Fix editorconfig

This commit is contained in:
Alisamar Husain 2023-04-27 16:56:43 +05:30
parent 2b50d21423
commit d2af46e371
3 changed files with 8874 additions and 8969 deletions

File diff suppressed because it is too large Load diff

View file

@ -32,13 +32,18 @@ static llama_context ** g_ctx;
static bool is_interacting = false;
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
void sigint_handler(int signo) {
void sigint_handler(int signo)
{
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
printf("\n"); // this also force flush stdout.
if (signo == SIGINT) {
if (!is_interacting) {
if (signo == SIGINT)
{
if (!is_interacting)
{
is_interacting = true;
} else {
}
else
{
llama_print_timings(*g_ctx);
_exit(130);
}
@ -46,16 +51,18 @@ void sigint_handler(int signo) {
}
#endif
auto const BINDPORT = 8001;
int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
if (!params.lora_adapter.empty()) {
int run_llama(llama_context *ctx, gpt_params params, std::ostream *outfile)
{
if (!params.lora_adapter.empty())
{
int err = llama_apply_lora_from_file(ctx,
params.lora_adapter.c_str(),
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
params.n_threads);
if (err != 0) {
if (err != 0)
{
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
return 1;
}
@ -70,14 +77,17 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
// uncomment the "used_mem" line in llama.cpp to see the results
if (params.mem_test) {
if (params.mem_test)
{
{
const std::vector<llama_token> tmp(params.n_batch, 0);
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
}
{
const std::vector<llama_token> tmp = { 0, };
const std::vector<llama_token> tmp = {
0,
};
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
}
@ -95,13 +105,15 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
const int n_ctx = llama_n_ctx(ctx);
if ((int) embd_inp.size() > n_ctx - 4) {
if ((int)embd_inp.size() > n_ctx - 4)
{
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int)embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) {
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct)
{
params.n_keep = (int)embd_inp.size();
}
@ -110,29 +122,35 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
if (params.instruct)
{
params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// enable interactive mode if reverse prompt or interactive start is specified
if (params.antiprompt.size() != 0 || params.interactive_first) {
if (params.antiprompt.size() != 0 || params.interactive_first)
{
params.interactive = true;
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) {
if (params.verbose_prompt)
{
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
for (int i = 0; i < (int)embd_inp.size(); i++)
{
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
if (params.n_keep > 0) {
if (params.n_keep > 0)
{
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
for (int i = 0; i < params.n_keep; i++)
{
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "'\n");
@ -140,7 +158,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
fprintf(stderr, "\n");
}
if (params.interactive) {
if (params.interactive)
{
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
@ -153,13 +172,16 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
fprintf(stderr, "%s: interactive mode on.\n", __func__);
if (params.antiprompt.size()) {
for (auto antiprompt : params.antiprompt) {
if (params.antiprompt.size())
{
for (auto antiprompt : params.antiprompt)
{
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
}
}
if (!params.input_prefix.empty()) {
if (!params.input_prefix.empty())
{
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
}
@ -172,7 +194,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) {
if (params.interactive)
{
fprintf(stderr, "== Running in interactive mode. ==\n"
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
" - Press Ctrl+C to interject at any time.\n"
@ -194,14 +217,17 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
std::vector<llama_token> embd;
while (n_remain != 0 || params.interactive) {
while (n_remain != 0 || params.interactive)
{
// predict
if (embd.size() > 0) {
if (embd.size() > 0)
{
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() > n_ctx) {
if (n_past + (int)embd.size() > n_ctx)
{
const int n_left = n_past - params.n_keep;
n_past = params.n_keep;
@ -220,12 +246,15 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
for (int i = 0; i < (int)embd.size(); i += params.n_batch)
{
int n_eval = (int)embd.size() - i;
if (n_eval > params.n_batch) {
if (n_eval > params.n_batch)
{
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads))
{
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
@ -235,7 +264,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
if ((int)embd_inp.size() <= n_consumed && !is_interacting)
{
// out of user input, sample next token
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
@ -247,7 +277,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
{
auto logits = llama_get_logits(ctx);
if (params.ignore_eos) {
if (params.ignore_eos)
{
logits[llama_token_eos()] = 0;
}
@ -260,9 +291,11 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
}
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive && !params.instruct) {
if (id == llama_token_eos() && params.interactive && !params.instruct)
{
id = llama_token_newline.front();
if (params.antiprompt.size() != 0) {
if (params.antiprompt.size() != 0)
{
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
@ -277,45 +310,57 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
// decrement remaining sampling budget
--n_remain;
} else {
}
else
{
// some user input remains from prompt or interaction, forward it to processing
while ((int) embd_inp.size() > n_consumed) {
while ((int)embd_inp.size() > n_consumed)
{
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
if ((int)embd.size() >= params.n_batch)
{
break;
}
}
}
// display text
if (!input_noecho) {
for (auto id : embd) {
if (!input_noecho)
{
for (auto id : embd)
{
*outfile << llama_token_to_str(ctx, id) << std::flush;
}
}
// reset color to default if we there is no pending user input
if (!input_noecho && (int)embd_inp.size() == n_consumed) {
if (!input_noecho && (int)embd_inp.size() == n_consumed)
{
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
}
// in interactive mode, and not currently processing queued inputs;
// check if we should prompt the user for more
if (params.interactive && (int) embd_inp.size() <= n_consumed) {
if (params.interactive && (int)embd_inp.size() <= n_consumed)
{
// check for reverse prompt
if (params.antiprompt.size()) {
if (params.antiprompt.size())
{
std::string last_output;
for (auto id : last_n_tokens) {
for (auto id : last_n_tokens)
{
last_output += llama_token_to_str(ctx, id);
}
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
for (std::string & antiprompt : params.antiprompt) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
for (std::string &antiprompt : params.antiprompt)
{
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos)
{
is_interacting = true;
is_antiprompt = true;
set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
@ -325,7 +370,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
}
}
if (n_past > 0 && is_interacting) {
if (n_past > 0 && is_interacting)
{
// potentially set color to indicate we are taking user input
set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
@ -334,35 +380,43 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
signal(SIGINT, sigint_handler);
#endif
if (params.instruct) {
if (params.instruct)
{
printf("\n> ");
}
std::string buffer;
if (!params.input_prefix.empty()) {
if (!params.input_prefix.empty())
{
buffer += params.input_prefix;
printf("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
do
{
#if defined(_WIN32)
std::wstring wline;
if (!std::getline(std::wcin, wline)) {
if (!std::getline(std::wcin, wline))
{
// input stream is bad or EOF received
return 0;
}
win32_utf8_encode(wline, line);
#else
if (!std::getline(std::cin, line)) {
if (!std::getline(std::cin, line))
{
// input stream is bad or EOF received
return 0;
}
#endif
if (line.empty() || line.back() != '\\') {
if (line.empty() || line.back() != '\\')
{
another_line = false;
} else {
}
else
{
line.pop_back(); // Remove the continue character
}
buffer += line + '\n'; // Append the line to the result
@ -373,10 +427,12 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
if (buffer.length() > 1)
{
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
if (params.instruct && !is_antiprompt)
{
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
@ -385,7 +441,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
// instruct mode: insert response suffix
if (params.instruct) {
if (params.instruct)
{
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
@ -395,23 +452,29 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
input_noecho = true; // do not echo this again
}
if (n_past > 0) {
if (n_past > 0)
{
is_interacting = false;
}
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos()) {
if (params.instruct) {
if (!embd.empty() && embd.back() == llama_token_eos())
{
if (params.instruct)
{
is_interacting = true;
} else {
}
else
{
fprintf(stderr, " [end of text]\n");
break;
}
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
if (params.interactive && n_remain <= 0 && params.n_predict != -1)
{
n_remain = params.n_predict;
is_interacting = true;
}
@ -429,7 +492,8 @@ int run_llama(llama_context * ctx, gpt_params params, std::ostream * outfile) {
return 0;
}
int main(int argc, char ** argv) {
int main(int argc, char **argv)
{
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
@ -438,7 +502,8 @@ int main(int argc, char ** argv) {
if (params.n_ctx > 2048)
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
"expect poor results\n",
__func__, params.n_ctx);
if (params.seed <= 0)
params.seed = time(NULL);
@ -459,7 +524,8 @@ int main(int argc, char ** argv) {
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
if (ctx == NULL)
{
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
@ -468,8 +534,8 @@ int main(int argc, char ** argv) {
crow::SimpleApp app;
// app.loglevel(crow::LogLevel::Warning);
CROW_ROUTE(app, "/completion").methods("POST"_method)
([&params, &ctx](const crow::request& req){
CROW_ROUTE(app, "/completion").methods("POST"_method)([&params, &ctx](const crow::request &req)
{
auto body = crow::json::load(req.body);
if (!body) return crow::response(crow::status::BAD_REQUEST);
@ -502,8 +568,7 @@ int main(int argc, char ** argv) {
// Write output of LLaMA to file stream.
run_llama(ctx, runparams, &outfile);
return crow::response(crow::status::OK);
});
return crow::response(crow::status::OK); });
// CROW_ROUTE(app, "/embedding").methods("POST"_method)
// ([&params, &ctx](const crow::request& req){