n_lines; ++i) {
// Stop if query wont fit the ctx window
if (query_size > (size_t)params.n_ctx) {
fprintf(stderr, "%s : number of tokens in query %lu > n_ctxl\n", __func__, query_size);
return;
}
// Tokenize and insert BOS at start
std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);
// Speedup small evaluations by evaluating atleast 32 tokens
if (query_size < 32) {
query_embd.resize(32);
}
size_t batch_size = batch_embd.size();
// Evaluate the query
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
// Stop if line is too long
if( batch_size > (size_t)params.n_ctx ) {
fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
return;
const auto query_logits = llama_get_logits(ctx);
std::vector<float> logits;
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
// Calculate the logprobs over the ending
for (size_t j = context_size-1; j < query_size - 1; j++) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[query_embd[ j + 1]];
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
hs_data[task_idx].ending_logprob_count[ending_idx]++;
}
// Calculate the mean token logprob for acc_norm
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
}
if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
// Find the ending with maximum logprob
size_t ending_logprob_max_idx = -1;
double ending_logprob_max_val = -INFINITY;
for (size_t j=0; j < 4; j++) {
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
ending_logprob_max_idx = j;
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
}
}
const auto batch_logits = llama_get_logits(ctx);
std::vector<float> logits;
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
double nllline = 0.0;
int countline = 0;
// Perplexity over second half of the line
for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[batch_embd[ j + 1]];
nllline += -std::log(prob);
++countline;
// If the gold ending got the maximum logprobe add one accuracy point
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
acc += 1.0;
}
nll += nllline;
counttotal += countline;
// perplexity is e^(average negative log-likelihood)
printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
// Print the accumulated accuracy mean x 100
printf("%li\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
fflush(stdout);
}
delete [] hs_data;
printf("\n");
}
@ -240,8 +341,8 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
if (params.perplexity_lines) {
perplexity_lines(ctx, params);
if (params.hellaswag) {
hellaswag_score(ctx, params);
} else {
perplexity(ctx, params);
}

View file

@ -26,6 +26,7 @@ int main(int argc, char ** argv) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_gqa = params.n_gqa;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;

View file

@ -0,0 +1,26 @@
#!/bin/bash
set -e
cd "$(dirname "$0")/.." || exit
# Specify the model you want to use here:
MODEL="${MODEL:-./models/llama-2-13b-chat.ggmlv3.q5_K_M.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat-system.txt}
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-12}"
# Note: you can also override the generation options by specifying them on the command line:
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 4096 --batch-size 1024}"
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./server $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--rope-freq-scale 1.0 \
"$@"
# I used this to test the model with mps, but omitted it from the general purpose. If you want to use it, just specify it on the command line.
# -ngl 1 \

View file

@ -0,0 +1,109 @@
#!/bin/bash
API_URL="${API_URL:-http://127.0.0.1:8080}"
CHAT=(
"Hello, Assistant."
"Hello. How may I help you today?"
)
INSTRUCTION="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions."
trim() {
shopt -s extglob
set -- "${1##+([[:space:]])}"
printf "%s" "${1%%+([[:space:]])}"
}
trim_trailing() {
shopt -s extglob
printf "%s" "${1%%+([[:space:]])}"
}
format_prompt() {
if [[ "${#CHAT[@]}" -eq 0 ]]; then
echo -n "[INST] <<SYS>>\n${INSTRUCTION}\n<</SYS>>"
else
LAST_INDEX=$(( ${#CHAT[@]} - 1 ))
echo -n "${CHAT[$LAST_INDEX]}\n[INST] $1 [/INST]"
fi
}
tokenize() {
curl \
--silent \
--request POST \
--url "${API_URL}/tokenize" \
--header "Content-Type: application/json" \
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
| jq '.tokens[]'
}
N_KEEP=$(tokenize "[INST] <<SYS>>\n${INSTRUCTION}\n<</SYS>>" | wc -l)
chat_completion() {
PROMPT="$(trim_trailing "$(format_prompt "$1")")"
DATA="$(echo -n "$PROMPT" | jq -Rs --argjson n_keep $N_KEEP '{
prompt: .,
temperature: 0.2,
top_k: 40,
top_p: 0.9,
n_keep: $n_keep,
n_predict: 1024,
stop: ["[INST]"],
stream: true
}')"
# Create a temporary file to hold the Python output
TEMPFILE=$(mktemp)
exec 3< <(curl \
--silent \
--no-buffer \
--request POST \
--url "${API_URL}/completion" \
--header "Content-Type: application/json" \
--data-raw "${DATA}")
python -c "
import json
import sys
answer = ''
while True:
line = sys.stdin.readline()
if not line:
break
if line.startswith('data: '):
json_content = line[6:].strip()
content = json.loads(json_content)['content']
sys.stdout.write(content)
sys.stdout.flush()
answer += content
answer = answer.rstrip('\n')
# Write the answer to the temporary file
with open('$TEMPFILE', 'w') as f:
f.write(answer)
" <&3
exec 3<&-
# Read the answer from the temporary file
ANSWER=$(cat $TEMPFILE)
# Clean up the temporary file
rm $TEMPFILE
printf "\n"
CHAT+=("$1" "$(trim "$ANSWER")")
}
while true; do
echo -en "\033[0;32m" # Green color
read -r -e -p "> " QUESTION
echo -en "\033[0m" # Reset color
chat_completion "${QUESTION}"
done

File diff suppressed because it is too large Load diff

View file

@ -73,6 +73,37 @@
margin: 0;
}
fieldset.two {
display: grid;
grid-template: "a a";
gap: 1em;
}
fieldset.three {
display: grid;
grid-template: "a a a";
gap: 1em;
}
details {
border: 1px solid #aaa;
border-radius: 4px;
padding: 0.5em 0.5em 0;
margin-top: 0.5em;
}
summary {
font-weight: bold;
margin: -0.5em -0.5em 0;
padding: 0.5em;
cursor: pointer;
}
details[open] {
padding: 0.5em;
}
textarea {
padding: 5px;
flex-grow: 1;
@ -125,10 +156,17 @@
const params = signal({
n_predict: 400,
temperature: 0.7,
repeat_last_n: 256,
repeat_penalty: 1.18,
top_k: 40,
top_p: 0.5,
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
repeat_penalty: 1.18, // 1.0 = disabled
top_k: 40, // <= 0 to use vocab size
top_p: 0.5, // 1.0 = disabled
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
frequency_penalty: 0.0, // 0.0 = disabled
mirostat: 0, // 0/1/2
mirostat_tau: 5, // target entropy
mirostat_eta: 0.1, // learning rate
})
const llamaStats = signal(null)
@ -264,6 +302,27 @@
const updateSession = (el) => session.value = { ...session.value, [el.target.name]: el.target.value }
const updateParams = (el) => params.value = { ...params.value, [el.target.name]: el.target.value }
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
const FloatField = ({label, max, min, name, step, value}) => {
return html`
<div>
<label for="${name}">${label}</label>
<input type="range" id="${name}" min="${min}" max="${max}" step="${step}" name="${name}" value="${value}" oninput=${updateParamsFloat} />
<span>${value}</span>
</div>
`
};
const IntField = ({label, max, min, name, value}) => {
return html`
<div>
<label for="${name}">${label}</label>
<input type="range" id="${name}" min="${min}" max="${max}" name="${name}" value="${value}" oninput=${updateParamsInt} />
<span>${value}</span>
</div>
`
};
return html`
<form>
@ -272,7 +331,9 @@
<label for="prompt">Prompt</label>
<textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
</div>
</fieldset>
<fieldset class="two">
<div>
<label for="user">User name</label>
<input type="text" name="user" value="${session.value.user}" oninput=${updateSession} />
@ -282,7 +343,9 @@
<label for="bot">Bot name</label>
<input type="text" name="char" value="${session.value.char}" oninput=${updateSession} />
</div>
</fieldset>
<fieldset>
<div>
<label for="template">Prompt template</label>
<textarea id="template" name="template" value="${session.value.template}" rows=4 oninput=${updateSession}/>
@ -292,38 +355,44 @@
<label for="template">Chat history template</label>
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
</div>
<div>
<label for="temperature">Temperature</label>
<input type="range" id="temperature" min="0.0" max="1.0" step="0.01" name="temperature" value="${params.value.temperature}" oninput=${updateParamsFloat} />
<span>${params.value.temperature}</span>
</div>
<div>
<label for="nPredict">Predictions</label>
<input type="range" id="nPredict" min="1" max="2048" step="1" name="n_predict" value="${params.value.n_predict}" oninput=${updateParamsFloat} />
<span>${params.value.n_predict}</span>
</div>
<div>
<label for="repeat_penalty">Penalize repeat sequence</label>
<input type="range" id="repeat_penalty" min="0.0" max="2.0" step="0.01" name="repeat_penalty" value="${params.value.repeat_penalty}" oninput=${updateParamsFloat} />
<span>${params.value.repeat_penalty}</span>
</div>
<div>
<label for="repeat_last_n">Consider N tokens for penalize</label>
<input type="range" id="repeat_last_n" min="0.0" max="2048" name="repeat_last_n" value="${params.value.repeat_last_n}" oninput=${updateParamsFloat} />
<span>${params.value.repeat_last_n}</span>
</div>
</fieldset>
<fieldset class="two">
${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})}
${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})}
${FloatField({label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty})}
${IntField({label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n})}
${IntField({label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k})}
${FloatField({label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p})}
</fieldset>
<details>
<summary>More options</summary>
<fieldset class="two">
${FloatField({label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z})}
${FloatField({label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p})}
${FloatField({label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty})}
${FloatField({label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty})}
</fieldset>
<hr />
<fieldset class="three">
<div>
<label><input type="radio" name="mirostat" value="0" checked=${params.value.mirostat == 0} oninput=${updateParamsInt} /> no Mirostat</label>
<label><input type="radio" name="mirostat" value="1" checked=${params.value.mirostat == 1} oninput=${updateParamsInt} /> Mirostat v1</label>
<label><input type="radio" name="mirostat" value="2" checked=${params.value.mirostat == 2} oninput=${updateParamsInt} /> Mirostat v2</label>
</div>
${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})}
${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})}
</fieldset>
</details>
</form>
`
}
// poor mans markdown replacement
const Markdownish = (params) => {
const md = params.text
.replace(/&/g, '&amp;')
.replace(/</g, '&lt;')
.replace(/>/g, '&gt;')
.replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>')
.replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>')
.replace(/__(.*?)__/g, '<strong>$1</strong>')

View file

@ -609,6 +609,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
@ -734,6 +735,14 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_gqa = std::stoi(argv[i]);
}
else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)

View file

@ -16,6 +16,8 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
struct random_normal_distribution {
std::mt19937 gen;
std::normal_distribution<float> rd;
@ -439,7 +441,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@ -562,7 +564,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@ -606,7 +608,7 @@ struct ggml_tensor * forward(
{
// inpL shape [n_embd,N,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
@ -694,7 +696,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@ -857,7 +859,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@ -910,7 +912,7 @@ struct ggml_tensor * forward_batch(
{
// inpL shape [n_embd,N*n_batch,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@ -979,7 +981,7 @@ struct ggml_tensor * forward_batch_wo_cache(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@ -1085,7 +1087,7 @@ struct ggml_tensor * forward_batch_wo_cache(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@ -1138,7 +1140,7 @@ struct ggml_tensor * forward_batch_wo_cache(
{
// inpL shape [n_embd,N*n_batch,1,1]
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@ -1203,7 +1205,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@ -1267,7 +1269,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@ -1311,7 +1313,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
// norm
{
inpL = ggml_rms_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@ -1603,7 +1605,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
struct my_llama_layer & layer = model->layers[il];
// tensors with values necessary for backward pass are in persistent buf(-1)
// other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
@ -1623,7 +1625,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
@ -1666,7 +1668,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
}
clr_buf(0);
use_buf(0);
struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch);
struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch);
struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
use_buf(-1);

View file

@ -389,12 +389,10 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
}
}
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
const float eps = 1e-6f;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += WARP_SIZE) {
@ -1623,12 +1621,14 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
// iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * (iqs / (QI8_1/2));
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#ifndef GGML_QKK_64
// iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * (iqs / (QI8_1/2));
const float d = bq4_K->d;
const float dmin = bq4_K->dmin;
@ -1673,6 +1673,43 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
}
return d*sumf_d - dmin*sumf_m;
#else
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
const uint16_t * a = (const uint16_t *)bq4_K->scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->d[0];
const float dmin = bq4_K->d[1];
const float d8_1 = bq8_1[0].d;
const float d8_2 = bq8_1[1].d;
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
const int * q4 = (const int *)bq4_K->qs + iqs;
const int v1 = q4[0];
const int v2 = q4[4];
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
return dall * sumf_d - dmin * sumf_m;
#endif
#else
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
@ -1684,6 +1721,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
#ifndef GGML_QKK_64
const int bq8_offset = QR5_K * (iqs / (QI8_1/2));
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * (iqs%4));
const int * qh = (const int *)(bq5_K->qh + 4 * (iqs%4));
@ -1739,6 +1778,42 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
}
return d*sumf_d - dmin*sumf_m;
#else
const int8_t * s = bq5_K->scales;
const float d = bq5_K->d;
const float d8_1 = bq8_1[0].d;
const float d8_2 = bq8_1[1].d;
const int ui1 = *((const int *)bq8_1[0].qs + iqs);
const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4);
const int ui3 = *((const int *)bq8_1[1].qs + iqs);
const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4);
const int * ql = (const int *)bq5_K->qs + iqs;
const int vl1 = ql[0];
const int vl2 = ql[4];
const int step = 4 * iqs; // 0, 4, 8, 12
const int im = step/8; // = 0 for iqs = 0, 1, = 1 for iqs = 2, 3
const int in = step%8; // 0, 4, 0, 4
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
return d * sumf_d;
#endif
#else
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
@ -2179,10 +2254,10 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
@ -2937,8 +3012,11 @@ inline void ggml_cuda_op_rms_norm(
const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// compute
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
(void) src1;
(void) dst;
@ -4023,18 +4101,23 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
}
func = ggml_cuda_mul;
break;
case GGML_OP_GELU:
if (!any_on_device) {
return false;
}
func = ggml_cuda_gelu;
break;
case GGML_OP_SILU:
if (!any_on_device) {
return false;
}
func = ggml_cuda_silu;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
if (!any_on_device) {
return false;
}
func = ggml_cuda_gelu;
break;
case GGML_UNARY_OP_SILU:
if (!any_on_device) {
return false;
}
func = ggml_cuda_silu;
break;
default:
return false;
} break;
case GGML_OP_NORM:
if (!any_on_device) {
return false;

View file

@ -61,6 +61,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
// get data from the device into host memory
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
// try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
// if the graph has been optimized for concurrently dispatch
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);

View file

@ -36,6 +36,9 @@ struct ggml_metal_context {
int n_buffers;
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
int concur_list[GGML_MAX_NODES];
int concur_list_len;
// custom kernels
#define GGML_METAL_DECL_KERNEL(name) \
id<MTLFunction> function_##name; \
@ -98,6 +101,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->device = MTLCreateSystemDefaultDevice();
ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0;
ctx->concur_list_len = 0;
// determine if we can use MPS
if (MPSSupportsMTLDevice(ctx->device)) {
@ -217,6 +221,13 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb;
}
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
if (ctx->concur_list_len) {
return true;
}
return false;
}
// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
@ -355,11 +366,98 @@ void ggml_metal_get_tensor(
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
}
void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_NODES];
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
ctx->concur_list_len = 0;
int n_left = gf->n_nodes;
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
while (n_left > 0) {
// number of nodes at a layer (that can be issued concurrently)
int concurrency = 0;
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
if (nodes_unused[i]) {
// if the requirements for gf->nodes[i] are satisfied
int exe_flag=1;
// scan all srcs
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
if (src_cur) {
// if is leaf nodes it's satisfied.
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
// otherwise this src should be the output from previous nodes.
int is_found = 0;
// scan 2*search_depth back because we inserted barrier.
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
}
if (is_found == 0) {exe_flag = 0; break;}
}
}
if (exe_flag) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data;
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
for (int j = n_start; j < i; j++) {
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
&& gf->nodes[j]->op != GGML_OP_VIEW \
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
continue;
} else {
exe_flag = 0;
}
}
}
}
if (exe_flag) {
ctx->concur_list[level_pos + concurrency] = i;
nodes_unused[i] = 0;
concurrency++;
ctx->concur_list_len++;
}
}
}
n_left -= concurrency;
// adding a barrier different layer
ctx->concur_list[level_pos + concurrency] = -1;
ctx->concur_list_len++;
// jump all sorted nodes at nodes_bak
while (!nodes_unused[n_start]) {n_start++;}
level_pos += concurrency + 1;
}
if (ctx->concur_list_len > GGML_MAX_NODES) {
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
}
}
void ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
metal_printf("%s: evaluating graph\n", __func__);
// if there is ctx->concur_list, dispatch concurrently
// else fallback to serial dispatch
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
// create multiple command buffers and enqueue them
// then, we encode the graph into the command buffers in parallel
@ -378,7 +476,7 @@ void ggml_metal_graph_compute(
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb;
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
dispatch_async(queue, ^{
size_t offs_src0 = 0;
@ -389,10 +487,21 @@ void ggml_metal_graph_compute(
id<MTLComputeCommandEncoder> encoder = nil;
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb;
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
for (int ind = node_start; ind < node_end; ++ind) {
const int i = has_concur ? ctx->concur_list[ind] : ind;
if (i == -1) {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
continue;
}
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue;
}
for (int i = node_start; i < node_end; ++i) {
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
@ -463,7 +572,7 @@ void ggml_metal_graph_compute(
case GGML_OP_ADD:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) {
@ -484,7 +593,7 @@ void ggml_metal_graph_compute(
case GGML_OP_MUL:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) {
@ -505,7 +614,7 @@ void ggml_metal_graph_compute(
case GGML_OP_SCALE:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float scale = *(const float *) src1->data;
@ -519,52 +628,60 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SILU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_RELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_gelu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
} break;
case GGML_OP_RELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
[encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_GELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
}
[encoder setComputePipelineState:ctx->pipeline_gelu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SOFT_MAX:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32;
@ -582,7 +699,7 @@ void ggml_metal_graph_compute(
case GGML_OP_DIAG_MASK_INF:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *)(dst->op_params))[0];
@ -645,7 +762,7 @@ void ggml_metal_graph_compute(
}
} else {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
int nth0 = 32;
@ -772,7 +889,7 @@ void ggml_metal_graph_compute(
case GGML_OP_GET_ROWS:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
switch (src0->type) {
@ -801,10 +918,11 @@ void ggml_metal_graph_compute(
case GGML_OP_RMS_NORM:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float eps = 1e-6f;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int nth = 512;
@ -823,7 +941,7 @@ void ggml_metal_graph_compute(
case GGML_OP_NORM:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float eps = 1e-5f;
@ -845,7 +963,7 @@ void ggml_metal_graph_compute(
case GGML_OP_ALIBI:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
GGML_ASSERT((src0t == GGML_TYPE_F32));
@ -888,7 +1006,7 @@ void ggml_metal_graph_compute(
case GGML_OP_ROPE:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *) dst->op_params)[0];
@ -932,7 +1050,7 @@ void ggml_metal_graph_compute(
case GGML_OP_CONT:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder];
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32;
@ -979,8 +1097,10 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
default:
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
}
}

View file

@ -387,87 +387,90 @@ kernel void kernel_rms_norm(
}
}
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
return d * (sumy * -8.f + acc[0] + acc[1]);
}
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
float2 acc = 0.f;
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
return d * (acc[0] + acc[1]) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
template<typename block_q_type>
//Note: This is a template, but strictly speaking it only applies to
// quantizations where the block size is 32. It also does not
// giard against the number of rows not being divisible by
// N_DST, so this is another explicit assumption of the implementation.
template<typename block_q_type, int nr, int nsg, int nw>
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
uint2 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
const int first_row = (r0 * nsg + sgitg) * nr;
device const block_q_type * x = (device const block_q_type *) src0 + first_row * nb;
device const float * y = (device const float *) src1 + r1*ne10;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
float yl[16]; // src1 vector cache
float sumf[nr]={0.f};
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
const int ix = tiisg/2;
const int il = 8*(tiisg%2);
device const float * yb = y + ix * QK4_0 + il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
for (int i = 0; i < 8; i += 2) {
sumy += yb[i] + yb[i+1];
yl[i+0] = yb[i+ 0];
yl[i+1] = yb[i+ 1]/256.f;
sumy += yb[i+16] + yb[i+17];
yl[i+8] = yb[i+16]/16.f;
yl[i+9] = yb[i+17]/4096.f;
}
for (int row = 0; row < N_DST; row++) {
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
for (int row = 0; row < nr; row++) {
sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
}
yb += QK4_0 * 16;
}
// from now loads two rows every time and 16 blocks per row
int ir = tiisg / (N_SIMDWIDTH / 2);
int ib = tiisg % (N_SIMDWIDTH / 2);
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row+=2) {
if (nb_start + ib < nb) {
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
}
}
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
for (int row = 0; row < nr; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && first_row + row < ne01) {
dst[r1*ne0 + first_row + row] = tot;
}
}
}
@ -483,7 +486,7 @@ kernel void kernel_mul_mat_q4_0_f32(
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mat_q4_1_f32(
@ -497,7 +500,7 @@ kernel void kernel_mul_mat_q4_1_f32(
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mat_f16_f32(

1047
ggml.c

File diff suppressed because it is too large Load diff

97
ggml.h
View file

@ -208,6 +208,7 @@
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_ASSERT(x) \
do { \
@ -330,16 +331,6 @@ extern "C" {
GGML_OP_ARGMAX,
GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK,
GGML_OP_ABS,
GGML_OP_SGN,
GGML_OP_NEG,
GGML_OP_STEP,
GGML_OP_TANH,
GGML_OP_ELU,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_GELU_QUICK,
GGML_OP_SILU,
GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM,
@ -378,6 +369,8 @@ extern "C" {
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
@ -391,6 +384,24 @@ extern "C" {
GGML_OP_COUNT,
};
enum ggml_unary_op {
GGML_UNARY_OP_ABS,
GGML_UNARY_OP_SGN,
GGML_UNARY_OP_NEG,
GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
GGML_UNARY_OP_RELU,
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
};
enum ggml_object_type {
GGML_OBJECT_TENSOR,
GGML_OBJECT_GRAPH,
GGML_OBJECT_WORK_BUFFER
};
// ggml object
struct ggml_object {
@ -399,7 +410,9 @@ extern "C" {
struct ggml_object * next;
char padding[8];
enum ggml_object_type type;
char padding[4];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
@ -420,7 +433,7 @@ extern "C" {
enum ggml_op op;
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(uint32_t)];
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
bool is_param;
@ -438,7 +451,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8];
char padding[4];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -459,6 +472,11 @@ extern "C" {
void * abort_callback_data;
};
// next prime after GGML_MAX_NODES
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
#define GGML_GRAPH_HASHTABLE_SIZE 8273
// computation graph
struct ggml_cgraph {
int n_nodes;
@ -468,12 +486,16 @@ extern "C" {
struct ggml_tensor * grads[GGML_MAX_NODES];
struct ggml_tensor * leafs[GGML_MAX_NODES];
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
// scratch buffer
struct ggml_scratch {
size_t offs;
@ -535,6 +557,7 @@ extern "C" {
GGML_API const char * ggml_type_name(enum ggml_type type);
GGML_API const char * ggml_op_name (enum ggml_op op);
GGML_API const char * ggml_op_symbol(enum ggml_op op);
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
@ -558,6 +581,7 @@ extern "C" {
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
@ -617,9 +641,11 @@ extern "C" {
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
//
// operations on tensors with backpropagation
@ -629,6 +655,11 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -853,14 +884,17 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * a,
float eps);
// a - x
// b - dy
// TODO: update with configurable eps
GGML_API struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -952,11 +986,22 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// a -> b, in-place, return view(b)
GGML_API struct ggml_tensor * ggml_cpy_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous
GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// make contiguous, in-place
GGML_API struct ggml_tensor * ggml_cont_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape(
@ -1268,6 +1313,16 @@ extern "C" {
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1347,11 +1402,17 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API size_t ggml_graph_overhead(void);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);

View file

@ -39,6 +39,8 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
//
// 2-6 bit quantization in super-blocks
//
@ -1353,7 +1355,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
__m256i sumi = _mm256_setzero_si256();
@ -1421,7 +1423,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
// sumf += -dmin * summs in 32bits*8
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
@ -1493,7 +1495,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
}
// sumf += dall * isum - dmin * summs in 32bits
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -1644,8 +1646,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
summs += dmin * smin;
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3);
const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
@ -1666,6 +1668,62 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) + summs;
#elif defined __AVX__
const __m128i m3 = _mm_set1_epi8(3);
__m256 acc = _mm256_setzero_ps();
uint32_t ud, um;
const uint8_t * restrict db = (const uint8_t *)&ud;
const uint8_t * restrict mb = (const uint8_t *)&um;
float summs = 0;
// TODO: optimize this
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
const uint8_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
ud = (sc[0] >> 0) & 0x0f0f0f0f;
um = (sc[0] >> 4) & 0x0f0f0f0f;
int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
summs += dmin * smin;
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
const __m128i q2_0 = _mm_and_si128(q2bits, m3);
const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
}
*s = hsum_float_8(acc) + summs;
#else
float sumf = 0;
@ -1861,7 +1919,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
// high bit
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
@ -2072,7 +2130,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
}
// multiply with block scale and accumulate
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -2247,13 +2305,13 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
aux16[0] = a & 0x0f0f;
aux16[1] = (a >> 4) & 0x0f0f;
const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
memcpy(&aux64, x[i].hmask, 8);
const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
__m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux);
__m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
__m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
@ -2262,7 +2320,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
// prepare low and high bits
const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits);
const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
@ -2295,6 +2353,93 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m3 = _mm_set1_epi8(3);
const __m128i m1 = _mm_set1_epi8(1);
__m256 acc = _mm256_setzero_ps();
uint64_t aux64;
uint16_t aux16[2];
const int8_t * aux8 = (const int8_t *)aux16;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q3 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f;
aux16[1] = (a >> 4) & 0x0f0f;
const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
memcpy(&aux64, x[i].hmask, 8);
__m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
__m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
__m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
__m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
// load low 2 bits
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
// prepare low and high bits
const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
// load Q8 quants
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
// Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
// and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
// and 2 if the high bit was set)
const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
__m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
__m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
__m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
__m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
// multiply with scales
p16_0 = _mm_madd_epi16(scale_0, p16_0);
p16_1 = _mm_madd_epi16(scale_1, p16_1);
p16_2 = _mm_madd_epi16(scale_2, p16_2);
p16_3 = _mm_madd_epi16(scale_3, p16_3);
p16_0 = _mm_add_epi32(p16_0, p16_2);
p16_1 = _mm_add_epi32(p16_1, p16_3);
__m256i p16 = MM256_SET_M128I(p16_1, p16_0);
// multiply with block scale and accumulate
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
}
*s = hsum_float_8(acc);
#else
int8_t aux8[QK_K];
@ -2477,7 +2622,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
const __m256i scales = _mm256_set_m128i(sc128, sc128);
const __m256i scales = MM256_SET_M128I(sc128, sc128);
__m256i sumi = _mm256_setzero_si256();
@ -2584,7 +2729,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256 vd = _mm256_set1_ps(d);
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
}
@ -2781,6 +2926,60 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc) - summs;
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
__m256 acc = _mm256_setzero_ps();
float summs = 0;
uint16_t aux16[2];
const uint8_t * scales = (const uint8_t *)aux16;
for (int i = 0; i < nb; ++i) {
const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
const __m256 vd = _mm256_set1_ps(d);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
}
*s = hsum_float_8(acc) - summs;
#else
uint8_t aux8[QK_K];
@ -2963,7 +3162,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
summs += dmin * _mm_extract_epi32(hsum, 0);
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
const __m256i scales = _mm256_set_m128i(sc128, sc128);
const __m256i scales = MM256_SET_M128I(sc128, sc128);
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
__m256i hmask = mone;
@ -3102,7 +3301,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256 vd = _mm256_set1_ps(d);
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
}
@ -3265,13 +3464,13 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
int64_t aux64;
memcpy(&aux64, x[i].qh, 8);
const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128);
const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
@ -3295,10 +3494,66 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
const __m128i mone = _mm_set1_epi8(1);
__m256 acc = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q5 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
int64_t aux64;
memcpy(&aux64, x[i].qh, 8);
const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
}
*s = hsum_float_8(acc);
#else
uint8_t aux8[QK_K];
int8_t aux8[QK_K];
int16_t aux16[16];
float sums [8];
memset(sums, 0, 8*sizeof(float));
@ -3308,7 +3563,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict q4 = x[i].qs;
const uint8_t * restrict hm = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
uint8_t * restrict a = aux8;
int8_t * restrict a = aux8;
for (int l = 0; l < 32; ++l) {
a[l+ 0] = q4[l] & 0xF;
a[l+32] = q4[l] >> 4;
@ -3672,7 +3927,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -3830,8 +4085,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
@ -3858,6 +4113,77 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
*s = hsum_float_8(acc);
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
const __m128i m2 = _mm_set1_epi8(3);
const __m128i m32s = _mm_set1_epi8(32);
__m256 acc = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
const uint8_t * restrict q4 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
__m128i sumi_0 = _mm_setzero_si128();
__m128i sumi_1 = _mm_setzero_si128();
const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
__m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
__m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
__m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
__m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
__m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
__m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
__m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
__m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
}
*s = hsum_float_8(acc);
#else
int8_t aux8[QK_K];

View file

@ -186,6 +186,7 @@ struct llama_hparams {
// LLaMAv2
// TODO: load from model data hparams
float f_ffn_mult = 1.0f;
float f_rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
@ -869,6 +870,7 @@ struct llama_context_params llama_context_default_params() {
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
/*.n_gqa =*/ 1,
/*.rms_norm_eps =*/ LLAMA_DEFAULT_RMS_EPS,
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
@ -1000,6 +1002,7 @@ static void llama_model_load_internal(
int n_ctx,
int n_batch,
int n_gqa,
float rms_norm_eps,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
@ -1024,6 +1027,9 @@ static void llama_model_load_internal(
auto & hparams = model.hparams;
// TODO: read from file
hparams.f_rms_norm_eps = rms_norm_eps;
{
switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break;
@ -1072,6 +1078,7 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa());
fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
@ -1330,6 +1337,7 @@ static bool llama_model_load(
int n_ctx,
int n_batch,
int n_gqa,
float rms_norm_eps,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
@ -1343,7 +1351,7 @@ static bool llama_model_load(
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
@ -1396,10 +1404,12 @@ static bool llama_eval_internal(
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
const float rms_norm_eps = hparams.f_rms_norm_eps;
const int n_gpu_layers = model.n_gpu_layers;
@ -1414,7 +1424,7 @@ static bool llama_eval_internal(
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {};
ggml_cgraph * gf = ggml_new_graph(ctx0);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
@ -1479,7 +1489,7 @@ static bool llama_eval_internal(
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_0");
@ -1531,8 +1541,8 @@ static bool llama_eval_internal(
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q =
@ -1627,7 +1637,7 @@ static bool llama_eval_internal(
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_1");
@ -1680,7 +1690,7 @@ static bool llama_eval_internal(
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2");
@ -1702,16 +1712,22 @@ static bool llama_eval_internal(
//cur = ggml_soft_max_inplace(ctx0, cur);
// run the computation
ggml_build_forward_expand(&gf, cur);
ggml_build_forward_expand(gf, cur);
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
#if GGML_USE_MPI
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif
#ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) {
// TODO: disabled until #2413 is resolved
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
//}
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
ggml_metal_graph_compute(lctx.ctx_metal, gf);
ggml_metal_get_tensor (lctx.ctx_metal, cur);
} else {
// IMPORTANT:
@ -1730,34 +1746,34 @@ static bool llama_eval_internal(
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
}
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
}
#else
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
#endif
#if GGML_USE_MPI
ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
#endif
// update kv token count
lctx.kv_self.n = n_past + N;
struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
if (cgraph_fname) {
ggml_graph_export(&gf, cgraph_fname);
ggml_graph_export(gf, cgraph_fname);
}
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(&gf);
ggml_graph_print(gf);
#endif
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
// extract logits
@ -1908,7 +1924,9 @@ struct llama_tokenizer {
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int) symbol.n; ++j) {
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
// NOTE: old version, before #2420 - not sure what are the implications of this
//llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
llama_vocab::id token_id = vocab_.token_to_id.at(std::string(1, symbol.text[j]));
output.push_back(token_id);
}
} else {
@ -3084,7 +3102,7 @@ struct llama_model * llama_load_model_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.n_gpu_layers,
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
@ -3162,7 +3180,7 @@ struct llama_context * llama_new_context_with_model(
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
@ -3647,7 +3665,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
@ -3750,7 +3768,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = hparams.n_ctx;
size_t kv_size;

View file

@ -53,6 +53,10 @@
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus
extern "C" {
#endif
@ -87,6 +91,7 @@ extern "C" {
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors

View file

@ -16,7 +16,8 @@ fi
echo "#ifndef BUILD_INFO_H"
echo "#define BUILD_INFO_H"
echo ""
echo "#define BUILD_NUMBER $BUILD_NUMBER"
echo "#define BUILD_COMMIT \"$BUILD_COMMIT\""
echo "#define BUILD_NUMBER $BUILD_NUMBER" | tr -d '\n'
echo ""
echo "#define BUILD_COMMIT \"$BUILD_COMMIT\"" | tr -d '\n'
echo ""
echo "#endif // BUILD_INFO_H"

View file

@ -64,7 +64,7 @@ void get_random_dims(int64_t * dims, int ndims) {
}
}
struct ggml_tensor * get_random_tensor(
struct ggml_tensor * get_random_tensor_f32(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
@ -112,7 +112,55 @@ struct ggml_tensor * get_random_tensor(
return result;
}
struct ggml_tensor * get_random_tensor_int(
struct ggml_tensor * get_random_tensor_f16(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
}
break;
default:
assert(false);
};
return result;
}
struct ggml_tensor * get_random_tensor_i32(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
@ -160,23 +208,6 @@ struct ggml_tensor * get_random_tensor_int(
return result;
}
float get_element(const struct ggml_tensor * t, int idx) {
if (t->type == GGML_TYPE_F32) {
return ((float *)t->data)[idx];
}
if (t->type == GGML_TYPE_I32) {
return ((int32_t *)t->data)[idx];
}
assert(false);
return INFINITY;
}
void set_element(struct ggml_tensor * t, int idx, float value) {
((float *)t->data)[idx] = value;
}
void print_elements(const char* label, const struct ggml_tensor * t) {
if (!t) {
printf("%s: %s = null\n", __func__, label);
@ -186,7 +217,7 @@ void print_elements(const char* label, const struct ggml_tensor * t) {
printf("%s: %s = [", __func__, label);
for (int k = 0; k < nelements; ++k) {
if (k > 0) { printf(", "); }
printf("%.5f", get_element(t, k));
printf("%.5f", ggml_get_f32_1d(t, k));
}
printf("] shape: [");
for (int k = 0; k < t->n_dims; ++k) {
@ -237,23 +268,23 @@ bool check_gradient(
const int nelements = ggml_nelements(x[i]);
for (int k = 0; k < nelements; ++k) {
// compute gradient using finite differences
const float x0 = get_element(x[i], k);
const float x0 = ggml_get_f32_1d(x[i], k);
const float xm = x0 - eps;
const float xp = x0 + eps;
set_element(x[i], k, xp);
ggml_set_f32_1d(x[i], k, xp);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f0 = ggml_get_f32_1d(f, 0);
set_element(x[i], k, xm);
ggml_set_f32_1d(x[i], k, xm);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f1 = ggml_get_f32_1d(f, 0);
const float g0 = (f0 - f1)/(2.0f*eps);
set_element(x[i], k, x0);
ggml_set_f32_1d(x[i], k, x0);
// compute gradient using backward graph
ggml_graph_reset (&gf);
@ -261,7 +292,7 @@ bool check_gradient(
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
const float g1 = get_element(x[i]->grad, k);
const float g1 = ggml_get_f32_1d(x[i]->grad, k);
const float error_abs = fabsf(g0 - g1);
const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0;
@ -392,19 +423,35 @@ int main(int argc, const char ** argv) {
struct ggml_tensor * x[MAX_NARGS];
// add
// add f32
{
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f);
check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f);
}
}
// add f16
{
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f);
}
}
@ -414,7 +461,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -430,7 +477,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -446,7 +493,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -462,7 +509,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -478,7 +525,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -494,7 +541,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -510,7 +557,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -527,7 +574,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -537,6 +584,40 @@ int main(int argc, const char ** argv) {
}
}
// mean, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0]));
check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// argmax
if (0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0]));
check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// repeat
{
int64_t ne2[4];
@ -549,15 +630,36 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1]))));
check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
}
}
// repeat back
{
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0] * ne2[0];
ne2[1] = ne[1] * ne2[1];
ne2[2] = 1;
ne2[3] = 1;
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0]))));
check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
}
}
// abs (finite differences do not work)
@ -566,7 +668,7 @@ int main(int argc, const char ** argv) {
// for (int ndims = 1; ndims <= 2; ++ndims) {
// for (int i = 0; i < nargs; ++i) {
// x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
// x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
// ggml_set_param(ctx0, x[i]);
// }
@ -576,17 +678,82 @@ int main(int argc, const char ** argv) {
// }
//}
// sgn
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0]));
check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// neg
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0]));
check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// step
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0]));
check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// tanh, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0]));
check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// mul_mat
{
const int nargs = 2;
for (int ndims = 2; ndims <= 2; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
{
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0];
x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
}
ggml_set_param(ctx0, x[0]);
@ -602,13 +769,63 @@ int main(int argc, const char ** argv) {
}
}
// elu, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0]));
check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// relu
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0]));
check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
}
}
// gelu, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0]));
check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// silu
{
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
@ -629,11 +846,11 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0]));
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f));
check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY);
}
@ -647,8 +864,8 @@ int main(int argc, const char ** argv) {
ne2[0] = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
@ -659,20 +876,37 @@ int main(int argc, const char ** argv) {
}
}
// cpy
// cpy f32
{
const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
}
}
// cpy f16
{
const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
}
}
@ -689,8 +923,8 @@ int main(int argc, const char ** argv) {
for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i];
}
x[0] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -712,8 +946,8 @@ int main(int argc, const char ** argv) {
for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i];
}
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -729,7 +963,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1);
@ -737,7 +971,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 1);
}
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
@ -758,7 +992,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2);
@ -766,7 +1000,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 2);
}
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -790,7 +1024,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2;
for (int ndims = 3; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 3);
@ -798,7 +1032,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 3);
}
x[1] = get_random_tensor(ctx0, 3, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -824,7 +1058,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2;
for (int ndims = 4; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 4);
@ -832,7 +1066,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4);
}
x[1] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -858,7 +1092,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1);
@ -866,7 +1100,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 1);
}
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
@ -887,7 +1121,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2);
@ -895,7 +1129,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 2);
}
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -915,7 +1149,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -941,7 +1175,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 2);
while (ne2[0]*ne2[1] > ggml_nelements(x[0])) {
@ -971,7 +1205,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 3);
while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) {
@ -1010,7 +1244,7 @@ int main(int argc, const char ** argv) {
for (int i=ndims; i<4; ++i) {
ne2[i] = 1;
}
x[0] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -1043,7 +1277,7 @@ int main(int argc, const char ** argv) {
for (int i=ndims; i<4; ++i) {
ne2[i] = 1;
}
x[0] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -1060,8 +1294,8 @@ int main(int argc, const char ** argv) {
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_int(ctx0, 1, ne3, 0, ne2[1]);
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_i32(ctx0, 1, ne3, 0, ne2[1]);
ggml_set_param(ctx0, x[0]);
@ -1075,7 +1309,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]);
@ -1090,7 +1324,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1;
const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]);
@ -1108,7 +1342,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_soft_max(ctx0, x[0]));
@ -1125,8 +1359,8 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne2, 0.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1]));
@ -1136,7 +1370,7 @@ int main(int argc, const char ** argv) {
}
}
// rope
// rope f32
{
const int nargs = 1;
@ -1148,7 +1382,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
@ -1163,14 +1397,48 @@ int main(int argc, const char ** argv) {
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0));
GGML_PRINT_DEBUG("rope: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY);
GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY);
}
}
}
}
// flash_attn
// rope f16
{
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] += ne2[0] % 2;
int n_rot = ne2[0];
for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const bool skip_past = (mode & 1);
if (skip_past) {
// we have no past, so this would have to work on uninitialized memory.
// we only test the gradients here;
// skip_past should have no influence on gradient computation.
// so when other modes work, we assume that this does as well.
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0));
GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
}
}
}
}
// flash_attn f32
{
const int nargs = 3;
@ -1196,16 +1464,57 @@ int main(int argc, const char ** argv) {
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor(ctx0, ndims, nev, -0.1250f, 0.1250f);
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
}
}
}
// flash_attn f16, not yet fully implemented
if(0)
{
const int nargs = 3;
int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int64_t neq[4] = { D, N, B, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
}
}
}

View file

@ -125,9 +125,9 @@ int main(void) {
};
struct ggml_context * ctx = ggml_init(params);
int64_t ne1[4] = {4, 1024, 1, 1};
int64_t ne2[4] = {4, 2048, 1, 1};;
int64_t ne3[4] = {1024, 2048, 1, 1};
int64_t ne1[4] = {4, 128, 1, 1};
int64_t ne2[4] = {4, 256, 1, 1};;
int64_t ne3[4] = {128, 256, 1, 1};
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);